Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38996870

RESUMEN

INTRODUCTION: Multi-carbapenemase-producing Enterobacterales (M-CPE) are increasingly described. We characterized the M-CPE isolates prospectively recovered in our hospital (Madrid, Spain) over two years (2021-2022). METHODS: We collected 796 carbapenem resistant Enterobacterales (CRE) from clinical and surveillance samples. Carbapenemase production was confirmed with phenotypic (immunochromatographic, disk diffusion) and molecular (PCR, WGS) techniques. Antimicrobial susceptibility was evaluated by a standard broth microdilution method. Clinical and demographic data were collected. RESULTS: Overall, 23 M-CPE (10 Klebsiella pneumoniae, 6 Citrobacter freundii complex, 3 Escherichia coli, 2 Klebsiella oxytoca, and 2 Enterobacter hormaechei) isolates were recovered from 17 patients (3% with CPE, 0.27 cases per 1000 admissions). OXA-48+KPC-3 (7/23) and KPC-3+VIM-1 (5/23) were the most frequent carbapenemase combinations. All patients had prior antibiotics exposure, including carbapenems (8/17). High resistance rates to ceftazidime/avibactam (14/23), imipenem/relebactam (16/23) and meropenem/vaborbactam (7/23) were found. Ceftazidime/avibactam+aztreonam combination was synergistic in all metallo-ß-lactamase producers. Clonal and non-clonal related isolates were found, particularly in K. pneumoniae (5 ST29, 3 ST147, 3 ST307) and C. freundii (3 ST8, 2 ST125, 1 ST563). NDM-1+OXA-48 was introduced with the ST147-K. pneumoniae high-risk clone linked to the transfer of an Ukrainian patient. We identified four possible nosocomial clonal transmission events between patients of the same clone with the same combination of carbapenemases (KPC-3+VIM-1-ST29-K. pneumoniae, NDM-1+OXA-48-ST147-K. pneumoniae and KPC-2+VIM-1-ST145-K. oxytoca). Carbapenemase-encoding genes were located on different plasmids, except for VIM-1+KPC-2-ST145-K. oxytoca. Cross-species transmission and a possible acquisition overtime was found, particularly between K. pneumoniae and E. coli producing OXA-48+KPC-3. CONCLUSION: M-CPE is an emerging threat in our hospital. Co-production of different carbapenemases, including metallo-ß-lactamases, limits therapeutic options and depicts the need to reinforce infection control measures.

2.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38925640

RESUMEN

Faecal contamination of surface waters has the potential to spread not only pathogenic organisms but also antimicrobial resistant organisms. During the bathing season of 2021, weekly water samples, from six selected coastal bathing locations (n = 93) and their freshwater tributaries (n = 93), in Northern Ireland (UK), were examined for concentrations of faecal indicator bacteria Escherichia coli and intestinal enterococci. Microbial source tracking involved detection of genetic markers from the genus Bacteroides using PCR assays for the general AllBac marker, the human HF8 marker and the ruminant BacR marker for the detection of human, and ruminant sources of faecal contamination. The presence of beta-lactamase genes blaOXA-48, blaKPC, and blaNDM-1 was determined using PCR assays for the investigation of antimicrobial resistance genes that are responsible for lack of efficacy in major broad-spectrum antibiotics. The beta-lactamase gene blaOXA-48 was found in freshwater tributary samples at all six locations. blaOXA-48 was detected in 83% of samples that tested positive for the human marker and 69% of samples that tested positive for the ruminant marker over all six locations. This study suggests a risk of human exposure to antimicrobial resistant bacteria where bathing waters receive at least episodically substantial transfers from such tributaries.


Asunto(s)
Proteínas Bacterianas , Escherichia coli , Heces , Agua Dulce , beta-Lactamasas , beta-Lactamasas/genética , Irlanda del Norte , Agua Dulce/microbiología , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/efectos de los fármacos , Humanos , Heces/microbiología , Microbiología del Agua , Enterococcus/genética , Enterococcus/aislamiento & purificación , Enterococcus/enzimología , Enterococcus/efectos de los fármacos , Antibacterianos/farmacología , Animales
3.
Infect Drug Resist ; 17: 1987-1997, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800585

RESUMEN

The prevalence of carbapenem-resistant Klebsiella pneumoniae (CRKP) has been increasing in recent years. Chinese Infectious Disease Surveillance of Pediatrics (ISPED) showed that in 2022, its resistance rate to meropenem was 18.5%. However, there is limited data available on the treatment of CRKP infection in neonates. In this study, we present a case involving a premature infant infected with OXA-48-producing Klebsiella pneumoniae. The combined susceptibility test revealed a significant synergistic effect between ceftazidime-avibactam(CAZ-AVI), and aztreonam(ATM). The infection was successfully treated with a combination of CAZ-AVI, ATM, and fosfomycin. This case represents the first reported instance of sepsis in a premature infant caused by OXA-48-producing Klebsiella pneumoniae in China. The objective of our study is to evaluate the effectiveness and safety of combination therapy in treating CRKP infections in premature infants. We hope that the findings of this study will provide valuable insights for clinicians in their treatment approach.

4.
Antibiotics (Basel) ; 13(5)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38786163

RESUMEN

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (Cr-Kpn) is becoming a growing public health problem through the failure of adequate treatment. This study's objectives are to describe the sources of Cr-Kpn in our hospital over 22 months, associating factors with the outcome of Cr-Kpn-positive patients, especially those with NDM+OXA-48-like (New Delhi Metallo-ß-Lactamase and oxacillinase-48), and the effectiveness of the treatments used. METHODS: A retrospective observational cohort study including all hospitalized patients with Cr-Kpn isolates. We reported data as percentages and identified independent predictors for mortality over hospital time through multivariate analysis. RESULTS: The main type of carbapenemases identified were NDM+OXA-48-like (49.4%). The statistical analysis identified that diabetes and co-infections with the Gram-negative, non-urinary sites of infection were factors of unfavorable evolution. The Cox regression model identified factors associated with a poor outcome: ICU admission (HR of 2.38), previous medical wards transition (HR of 4.69), and carbapenemase type NDM (HR of 5.98). We did not find the superiority of an antibiotic regimen, especially in the case of NDM+OXA-48-like. CONCLUSIONS: The increase in the incidence of Cr-Kpn infections, especially with NDM+OXA-48-like pathogens, requires a paradigm shift in both the treatment of infected patients and the control of the spread of these pathogens, which calls for a change in public health policy regarding the use of antibiotics and the pursuit of a One Health approach.

5.
Antibiotics (Basel) ; 13(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38786183

RESUMEN

Carbapenemase-producing Enterobacter spp. Serratia marcescens, Citrobacter freundii, Providencia spp., and Morganella morganii (CP-ESCPM) are increasingly identified as causative agents of nosocomial infections but are still not under systematic genomic surveillance. In this study, using a combination of whole-genome sequencing and conjugation experiments, we sought to elucidate the genomic characteristics and transferability of resistance genes in clinical CP-ESCPM isolates from Bulgaria. Among the 36 sequenced isolates, NDM-1 (12/36), VIM-4 (11/36), VIM-86 (8/36), and OXA-48 (7/36) carbapenemases were identified; two isolates carried both NDM-1 and VIM-86. The majority of carbapenemase genes were found on self-conjugative plasmids. IncL plasmids were responsible for the spread of OXA-48 among E. hormaechei, C. freundii, and S. marcescens. IncM2 plasmids were generally associated with the spread of NDM-1 in C. freundii and S. marcescens, and also of VIM-4 in C. freundii. IncC plasmids were involved in the spread of the recently described VIM-86 in P. stuartii isolates. IncC plasmids carrying blaNDM-1 and blaVIM-86 were observed too. blaNDM-1 was also detected on IncX3 in S. marcescens and on IncT plasmid in M. morganii. The significant resistance transfer rates we observed highlight the role of the ESCPM group as a reservoir of resistance determinants and stress the need for strengthening infection control measures.

6.
Infection ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703288

RESUMEN

BACKGROUND: Community-acquired (CA) and healthcare-associated (HCA) infections caused by carbapenemase-producing Enterobacterales (CPE) are not well characterized. The objective was to provide detailed information about the clinical and molecular epidemiological features of nosocomial, HCA and CA infections caused by carbapenemase-producing Klebsiella pneumoniae (CP-Kp) and Escherichia coli (CP-Ec). METHODS: A prospective cohort study was performed in 59 Spanish hospitals from February to March 2019, including the first 10 consecutive patients from whom CP-Kp or CP-Ec were isolated. Patients were stratified according to acquisition type. A multivariate analysis was performed to identify the impact of acquisition type in 30-day mortality. RESULTS: Overall, 386 patients were included (363 [94%] with CP-Kp and 23 [6%] CP-Ec); in 296 patients (76.3%), the CPE was causing an infection. Acquisition was CA in 31 (8.0%) patients, HCA in 183 (47.4%) and nosocomial in 172 (48.3%). Among patients with a HCA acquisition, 100 (54.6%) had been previously admitted to hospital and 71 (38.8%) were nursing home residents. Urinary tract infections accounted for 19/23 (82.6%), 89/130 (68.5%) and 42/143 (29.4%) of CA, HCA and nosocomial infections, respectively. Overall, 68 infections (23%) were bacteremia (8.7%, 17.7% and 30.1% of CA, HCA and nosocomial, respectively). Mortality in infections was 28% (13%, 14.6% and 42.7% of CA, HCA and nosocomial, respectively). Nosocomial bloodstream infections were associated with increased odds for mortality (adjusted OR, 4.00; 95%CI 1.21-13.19). CONCLUSIONS: HCA and CA infections caused by CPE are frequent and clinically significant. This information may be useful for a better understanding of the epidemiology of CPE.

7.
Emerg Microbes Infect ; 13(1): 2353310, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38712879

RESUMEN

OXA-48-like enzymes represent the most frequently detected carbapenemases in Enterobacterales in Western Europe, North Africa and the Middle East. In contrast to other species, the presence of OXA-48-like in Proteus mirabilis leads to an unusually susceptible phenotype with low MICs for carbapenems and piperacillin-tazobactam, which is easily missed in the diagnostic laboratory. So far, there is little data available on the genetic environments of the corresponding genes, blaOXA-48-like, in P. mirabilis. In this study susceptibility phenotypes and genomic data of 13 OXA-48-like-producing P. mirabilis were investigated (OXA-48, n = 9; OXA-181, n = 3; OXA-162, n = 1). Ten isolates were susceptible to meropenem and ertapenem and three isolates were susceptible to piperacillin-tazobactam. The gene blaOXA-48 was chromosomally located in 7/9 isolates. Thereof, in three isolates blaOXA-48 was inserted into a P. mirabilis genomic island. Of the three isolates harbouring blaOXA-181 one was located on an IncX3 plasmid and two were located on a novel MOBF plasmid, pOXA-P12, within the new transposon Tn7713. In 5/6 isolates with plasmidic location of blaOXA-48-like, the plasmids could conjugate to E. coli recipients in vitro. Vice versa, blaOXA-48-carrying plasmids could conjugate from other Enterobacterales into a P. mirabilis recipient. These data show a high diversity of blaOXA-48-like genetic environments compared to other Enterobacterales, where genetic environments are quite homogenous. Given the difficult-to-detect phenotype of OXA-48-like-producing P. mirabilis and the location of blaOXA-48-like on mobile genetic elements, it is likely that OXA-48-like-producing P. mirabilis can disseminate, escape most surveillance systems, and contribute to a hidden spread of OXA-48-like.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Pruebas de Sensibilidad Microbiana , Infecciones por Proteus , Proteus mirabilis , beta-Lactamasas , Proteus mirabilis/genética , Proteus mirabilis/enzimología , Proteus mirabilis/aislamiento & purificación , Proteus mirabilis/efectos de los fármacos , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Humanos , Infecciones por Proteus/microbiología , Plásmidos/genética , Islas Genómicas , Carbapenémicos/farmacología
8.
Euro Surveill ; 29(15)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606571

RESUMEN

BackgroundCarbapenemase-producing Enterobacterales are a public health threat worldwide and OXA-48 is the most prevalent carbapenemase in Germany and western Europe. However, the molecular epidemiology of OXA-48 in species other than Escherichia coli and Klebsiella pneumoniae remains poorly understood.AimTo analyse the molecular epidemiology of OXA-48 and OXA-48-like carbapenemases in Citrobacter species (spp.) in Germany between 2011 and 2022.MethodsData of 26,822 Enterobacterales isolates sent to the National Reference Centre (NRC) for Gram-negative bacteria were evaluated. Ninety-one Citrobacter isolates from 40 German hospitals harbouring bla OXA-48/OXA-48­like were analysed by whole genome sequencing and conjugation experiments.ResultsThe frequency of OXA-48 in Citrobacter freundii (CF) has increased steadily since 2011 and is now the most prevalent carbapenemase in this species in Germany. Among 91 in-depth analysed Citrobacter spp. isolates, CF (n = 73) and C. koseri (n = 8) were the most common species and OXA-48 was the most common variant (n = 77), followed by OXA-162 (n = 11) and OXA­181 (n = 3). Forty percent of the isolates belonged to only two sequence types (ST19 and ST22), while most other STs were singletons. The plasmids harbouring bla OXA­48 and bla OXA-162 belonged to the plasmid types IncL (n = 85) or IncF (n = 3), and plasmids harbouring bla OXA­181 to IncX3 (n = 3). Three IncL plasmid clusters (57/85 IncL plasmids) were identified, which were highly transferable in contrast to sporadic plasmids.ConclusionIn CF in Germany, OXA-48 is the predominant carbapenemase. Dissemination is likely due to distinct highly transmissible plasmids harbouring bla OXA­48 or bla OXA-48-like and the spread of the high-risk clonal lineages ST19 and ST22.


Asunto(s)
Proteínas Bacterianas , Citrobacter , Humanos , Citrobacter/genética , Proteínas Bacterianas/genética , beta-Lactamasas/genética , Plásmidos/genética , Klebsiella pneumoniae/genética , Escherichia coli/genética , Secuenciación Completa del Genoma , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
9.
Intern Med J ; 54(4): 535-544, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38584572

RESUMEN

Carbapenemase-producing gram-negative bacteria (CP-GNB) infections threaten public health with high mortality, morbidity and treatment costs. Although frequencies remain low in Australia (total number of CP-GNB infections reported was 907 in 2022), blaIMP-4 has established low levels of endemicity in many states. Imipenemase metallo-ß-lactamase types alone accounted for more than half of all carbapenemases in carbapenemase-producing Enterobacterales isolates in Australia, particularly in Enterobacter cloacae complex. New Delhi metallo-ß-lactamase constitutes almost 25% of all carbapenemases in Australia and was identified predominantly in Escherichia coli. The OXA-48-like carbapenemases include almost 10% of all carbapenemases and are mainly seen in Klebsiella pneumoniae and E. coli. Although K. pneumoniae carbapenemase-type carbapenemases are rare in Australia, some local outbreaks have occurred. Most carbapenem-resistant (CR) Pseudomonas aeruginosa strains in Australia do not produce carbapenemases. Finally, OXA-23-like carbapenemases are overwhelmingly positive in CR-Acinetobacter baumannii strains in Australia. Treatment of CR-GNB infections challenges physicians. Of 10 new antibiotics active against at least some CR-GNB infections that are approved by the US Food and Drug Administration, just three are approved for use in Australia. In this context, there is still an unmet need for novel antibacterials that can be used for the treatment of CR-GNB infections in Australia, as well as a pressing requirement for new mechanisms to 'de-link' antibiotic sales from their availability. In this narrative review, we aim to overview the epidemiology and clinical significance of carbapenem resistance in Australia as it pertains to Enterobacterales, P. aeruginosa and A. baumannii.


Asunto(s)
Proteínas Bacterianas , Relevancia Clínica , Escherichia coli , Humanos , beta-Lactamasas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Pruebas de Sensibilidad Microbiana
10.
Euro Surveill ; 29(16)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38639094

RESUMEN

In 2023, an increase of OXA-48-producing Klebsiella pneumoniae was noticed by the Lithuanian National Public Health Surveillance Laboratory. Whole genome sequencing (WGS) of 106 OXA-48-producing K. pneumoniae isolates revealed three distinct clusters of carbapenemase-producing K. pneumoniae high-risk clones, including sequence type (ST) 45 (n = 35 isolates), ST392 (n = 32) and ST395 (n = 28), involving six, six and nine hospitals in different regions, respectively. These results enabled targeted investigation and control, and underscore the value of national WGS-based surveillance for antimicrobial resistance.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Lituania/epidemiología , Tipificación de Secuencias Multilocus , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/tratamiento farmacológico , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Hospitales , Brotes de Enfermedades , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
12.
Microbiol Resour Announc ; 13(4): e0119223, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38426732

RESUMEN

The emergence of convergent Klebsiella pneumoniae strains showing multiresistance, characteristic of nosocomial pathotypes and hypervirulent traits typical of community-acquired isolates, makes them important models for studying K. pneumoniae pathogenesis. Here, we describe the convergent, multidrug-resistant KLEB-33 strain harboring several hypervirulence genes and make its genome available to the scientific community.

13.
Microbiol Spectr ; 12(4): e0341623, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38446073

RESUMEN

An increase in Klebsiella pneumoniae carbapenem-resistant human nosocomial strains is occurring in Europe, namely with the blaOXA-48-like and blaKPC-like genes. We determined the prevalence of carbapenemase-producing Enterobacterales clinical strains in companion animals in Portugal and characterized their mobile genetic elements. Susceptibility data of a consecutive collection of 977 Enterobacterales clinical strains from a Portuguese private veterinary diagnostic laboratory were evaluated (January-December 2020). Additional phenotypical and genotypical assays were performed in a subset of 261 strains with a resistant phenotype. Whole-genome sequencing was performed for carbapenemase-producing strains. The frequency of carbapenemase-producing Enterobacterales clinical strains in companion animals in Portugal was 0.51% (n = 5/977). Thus, five strains were characterized: (i) one OXA-181-producing K. pneumoniae ST273, (ii) two KPC-3-producing K. pneumoniae ST147; (iii) one KPC-3-producing K. pneumoniae ST392; and (iv) one OXA-48-producing E. coli ST127. The blaKPC-3 gene was located on transposon Tn4401d on IncFIA type plasmid for the K. pneumoniae ST147 strains and on a IncN-type plasmid for the K. pneumoniae ST392 strain, while blaOXA-181 gene was located on an IncX3 plasmid. All de novo assembled plasmids and plasmid-encoded transposons harboring carbapenemase genes were homologous to those previously described in the human healthcare. No plasmid replicons were detected on the OXA-48-producing E. coli ST127. The dissemination of carbapenem resistance is occurring horizontally via plasmid spreading from the human high burden carbapenem resistance setting to the companion animal sector. Furthermore, companion animals may act as reservoirs of carbapenem resistance. Implementation of carbapenemase detection methods in routine clinical veterinary microbiology is urgently needed. IMPORTANCE: This is the first study on the prevalence of carbapenemase-producing Enterobacterales (CPE) clinical strains from companion animals in Portugal. Despite the generally low prevalence of CPE in companion animals, it is imperative for veterinary diagnostic laboratories to employ diagnostic methods for carbapenemase detection. The resemblance found in the mobile genetic elements transporting carbapenemase genes between veterinary medicine and human medicine implies a potential circulation within a One Health framework.


Asunto(s)
Infecciones por Klebsiella , Mascotas , Humanos , Animales , Portugal/epidemiología , Escherichia coli/genética , Proteínas Bacterianas/genética , beta-Lactamasas/genética , Klebsiella pneumoniae/genética , Carbapenémicos/farmacología , Infecciones por Klebsiella/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana
14.
Antimicrob Agents Chemother ; 68(5): e0018024, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38526049

RESUMEN

OXA-48 has rapidly disseminated worldwide and become one of the most common carbapenemases in many countries with more than 45 variants reported with, in some cases, significant differences in their hydrolysis profiles. The R214 residue, located in the ß5-ß6 loop, is crucial for the carbapenemase activity, as it stabilizes carbapenems in the active site and maintains the shape of the active site through interactions with D159. In this study, we have characterized a novel variant of OXA-48, OXA-933 with a single D159N change. To evaluate the importance of this residue, point mutations were generated (D159A, D159G, D159K, and D159W), kinetic parameters of OXA-933, OXA-48 D159G, and OXA-48 D159K were determined and compared to those of OXA-48 and OXA-244. The blaOXA-933 gene was borne on Tn2208, a 2,696-bp composite transposon made of two IS1 elements surrounded by 9 bp target site duplications and inserted into a non-self-transmissible plasmid pOXA-933 of 7,872 bp in size. Minimal inhibitory concentration values of E. coli expressing the blaOXA-933 gene or of its point mutant derivatives were lower for carbapenems (except for D159G) as compared to those expressing the blaOXA-48 gene. Steady-state kinetic parameters revealed lower catalytic efficiencies for expanded spectrum cephalosporins and carbapenems. A detailed structural analysis confirmed the crucial role of D159 in shaping the active site of OXA-48 enzymes by interacting with R214. Our work further illustrates the remarkable propensity of OXA-48-like carbapenemases to evolve through mutations at positions outside the ß5-ß6 loop, but interacting with key residues of it.


Asunto(s)
Antibacterianos , Carbapenémicos , Escherichia coli , Pruebas de Sensibilidad Microbiana , Penicilinas , beta-Lactamasas , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Carbapenémicos/farmacología , Carbapenémicos/metabolismo , Hidrólisis , Antibacterianos/farmacología , Penicilinas/metabolismo , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Cinética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Elementos Transponibles de ADN/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación Puntual
15.
Gene ; 910: 148332, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38431235

RESUMEN

Antibiotic resistance is an increasing concern that threatens the effectiveness of treating bacterial infections. The spread of carbapenem resistant Klebsiella pneumoniae poses a significant threat to global public health. To combat this issue, the clustered regularly interspaced short palindromic repeats interference (CRISPRi) system is being developed. This system includes a single guide RNA (sgRNA) and a nuclease dead Cas9 (dCas9), which work together to downregulate gene expression. Our project involved the use of the CRISPRi system to reduce gene expression of the beta-lactamase oxacillin-48 (blaOXA-48) gene in K. pneumoniae. We designed a sgRNA and cloned it into pJMP1363 plasmid harboring the CRISPRi system. The pJMP1363-sgRNA construct was transformed in K. pneumoniae harboring the blaOXA-48 gene. The MIC test was used to evaluate the antimicrobial resistance, and quantitative real-time RT-PCR was used to confirm the inhibition of the OXA-48 producing K. pneumoniae harboring the pJMP1363-sgRNA construct expression. The Galleria mellonella larvae model was also utilized for in vivo assay. Following the transformation, the MIC test indicated a 4-fold reduction in meropenem resistance, and qRT-PCR analysis revealed a 60-fold decrease in the mRNA OXA-48 harboring the pJMP1363-sgRNA construct expression. Additionally, G. mellonella larvae infected with OXA-48 producing K. pneumoniae harboring the pJMP1363-sgRNA showed higher survival rates. Based on the findings, it can be concluded that the CRISPR interference technique has successfully reduced antibiotic resistance and virulence in the K. pneumoniae harboring the blaOXA-48 gene.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , ARN Guía de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Plásmidos/genética , Expresión Génica , Infecciones por Klebsiella/genética , Infecciones por Klebsiella/microbiología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
16.
J Infect Public Health ; 17(4): 669-675, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447323

RESUMEN

BACKGROUND: This study presents a comprehensive genomic analysis of NDM and OXA-48-producing Klebsiella pneumoniae in the Western region of Saudi Arabia, traversed by tens of millions of Muslims from various countries annually. This significant influx of visitors invariably leads to the spread and diversity of MDR bacteria. METHODS: Genome sequencing was performed using MiSeq system of 29 CPKP isolates that were NDM and OXA-48-positive isolated from nosocomial infections and demonstrated resistance to most antibiotics, including carbapenems. RESULTS: WGS analysis showed that 12 (41.3%) isolates co-harbored blaOXA-48,blaCTX-M-15 and blaNDM genes. Notably, 16 (55.1%) isolates were identified as high-risk clone ST14, with 50% of these isolates co-harbored blaOXA-48, blaNDM and blaCTX-M-15 genes. All ST14 isolates were identified as capsular genotype KL2 and O1/O2v1 antigen with yersiniabactin locus ypt 14 carried by ICEKp5. The two isolates were identified as ST2096/KL64 hypervirulent K. pneumoniae (hvKp) clone harboring several virulence factors, including the regulator of the mucoid phenotype rmpA2 and aerobactin (iuc-1). Interestingly, two of the hvKp ST383/KL30 isolates were resistant to all tested antimicrobials except colistin and tigecycline, and simultaneously carried numerous ESBLs and carbapenemase genes. These isolates also harbor several virulence factors such as rmpA1, rmpA2, carried on KpVP-1, and aerobactin (iuc-1). CONCLUSION: this study provides insights into the spread and prevalence of high-risk clones of CPKP in the Western region of Saudi Arabia. The ST14 high-risk clone appears to be the predominant CPKP clone in this region, posing a significant threat to public health. This study also reports the presence of two globally disseminated hypervirulent K. pneumoniae (hvKp) clones, namely ST2096 and ST383. Therefore, it is essential to improve surveillance and implement strict infection control measures in this region, which receives a substantial number of visitors to effectively monitor and reduce the spread of high-risk clones of antimicrobial-resistant bacteria, including CPKP.


Asunto(s)
Ácidos Hidroxámicos , Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Arabia Saudita/epidemiología , beta-Lactamasas/genética , beta-Lactamasas/farmacología , Antibacterianos/farmacología , Factores de Virulencia/genética , Genómica , Pruebas de Sensibilidad Microbiana
17.
Antibiotics (Basel) ; 13(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38534720

RESUMEN

Carbapenem-resistant Gram-negative bacterial infections are a major public health threat due to the limited therapeutic options available. The introduction of the new ß-lactam/ß-lactamase inhibitors (BL/BLIs) has, however, altered the treatment options for such pathogens. Thus, four new BL/BLI combinations-namely, ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam, and ceftolozane/tazobactam-have been approved for infections attributed to carbapenem-resistant Enterobacterales species and Pseudomonas aeruginosa. Nevertheless, although these antimicrobials are increasingly being used in place of other drugs such as polymyxins, their optimal clinical use is still challenging. Furthermore, there is evidence that resistance to these agents might be increasing, so urgent measures should be taken to ensure their continued effectiveness. Therefore, clinical laboratories play an important role in the judicious use of these new antimicrobial combinations by detecting and characterizing carbapenem resistance, resolving the presence and type of carbapenemase production, and accurately determining the minimum inhibitor concentrations (MICs) for BL/BLIs. These three targets must be met to ensure optimal BL/BLIs use and prevent unnecessary exposure that could lead to the development of resistance. At the same time, laboratories must ensure that results are interpreted in a timely manner to avoid delays in appropriate treatment that might be detrimental to patient safety. Thus, we herein present an overview of the indications and current applications of the new antimicrobial combinations and explore the diagnostic limitations regarding both carbapenem resistance detection and the interpretation of MIC results. Moreover, we suggest the use of alternative narrower-spectrum antibiotics based on susceptibility testing and present data regarding the effect of synergies between BL/BLIs and other antimicrobials. Finally, in order to address the absence of a standardized approach to using the novel BL/BLIs, we propose a diagnostic and therapeutic algorithm, which can be modified based on local epidemiological criteria. This framework could also be expanded to incorporate other new antimicrobials, such as cefiderocol, or currently unavailable BL/BLIs such as aztreonam/avibactam and cefepime/taniborbactam.

18.
Antibiotics (Basel) ; 13(3)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38534700

RESUMEN

Ceftazidime/avibactam (CAZ-AVI) is FDA-approved for managing infections caused by resistant gram-negative bacilli, particularly infections via carbapenem-resistant Enterobacterales pathogens. The clinical data are still limited, particularly those in Saudi Arabia. The present study is a retrospective cohort study that was carried out at the Armed Forces Hospital in the southern region of Saudi Arabia to compare the clinical and microbiological outcomes for CAZ-AVI-treated patients as monotherapy and as an add-on to standard therapy for carbapenem-resistant Klebsiella pneumonia (CRKP) OXA-48 infections to those treated with standard drugs. The study included CRKP OXA-48-like infected patients who were administered antibiotics for more than seven days from 1 August 2018 to May 2023. Patients' baseline characteristics and demography were extracted from the clinical records, and their clinical/microbiology efficiencies were assessed as per the corresponding definitions. Univariate and multivariate logistic regressions were conducted to identify the potential independent variable for CAZ-AVI efficiency. A total of 114 patient files were included for the evaluation. Among these patients, 64 used CAZ-AVI combined with standard therapy and were included in the intervention group, and 50 of them used standard therapy and were included in the comparative group. Following analysis, CAZ-AVI's clinical success was 42.2% (p = 0.028), while the intervention versus comparative groups showed decreased 30-day all-cause mortality (50.0% versus 70.0%; p = 0.036) and infection recurrence (7.8% versus 24.0%; p = 0.019), as well as substantially increased rates of microbial eradication (68.8% versus 42.0%; p = 0.007). CAZ-AVI add-on therapy rather than monotherapy showed statistically significant favored clinical and microbial outcomes over the standard therapy. Furthermore, sex (female %), ICU admission, and fever were negatively associated with patients' 30-day all-cause mortality, serving as independent negative factors. Only fever, CRP bio levels, inotropes, and ICU admissions were significant predictors influencing the CAZ-AVI's clinical efficiency. The duration of CAZ-AVI therapy positively influenced CAZ-AVI's microbial eradication, while both WBC counts and fever experiences were negative predictors. This study shows the effective usage of CAZ-AVI against CRKP OXA-48-like infections. The influencing independent variables depicted here should recommend that clinicians individualize the CAZ-AVI dose based on co-existing risk factors to achieve optimal survival and efficacy. Prospective multicenter and randomized control studies are recommended, with individualized CAZ-AVI precision administration implemented based on patients' characteristics.

19.
Microbiol Spectr ; 12(3): e0147323, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38329363

RESUMEN

Oxacillinases (OXA)-48-like ß-lactamases are one of the most common resistance determinants among carbapenem-resistant Enterobacterales reported globally. Moreover, there is no standard treatment available against organisms producing OXA-48-like enzymes, and they are sometimes difficult to detect, making treatment challenging. The objective of this study was to evaluate the distribution and antimicrobial susceptibility of blaOXA-48-like Enterobacterales isolates against ceftazidime-avibactam (CAZ-AVI) and a panel of comparators collected worldwide from 2016 to 2020 as a part of the Antimicrobial Testing Leadership and Surveillance program. Among all the Enterobacterales isolates collected, 1.8% (1,690/94,052) carried blaOXA-48-like, and a majority of those were identified as K. pneumoniae (86.5%, 1,462/1,690). Among all the blaOXA-48-like isolates, 88.9% (1,502/1,690) were extended-spectrum ß-lactamase (ESBL)-positive, 20.7% (350/1,690) were metallo-ß-lactamase (MBL)-positive, and 8.9% (150/1,690) were ESBL- and MBL-negative. There were 10 different variants of the OXA-48-like family of enzymes detected, with the major variant being blaOXA-48 (50.2%, 848/1,690), blaOXA-232 (29.3%, 496/1,690), and blaOXA-181 (18.0%, 304/1,690). Overall, all the blaOXA-48-like isolates showed a susceptibility of 78.6% to CAZ-AVI. Importantly, high susceptibility to CAZ-AVI was shown by all the blaOXA-48 type, MBL-negative isolates (n = 1,380, ≥99.0%), and all the MBL-negative isolates (n = 1,300, ≥97.6%) of the major variants (blaOXA-48, blaOXA-232, and blaOXA-181) studied. Among the comparator agents, all isolates showed good susceptibility to only tigecycline (>95.0%) and colistin (>78.6%). Considering the limited treatment options available, CAZ-AVI could be considered as a potential treatment option against blaOXA-48-like Enterobacterales. However, routine surveillance and appropriate stewardship strategies for these organisms may help identify emerging resistance mechanisms and effective treatment of infections. IMPORTANCE: Resistance to carbapenems among Enterobacterales is often due to the production of enzymes that are members of the oxacillinases (OXA)-48-like family. These organisms can also be resistant to other classes of drugs and are difficult to identify and treat. This study evaluated the activity of the drug ceftazidime-avibactam (CAZ-AVI) and other comparator agents against a global collection of Enterobacterales that produce OXA-48-like enzymes. CAZ-AVI was active against blaOXA-48-like Enterobacterales, and only colistin and tigecycline were similarly active among the comparator agents, highlighting the limited treatment options against these organisms. Continued surveillance of the distribution of these OXA 48-like producing Enterobacterales and monitoring of resistance patterns along with the implementation of antimicrobial stewardship measures to guide antibiotic use and appropriate treatment are necessary to avoid drug resistance among these organisms.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Ceftazidima , Colistina , Colistina/farmacología , Tigeciclina/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , beta-Lactamasas , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Combinación de Medicamentos
20.
BMC Res Notes ; 17(1): 49, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360658

RESUMEN

OBJECTIVE: Carbapenemase production and biofilm formation in K. pneumoniae are crucial factors influencing the pathogenicity and antibiotic resistance of this bacterium. This study investigated the interplay between carbapenemase production and biofilm formation in K. pneumoniae clinical isolates. RESULTS: The distribution of biofilm-forming ability significantly differed between carbapenemase-producing (CP-Kp) (n = 52) isolates and carbapenemase-nonproducing (CN-Kp) isolates (n = 37), suggesting a potential link between carbapenemase production and biofilm formation. All the blaNDM-1-harbouring isolates demonstrated biofilm formation, with varying levels classified as strong (33.33%), moderate (22.22%), or weak (44.45%). blaNDM-1 and blaKPC-coharbouring isolates did not exhibit strong or moderate biofilm formation. blaNDM-1 and blaOXA-48-coharbouring isolates were predominantly moderate (48.65%), followed by weak (32.43%), with none showing strong biofilm production. These findings suggest a correlation between the presence of carbapenemases and biofilm-forming ability; however, the heterogeneity in biofilm-forming abilities associated with different carbapenemase types and the absence of strong biofilm producers in the detected carbapenemase combinations prompt a closer look at the complex regulatory mechanisms governing biofilm formation in CP-Kp isolates.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , Proteínas Bacterianas , Biopelículas , Antibacterianos/farmacología , Infecciones por Klebsiella/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...