Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.504
Filtrar
1.
Microorganisms ; 12(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065265

RESUMEN

Epichloë fungal endophytes hold promise in sustainable agriculture by fortifying cool-season grasses such as Elymus spp. against various stresses. Elymus spp. are widely distributed in Northwest China with a high incidence of endophyte infections. In this study, we identified 20 Epichloë endophytic fungal strains carried by five Elymus spp. from five areas of Northwest China and systematically characterized their morphology, molecular phylogeny, mating type, and alkaloid diversity for the first time. The morphological characterization underscores strain diversity, with variable colony textures and growth rates. A phylogenetic analysis confirms all strains are E. bromicola, emphasizing their taxonomic status. Alkaloid-encoding gene profiling delineates distinct alkaloid synthesis capabilities among the strains, which are crucial for host adaptability and resistance. A mating-type analysis reveals uniformity (mtAC) across the Epichloë strains, simplifying breeding strategies. Notably, the Epichloë strains exhibit diverse alkaloid synthesis gene profiles, impacting host interactions. This research emphasizes the ecological significance of Epichloë endophytes in Elymus spp. ecosystems, offering insights into their genetic diversity and potential applications in sustainable agriculture.

2.
Viruses ; 16(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39066280

RESUMEN

We conducted an integrative analysis to elucidate the spatial epidemiological patterns of the Vesicular Stomatitis New Jersey virus (VSNJV) during the 2014-15 epizootic cycle in the United States (US). Using georeferenced VSNJV genomics data, confirmed vesicular stomatitis (VS) disease cases from surveillance, and a suite of environmental factors, our study assessed environmental and phylogenetic similarity to compare VS cases reported in 2014 and 2015. Despite uncertainties from incomplete virus sampling and cross-scale spatial processes, patterns suggested multiple independent re-invasion events concurrent with potential viral overwintering between sequential seasons. Our findings pointed to a geographically defined southern virus pool at the US-Mexico interface as the source of VSNJV invasions and overwintering sites. Phylodynamic analysis demonstrated an increase in virus diversity before a rise in case numbers and a pronounced reduction in virus diversity during the winter season, indicative of a genetic bottleneck and a significant narrowing of virus variation between the summer outbreak seasons. Environment-vector interactions underscored the central role of meta-population dynamics in driving disease spread. These insights emphasize the necessity for location- and time-specific management practices, including rapid response, movement restrictions, vector control, and other targeted interventions.


Asunto(s)
Brotes de Enfermedades , Genoma Viral , Filogenia , Estaciones del Año , Estomatitis Vesicular , Virus de la Estomatitis Vesicular New Jersey , Animales , Estomatitis Vesicular/virología , Estomatitis Vesicular/epidemiología , Virus de la Estomatitis Vesicular New Jersey/genética , Estados Unidos/epidemiología , Genómica , Geografía , Bovinos , Variación Genética , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/epidemiología
3.
Curr Biol ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067451

RESUMEN

The extraordinary diversification of beetles on Earth is a textbook example of adaptive evolution. Yet, the tempo and drivers of this super-radiation remain largely unclear. Here, we address this problem by investigating macroevolutionary dynamics in darkling beetles (Coleoptera: Tenebrionidae), one of the most ecomorphologically diverse beetle families (with over 30,000 species). Using multiple genomic datasets and analytical approaches, we resolve the long-standing inconsistency over deep relationships in the family. In conjunction with a landmark-based dataset of body shape morphology, we show that the evolutionary history of darkling beetles is marked by ancient rapid radiations, frequent ecological transitions, and rapid bursts of morphological diversification. On a global scale, our analyses uncovered a significant pulse of phenotypic diversification proximal to the Cretaceous-Palaeogene (K/Pg) mass extinction and convergence of body shape associated with recurrent ecological specializations. On a regional scale, two major Australasian radiations, the Adeliini and the Heleine clade, exhibited contrasting patterns of ecomorphological diversification, representing phylogenetic niche conservatism versus adaptive radiation. Our findings align with the Simpsonian model of adaptive evolution across the macroevolutionary landscape and highlight a significant role of ecological opportunity in driving the immense ecomorphological diversity in a hyperdiverse beetle group.

4.
BMC Genomics ; 25(1): 724, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060998

RESUMEN

BACKGROUND: The obligate intracellular bacterial family Chlamydiaceae comprises a number of different species that cause disease in various vertebrate hosts including humans. Chlamydia suis, primarily found in the gastrointestinal tract of pigs, is the only species of the Chlamydiaceae family to have naturally gained tetracycline resistance (TetR), through a genomic island (Tet-island), integrated into the middle of chromosomal invasin-like gene inv. Previous studies have hypothesised that the uptake of the Tet-island from a host outside the Chlamydiaceae family was a unique event, followed by spread among C. suis through homologous recombination. In vitro recombination studies have shown that Tet-island exchange between C. suis strains is possible. Our aim in this study was to gain a deeper understanding of the interclade recombination of the Tet-island, among currently circulating C. suis field strains compared to in vitro-generated recombinants, using published whole genome sequences of C. suis field strains (n = 35) and in vitro-generated recombinants (n = 63). RESULTS: We found that the phylogeny of inv better reflected the phylogeny of the Tet-island than that of the whole genome, supporting recombination rather than site-specific insertion as the means of transfer. There were considerable differences between the distribution of recombinations within in vitro-generated strains compared to that within the field strains. These differences are likely because in vitro-generated recombinants were selected for a tetracycline and rifamycin/rifampicin resistant background, leading to the largest peak of recombination across the Tet-island. Finally, we found that interclade recombinations across the Tet-island were more variable in length downstream of the Tet-island than upstream. CONCLUSIONS: Our study supports the hypothesis that the occurrence of TetR strains in both clades of C. suis came about through interclade recombination after a single ancestral horizontal gene transfer event.


Asunto(s)
Chlamydia , Islas Genómicas , Filogenia , Recombinación Genética , Resistencia a la Tetraciclina , Chlamydia/genética , Resistencia a la Tetraciclina/genética , Animales , Porcinos , Transferencia de Gen Horizontal , Genoma Bacteriano
5.
Genes (Basel) ; 15(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39062653

RESUMEN

The genus Orthopodomyia Theobald, 1904 (Diptera: Culicidae) comprises 36 wild mosquito species, with distribution largely restricted to tropical and temperate areas, most of which are not recognized as vectors of epidemiological importance due to the lack of information related to their bionomy and involvement in the cycle transmission of infectious agents. Furthermore, their evolutionary relationships are not completely understood, reflecting the scarcity of genetic information about the genus. Therefore, in this study, we report the first complete description of the mitochondrial genome of a Neotropical species representing the genus, Orthopodomyia fascipes Coquillet, 1906, collected in the Brazilian Amazon region. Using High Throughput Sequencing, we obtained a mitochondrial sequence of 15,598 bp, with an average coverage of 418.5×, comprising 37 functional subunits and a final portion rich in A + T, corresponding to the control region. The phylogenetic analysis, using Maximum Likelihood and Bayesian Inference based on the 13 protein-coding genes, corroborated the monophyly of Culicidae and its two subfamilies, supporting the proximity between the tribes Orthopodomyiini and Mansoniini, partially disagreeing with previous studies based on the use of molecular and morphological markers. The information generated in this study contributes to a better understanding of the taxonomy and evolutionary history of the genus and other groups of Culicidae.


Asunto(s)
Culicidae , Genoma Mitocondrial , Filogenia , Animales , Culicidae/genética , Culicidae/clasificación , Brasil , Secuenciación de Nucleótidos de Alto Rendimiento
6.
Ann Bot ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078941

RESUMEN

BACKGROUND AND AIMS: The sessile-flowered Trillium species from western North America have been challenging to distinguish morphologically due to overlapping characters and intraspecific variation. Molecular phylogenetic analyses, currently inconclusive for this group, have not sampled multiple populations of the different species to account for this. Here, we query the diversity of floral volatile composition to understand its bearings on the taxonomy, distribution and evolution of this group. METHODS: We explored taxonomic and geographic patterns in average floral volatile composition (105 different compounds) among 42 wild populations of four sessile-flowered Trillium species and the outgroup, Pseudotrillium, in California, Oregon and Washington by means of parsimony-constrained phylogenetic analyses. To assess the influence of character construction, we coded compound abundance in three different ways for the phylogenetic analyses and compared the results with those of statistical analyses using the same dataset and previously published statistical analyses. KEY RESULTS: Different codings of floral volatile composition generated different phylogenetic topologies with different levels of resolution. The different phylogenies provide similar answers to taxonomic questions but support different evolutionary histories. Monophyly of most populations of each taxon suggests that floral scent composition bears phylogenetic signal in the western sessile-flowered Trillium. Lack of correlation between the distribution of populations and their position in scent-based phylogenies does not support a geographic signal in floral scent composition. CONCLUSIONS: Floral scent composition is a valuable data source for generating phylogenetic hypotheses. The way scent composition is coded into characters is important. The phylogenetic patterns supported by floral volatile compounds are incongruent with previously reported phylogenies of the western sessile-flowered Trillium obtained using molecular or morphological data. Combining floral scent data with gene sequence data and detailed morphological data from multiple populations of each species in future studies is needed for understanding the evolutionary history of western sessile-flowered Trillium.

7.
Methods Mol Biol ; 2833: 121-128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38949706

RESUMEN

Going back in time through a phylogenetic tree makes it possible to evaluate ancestral genomes and assess their potential to acquire key polymorphisms of interest over evolutionary time. Knowledge of this kind may allow for the emergence of key traits to be predicted and pre-empted from currently circulating strains in the future. Here, we present a novel genome-wide survival analysis and use the emergence of drug resistance in Mycobacterium tuberculosis as an example to demonstrate the potential and utility of the technique.


Asunto(s)
Mycobacterium tuberculosis , Filogenia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Genoma Bacteriano , Humanos , Evolución Molecular , Farmacorresistencia Bacteriana/genética , Tuberculosis/microbiología , Tuberculosis/genética
8.
Pak J Med Sci ; 40(6): 1190-1195, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952530

RESUMEN

Objective: This study was aimed to investigate the multidrug resistance patterns in clinical isolates of Escherichia coli and their correlation with integrons and phylogenetic groupings. Methods: A total of 37 clinical E. coli isolates were evaluated for drug resistance patterns by disk diffusion method. Phylogenetic groupings and the presence of integrons among E. coli were determined by multiplex PCR assays. Results: Multidrug resistance was identified in 84% of the clinical isolates of E. coli with higher resistance found against cephalosporins (94.6%) and fluoroquinolones (83.8%), while lower resistance was observed against polymyxins (24.3%) and carbapenems (29.7%). Metallo-ß-lactamases were found in all carbapenem resistant isolates. The phylogenetic group B2 was the most dominant (40.5%), followed by groups A (35.1%), D (13.5%) and B1 (10.8%). Integrons were detected in 25 (67.6%) isolates and intI1, intI2, and intI3 genes were found in 62.2%, 18.9% and 10.8% of isolates respectively. Conclusion: Our results show that phylogenetic classification of E. coli is not relevant with antimicrobial resistance. However, there was strong association between the integron classes and resistance against ß-lactam and fluoroquinolones antimicrobials. Additionally, this study highlighted that the presence of integrons plays a crucial role in the development of multidrug resistance in clinical isolates of E. coli. Most significantly, this is the first report of detection of three classes of integron among clinical isolates of E. coli in Pakistan.

9.
Biochem Genet ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954211

RESUMEN

Annonaceae is the largest family in Magnoliales, exhibiting the greatest diversity among and within genera. In this study, we conducted an analysis of repetitive sequences and codon usage bias in the previously acquired plastome of Miliusa glochidioides. Using a concatenated dataset of shared genes, we constructed the phylogenetic relationships among 27 Annonaceae species. The results showed that the size of the plastomes in the Annonaceae ranged from 159 to 202 kb, with the size of the inverted repeat region ranging from 40 to 65 kb. Within the plastome of M. glochidioides, we identified 42 SSRs, 36 tandem repeats, and 9 dispersed repeats. These SSRs consist of three nucleotide types and eight motif types, with a preference for A/T bases, primarily located in the large single-copy regions and intergenic spacers. Tandem and dispersed repeat sequences were predominantly detected in the IR region. Through codon usage bias analysis, we identified 30 high-frequency codons and 11 optimal codons. The plastome of M. glochidioides demonstrated relatively weak codon usage bias, favoring codons with A/T endings, primarily influenced by natural selection. Phylogenetic analysis revealed that all four subfamilies formed monophyletic groups, with Cananga odorata (Ambavioideae) and Anaxagorea javanica (Anaxagoreoideae) successively nested outside Annonoideae + Malmeoideae. These findings improve our understanding of the plastome of M. glochidioides and provide additional insights for studying plastome evolution in Annonaceae.

10.
iScience ; 27(7): 110300, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39055907

RESUMEN

Sexual selection can directly contribute to reproductive isolation and is an important mechanism that can lead to speciation. Lek-mating is one of the most extreme forms of sexual selection, but surprisingly does not seem to preclude occasional hybridization in nature. However, hybridization among lekking species may still be trivial if selection against offspring with intermediate phenotypes prohibits introgression. Here we investigate this further by sequencing the genomes of nearly all bird-of-paradise (Paradisaeidae) species and 10 museum specimens of putative hybrid origin. We find that intergeneric hybridization indeed still takes place despite extreme differentiation in form, plumage, and behavior. In parallel, the genomes of contemporary species contain widespread signatures of past introgression, demonstrating that hybridization has repeatedly resulted in shared genetic variation despite strong sexual isolation. Our study raises important questions about extrinsic factors that modulate hybridization probability and the evolutionary consequences of introgressive hybridization between lekking species.

11.
Pathogens ; 13(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39057820

RESUMEN

Bacillus anthracis is a rare but highly dangerous zoonotic bacterial pathogen. At the beginning of this century, a new manifestation of the disease, injectional anthrax, emerged as a result of recreational heroin consumption involving contaminated drugs. The organisms associated with this 13-year-lasting outbreak event in European drug consumers were all grouped into the canonical single-nucleotide polymorphism (canSNP) clade A-branch (A.Br.) 161 of B. anthracis. Related clade A.Br.161 strains of B. anthracis not associated with heroin consumption have also been identified from different countries, mostly in Asia. Because of inadvertent spread by anthropogenic activities, other strains of this A.Br.161 lineage were, however, isolated from several countries. Thus, without additional isolates from this clade, its origin of evolution or its autochthonous region remains obscure. Here, we genomically characterized six new A.Br.161 group isolates, some of which were from Iran, with others likely historically introduced into Germany. All the chromosomes of these isolates could be grouped into a distinct sub-clade within the A.Br.161 clade. This sub-clade is separated from the main A.Br.161 lineage by a single SNP. We have developed this SNP into a PCR assay facilitating the future attribution of strains to this group.

12.
BMC Vet Res ; 20(1): 332, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039589

RESUMEN

This study investigated the prevalence, morphology, molecular identification, and histopathological effects of larval tapeworms (plerocercoids) infecting the skeletal muscles of the Indian halibut (Psettodes erumei) collected from the coastal waters of the Arabian Gulf. Numerous oval or round blastocysts, measuring 13-26 mm, were found embedded within the muscular tissues of the Indian halibut, rendering the fish unsuitable for human consumption. Morphological and molecular analyses identified the plerocercoids as Dasyrhynchus giganteus (family Dasyrhynchidae), with an overall prevalence of 15.4%. The seasonal prevalence was the highest in summer (14.6%), followed by spring (10.6%), winter (4.4%), and autumn (3.5%). Infection rates increased with fish size. Histopathological examination revealed fibrous connective tissue capsules surrounding the larvae, causing muscular atrophy and degenerative changes, with few inflammatory eosinophilic cells. Molecular and phylogenetic analysis of the 28S rDNA gene sequences confirmed the specimens as D. giganteus, clustered closely with other sequences of D. giganteus with 100% bootstrap values. This study provided valuable insights into the parasitic infection dynamics, seasonal variation, molecular identification, and histopathological effects, highlighting the importance of monitoring fish for food safety and public health implications.


Asunto(s)
Cestodos , Infecciones por Cestodos , Enfermedades de los Peces , Filogenia , Estaciones del Año , Animales , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/patología , Prevalencia , Cestodos/genética , Cestodos/clasificación , Infecciones por Cestodos/veterinaria , Infecciones por Cestodos/epidemiología , Infecciones por Cestodos/patología , Infecciones por Cestodos/parasitología , Lenguado/parasitología , Músculo Esquelético/parasitología , Músculo Esquelético/patología , ARN Ribosómico 28S/genética
13.
Am J Bot ; 111(7): e16370, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38989916

RESUMEN

PREMISE: Leafless, heterotrophic plants are prime examples of organismal modification, the genomic consequences of which have received considerable interest. In particular, plastid genomes (plastomes) are being sequenced at a high rate, allowing continual refinement of conceptual models of reductive evolution in heterotrophs. However, numerous sampling gaps exist, hindering the ability to conduct comprehensive phylogenomic analyses in these plants. METHODS: Using floral tissue from an herbarium specimen, we sequenced and analyzed the plastome of Degranvillea dermaptera, a rarely collected, leafless orchid species from South America about which little is known, including its phylogenetic affinities. RESULTS: The plastome is the most reduced of those sequenced among the orchid subfamily Orchidoideae. In Degranvillea, it has lost the majority of genes found in leafy autotrophic species, is structurally rearranged, and has similar gene content to the most reduced plastomes among the orchids. We found strong evidence for the placement of Degranvillea within the subtribe Spiranthinae using models that explicitly account for heterotachy, or lineage-specific evolutionary rate variation over time. We further found evidence of relaxed selection on several genes and of correlations among substitution rates and several other "traits" of the plastome among leafless members of orchid subfamily Orchidoideae. CONCLUSIONS: Our findings advance knowledge on the phylogenetic relationships and paths of plastid genome evolution among the orchids, which have experienced more independent transitions to heterotrophy than any other plant family. This study demonstrates the importance of herbarium collections in comparative genomics of poorly known species of conservation concern.


Asunto(s)
Evolución Molecular , Genoma de Plastidios , Orchidaceae , Filogenia , Orchidaceae/genética
14.
Virology ; 598: 110182, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39033587

RESUMEN

Using Illumina NextSeq sequencing and bioinformatics, we identified and characterized thirty-three viral sequences of unsegmented and multipartite viral families in Aedes spp., Culex sp. and Anopheles darlingi female mosquito pools from Porto São Luiz and Pirizal, Alto Pantanal. Seventeen sequences belong to unsegmented viral families, twelve represent putative novel insect-specific viruses (ISVs) within families Chuviridae (3/33; partial genomes) and coding-complete sequences of Xinmoviridae (1/33), Rhabdoviridae (2/33) and Metaviridae (6/33); and five coding-complete sequences of already-known ISVs. Notably, two putative novel rhabdoviruses, Corixo rhabdovirus 1 and 2, were phylogenetically related to Coxipo dielmovirus, but separated from other Alpharhabdovirinae genera, sharing Anopheles spp. as host. Regarding multipartite families, sixteen segments of different putative novel viruses were identified (13 coding-complete segments) within Durnavirales (4/33), Elliovirales (1/33), Hareavirales (3/33) and Reovirales (8/33) orders. Overall, this study describes twenty-eight (28/33) putative novel ISVs and five (5/33) already described viruses using metagenomics approach.

15.
Ecotoxicology ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037520

RESUMEN

There are substantial gaps in our empirical knowledge of the effects of chemical exposure on aquatic life that are unlikely to be filled by traditional laboratory toxicity testing alone. One possible alternative of generating new toxicity data is cross-species extrapolation (CSE), a statistical approach in which existing data are used to predict the effect of a chemical on untested species. Some CSE models use relatedness as a predictor of chemical sensitivity, but relatively little is known about how strongly shared evolutionary history influences sensitivity across all chemicals. To address this question, we conducted a survey of phylogenetic signal in the toxicity data from aquatic animal species for a large set of chemicals using a phylogeny inferred from taxonomy. Strong phylogenetic signal was present in just nine of thirty-six toxicity datasets, and there were no clear shared properties among those datasets with strong signal. Strong signal was rare even among chemicals specifically developed to target insects, meaning that these chemicals may be equally lethal to non-target taxa, including chordates. When signal was strong, distinct patterns of sensitivity were evident in the data, which may be informative when assembling toxicity datasets for regulatory use. Although strong signal does not appear to manifest in aquatic toxicity data for most chemicals, we encourage additional phylogenetic evaluations of toxicity data in order to guide the selection of CSE tools and as a means to explore the patterns of chemical sensitivity across the broad diversity of life.

16.
J Infect Dis ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976562

RESUMEN

BACKGROUND: Men and women with a migration background comprise an increasing proportion of incident human immunodeficiency virus (HIV) cases across Western Europe. METHODS: To characterize sources of transmission in local transmission chains, we used partial HIV consensus sequences with linked demographic and clinical data from the opt-out AIDS Therapy Evaluation in the Netherlands (ATHENA) cohort of people with HIV in the Netherlands and identified phylogenetically and epidemiologically possible HIV transmission pairs in Amsterdam. We interpreted these in the context of estimated infection dates, and quantified population-level sources of transmission to foreign-born and Dutch-born Amsterdam men who have sex with men (MSM) within Amsterdam transmission chains. RESULTS: We estimate that Dutch-born MSM were the predominant sources of infections among all Amsterdam MSM who acquired their infection locally in 2010-2021, and among almost all foreign-born Amsterdam MSM subpopulations. Stratifying by 2-year intervals indicated time trends in transmission dynamics, with a majority of infections originating from foreign-born MSM since 2016, although uncertainty ranges remained wide. CONCLUSIONS: Native-born MSM have predominantly driven HIV transmissions in Amsterdam in 2010-2021. However, in the context of rapidly declining incidence in Amsterdam, the contribution from foreign-born MSM living in Amsterdam is increasing, with some evidence that most local transmissions have been from foreign-born Amsterdam MSM since 2016.

17.
PhytoKeys ; 243: 149-184, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38961998

RESUMEN

Campanula L. is among the genera with the highest number of endemics in the Caucasus ecoregion. A group of attractive alpine and subalpine perennial rosette plants with short single-flowered stems centred in the Caucasus has been treated as Campanulasubg.Scapiflorae or at other ranks, with considerably varying circumscription and classification. Molecular phylogenetic analysis of three plastid DNA regions (trnK/matK, petD, rpl16) of a strongly extended sampling, comprising 23 of the 27 commonly accepted taxa (85%) with 330 accessions built on and guided by the results of our previous study of the group, confirmed the polyphyly of C.subg.Scapiflorae in any of its circumscriptions. The core clade of the group comprises exclusively endemics and near-endemics of the Caucasus and is treated here as C.sect.Tridentatae in a revised circumscription. The phylogenetic relationships of the disparate other elements of the Scapiflorae group are outlined.

18.
Syst Biol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963801

RESUMEN

Phylogenetic trees establish a historical context for the study of organismal form and function. Most phylogenetic trees are estimated using a model of evolution. For molecular data, modeling evolution is often based on biochemical observations about changes between character states. For example, there are four nucleotides, and we can make assumptions about the probability of transitions between them. By contrast, for morphological characters, we may not know a priori how many characters states there are per character, as both extant sampling and the fossil record may be highly incomplete, which leads to an observer bias. For a given character, the state space may be larger than what has been observed in the sample of taxa collected by the researcher. In this case, how many evolutionary rates are needed to even describe transitions between morphological character states may not be clear, potentially leading to model misspecification. To explore the impact of this model misspecification, we simulated character data with varying numbers of character states per character. We then used the data to estimate phylogenetic trees using models of evolution with the correct number of character states and an incorrect number of character states. The results of this study indicate that this observer bias may lead to phylogenetic error, particularly in the branch lengths of trees. If the state space is wrongly assumed to be too large, then we underestimate the branch lengths, and the opposite occurs when the state space is wrongly assumed to be too small.

19.
J Math Biol ; 89(2): 23, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954016

RESUMEN

The embedding problem of Markov matrices in Markov semigroups is a classic problem that regained a lot of impetus and activities through recent needs in phylogeny and population genetics. Here, we give an account for dimensions d ⩽ 4 , including a complete and simplified treatment of the case d = 3 , and derive the results in a systematic fashion, with an eye on the potential applications. Further, we reconsider the setup of the corresponding problem for time-inhomogeneous Markov chains, which is needed for real-world applications because transition rates need not be constant over time. Additional cases of this more general embedding occur for any d ⩾ 3 . We review the known case of d = 3 and describe the setting for future work on d = 4 .


Asunto(s)
Cadenas de Markov , Conceptos Matemáticos , Filogenia , Genética de Población/estadística & datos numéricos , Genética de Población/métodos , Modelos Genéticos , Humanos
20.
Evolution ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995057

RESUMEN

Mitonuclear coevolution is common in eukaryotes, but bivalve lineages that have doubly uniparental inheritance (DUI) of mitochondria may be an interesting example. In this system, females transmit mtDNA (F mtDNA) to all offspring, while males transmit a different mtDNA (M mtDNA) solely to their sons. Molecular evolution and functional data suggest oxidative phosphorylation (OXPHOS) genes encoded in M mtDNA evolve under relaxed selection due to their function being limited to sperm only (vs. all other tissues for F mtDNA). This has led to the hypothesis that mitonuclear coevolution is less important for M mtDNA. Here, we use comparative phylogenetics, transcriptomics, and proteomics to understand mitonuclear interactions in DUI bivalves. We found nuclear OXPHOS proteins coevolve and maintain compatibility similarly with both F and M mtDNA OXPHOS proteins. Mitochondrial recombination did not influence mitonuclear compatibility and nuclear-encoded OXPHOS genes were not upregulated in tissues with M mtDNA to offset dysfunction. Our results support that selection maintains mitonuclear compatibility with F and M mtDNA despite relaxed selection on M mtDNA. Strict sperm transmission, lower effective population size, and higher mutation rates may explain the evolution of M mtDNA. Our study highlights that mitonuclear coevolution and compatibility may be broad features of eukaryotes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...