Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Immunol Cell Biol ; 102(2): 97-116, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37982607

RESUMEN

Reducing the activity of cytokines and leukocyte extravasation is an emerging therapeutic strategy to limit tissue-damaging inflammatory responses and restore immune homeostasis in inflammatory diseases. Proteoglycans embedded in the vascular endothelial glycocalyx, which regulate the activity of cytokines to restrict the inflammatory response in physiological conditions, are proteolytically cleaved in inflammatory diseases. Here we critically review the potential of proteolytically shed, soluble vascular endothelial glycocalyx proteoglycans to modulate pathological inflammatory responses. Soluble forms of the proteoglycans syndecan-1, syndecan-3 and biglycan exert beneficial anti-inflammatory effects by the removal of chemokines, suppression of proinflammatory cytokine expression and leukocyte migration, and induction of autophagy of proinflammatory M1 macrophages. By contrast, soluble versikine and decorin enhance proinflammatory responses by increasing inflammatory cytokine synthesis and leukocyte migration. Endogenous syndecan-2 and mimecan exert proinflammatory effects, syndecan-4 and perlecan mediate beneficial anti-inflammatory effects and glypican regulates Hh and Wnt signaling pathways involved in systemic inflammatory responses. Taken together, targeting the vascular endothelial glycocalyx-derived, soluble syndecan-1, syndecan-2, syndecan-3, syndecan-4, biglycan, versikine, mimecan, perlecan, glypican and decorin might be a potential therapeutic strategy to suppress overstimulated cytokine and leukocyte responses in inflammatory diseases.


Asunto(s)
Glicocálix , Sindecano-1 , Sindecano-1/metabolismo , Glicocálix/metabolismo , Sindecano-3/metabolismo , Sindecano-4/metabolismo , Sindecano-2/metabolismo , Biglicano/metabolismo , Glipicanos/metabolismo , Decorina/metabolismo , Quimiocinas/metabolismo , Antiinflamatorios/metabolismo
2.
Cell Signal ; 109: 110790, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37392860

RESUMEN

Glycocalyx coating on endothelial surface layer helps to sense shear forces and maintain endothelial function. However, the underlying mechanism of endothelial glycocalyx degradation upon disordered shear stress stimulation is not fully understood. SIRT3, a major NAD+-dependent protein deacetylases, is required for protein stability during vascular homeostasis and partly involved in atherosclerotic process. While few studies showed that SIRT3 is responsible for endothelial glycocalyx homeostasis under shear stress, the underlying mechanisms remain largely unknown. Here, we demonstrated that oscillatory shear stress (OSS) induces glycocalyx injury by activating LKB1/p47phox/Hyal2 axis both in vivo and in vitro. And O-GlcNAc modification served to prolong SIRT3 deacetylase activity and stabilized p47/Hyal2 complex. OSS could decrease SIRT3 O-GlcNAcylation to activate LKB1, further accelerated endothelial glycocalyx injury in inflammatory microenvironment. SIRT3Ser329 mutation or inhibition of SIRT3 O-GlcNAcylation strongly promoted glycocalyx degradation. On the contrary, overexpression of SIRT3 reverse glycocalyx damage upon OSS treatment. Together, our findings indicated that targeting O-GlcNAcylation of SIRT3 could prevent and/or treat diseases whereby glycocalyx injured.


Asunto(s)
Aterosclerosis , Sirtuina 3 , Humanos , Sirtuina 3/metabolismo , Glicocálix/genética , Glicocálix/metabolismo , Endotelio/metabolismo , Aterosclerosis/metabolismo , Estrés Mecánico , Hialuronoglucosaminidasa/genética , Hialuronoglucosaminidasa/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas Ligadas a GPI/genética
3.
Int J Risk Saf Med ; 33(3): 249-259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35786662

RESUMEN

BACKGROUND: The pandemic that began around February 2020, caused by the viral pathogen SARS-CoV-2 (COVID-19), has still not completed its course at present in June 2022. OBJECTIVE: The open research to date highlights just how varied and complex the outcome of the contagion can be. METHOD: The clinical pictures observed following the contagion present variabilities that cannot be explained completely by the patient's age (which, with the new variants, is rapidly changing, increasingly affecting younger patients) nor by symptoms and concomitant pathologies (which are no longer proving to be decisive in recent cases) in relation to medium-to-long term sequelae. In particular, the functions of the vascular endothelium and vascular lesions at the pre-capillary level represent the source of tissue hypoxia and other damage, resulting in the clinical evolution of COVID-19. RESULTS: Keeping the patient at home with targeted therapeutic support, aimed at not worsening vascular endothelium damage with early and appropriate stimulation of endothelial cells, ameliorates the glycocalyx function and improves the prognosis and, in some circumstances, could be the best practice suitable for certain patients. CONCLUSION: Clinical information thus far collected may be of immense value in developing a better understanding of the present pandemic and future occurrences regarding patient safety, pharmaceutical care and therapy liability.


Asunto(s)
COVID-19 , Servicios de Atención de Salud a Domicilio , Células Endoteliales , Humanos , Pandemias , SARS-CoV-2
4.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352699

RESUMEN

The new coronavirus disease-2019 (COVID-19), which is spreading around the world and threatening people, is easily infecting a large number of people through airborne droplets; moreover, patients with hypertension, diabetes, obesity, and cardiovascular disease are more likely to experience severe conditions. Vascular endothelial dysfunction has been suggested as a common feature of high-risk patients prone to severe COVID-19, and measurement of vascular endothelial function may be recommended for predicting severe conditions in high-risk patients with COVID-19. However, fragmented vascular endothelial glycocalyx (VEGLX) is elevated in COVID-19 patients, suggesting that it may be useful as a prognostic indicator. Although the relationship between VEGLX and severe acute respiratory syndrome coronavirus 2 infections has not been well studied, some investigations into COVID-19 have clarified the relationship between VEGLX and the mechanism that leads to severe conditions. Clarifying the usefulness of VEGLX assessment as a predictive indicator of the development of severe complications is important as a strategy for confronting pandemics caused by new viruses with a high affinity for the vascular endothelium that may recur in the future.


Asunto(s)
COVID-19/patología , Endotelio Vascular/patología , Glicocálix/patología , Enfermedades Vasculares/patología , Células Endoteliales/patología , Humanos , Pulmón/patología , Pulmón/virología , Pronóstico , SARS-CoV-2 , Enfermedades Vasculares/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...