Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 539
Filtrar
1.
Curr Nutr Rep ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354208

RESUMEN

PURPOSE OF REVIEW: This review evaluates the therapeutic potential of Ziziphus jujuba and its main components in managing complications of metabolic syndrome, including diabetes, dyslipidemia, obesity, and hypertension. RECENT FINDINGS: The reviewed studies provide evidence supporting the use of Z. jujuba and its main components (lupeol and betulinic acid) as natural treatments for complications of metabolic syndrome. These substances enhance glucose uptake through the activation of signaling pathways such as phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), reduce hepatic glucose synthesis, and increase glucose uptake by adipocytes and skeletal muscle cells. They also improve insulin sensitivity by modulating AMP-activated protein kinase (AMPK) activity and regulating insulin signaling proteins and glucose transporters. In the field of dyslipidemia, they inhibit triglyceride synthesis, lipid accumulation, and adipogenic enzymes, while influencing key signaling pathways involved in adipogenesis. Z. jujuba and its constituents demonstrate anti-adipogenic effects, inhibiting lipid accumulation and modulating adipogenic enzymes and transcription factors. They also exhibit positive effects on endothelial function and vascular health by enhancing endothelial nitric oxide synthase (eNOS) expression, NO production, and antioxidant enzyme activity. Z. jujuba, lupeol, and betulinic acid hold promise as natural treatments for complications of metabolic syndrome. They improve glucose metabolism, insulin sensitivity, and lipid profiles while exerting anti-adipogenic effects and enhancing endothelial function. However, further research is needed to elucidate the mechanisms and confirm their efficacy in clinical trials. These natural compounds offer potential as alternative therapies for metabolic disorders and contribute to the growing body of evidence supporting the use of natural medicines in their management.

2.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39204121

RESUMEN

Chaga mushroom (Inonotus obliquus) is a pathogenic fungus that grows mostly on birch species (Betula pendula Roth and B. pubescens Ehrh.) and has traditionally been used as an anticancer medicine. This study aimed to compare the chemical composition and cytotoxic activity of chagas growing on both Betula spp. on various cancer cell lines. The freeze-dried extracts contained triterpenes inotodiol, lanosterol betulin, and betulinic acid typical to conks growing on Betula species. The cytotoxic activity of chaga growing on Betula pendula and B. pubescens 80% ethanolic extracts against 31 human cancer cell lines was evaluated by a sulforhodamine B assay. Chaga extract showed moderate activity against all cancer cell lines examined; it did not result in high cytotoxicity (IC50 ≤ 20 µg/mL). The strongest inhibitions were observed with chaga (growing on B. pendula) extract on the HepG2 and CAL-62 cell line and with chaga (from B. pubescens) extract on the HepG2 cell line, with IC50 values of 37.71, 43.30, and 49.99 µg/mL, respectively. The chaga extracts from B. pendula exert somewhat stronger effects on most cancer cell lines studied than B. pubescens extracts, which can be attributed to a higher content of inotodiol in B. pendula extracts. This study highlights the potential of chaga as a source of bioactive compounds with selective anticancer properties. To the best of our knowledge, this study is the first investigation of the chemical composition of I. obliquus parasitizing on B. pubescens.

3.
J Biomed Sci ; 31(1): 81, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164686

RESUMEN

BACKGROUND: Betulinic acid (BA) has been well investigated for its antiproliferative and mitochondrial pathway-mediated apoptosis-inducing effects on various cancers. However, its poor solubility and off-target activity have limited its utility in clinical trials. Additionally, the immune modulatory role of betulinic acid analogue in the tumor microenvironment (TME) is largely unknown. Here, we designed a potential nanotherapy for colorectal cancer (CRC) with a lead betulinic acid analogue, named as 2c, carrying a 1,2,3-triazole-moiety attached to BA through a linker, found more effective than BA for inhibiting CRC cell lines, and was chosen here for this investigation. Epithelial cell adhesion molecule (EpCAM) is highly overexpressed on the CRC cell membrane. A single-stranded short oligonucleotide sequence, aptamer (Apt), that folds into a 3D-defined architecture can be used as a targeting ligand for its specific binding to a target protein. EpCAM targeting aptamer was designed for site-specific homing of aptamer-conjugated-2c-loaded nanoparticles (Apt-2cNP) at the CRC tumor site to enhance therapeutic potential and reduce off-target toxicity in normal cells. We investigated the in vitro and in vivo therapeutic efficacy and anti-tumorigenic immune response of aptamer conjugated nanotherapy in CRC-TME. METHODS: After the characterization of nanoengineered aptamer conjugated betulinic acid nanotherapy, we evaluated therapeutic efficacy, tumor targeting efficiency, and anti-tumorigenic immune response using cell-based assays and mouse and rat models. RESULTS: We found that Apt-2cNP improved drug bioavailability, enhanced its biological half-life, improved antiproliferative activity, and minimized off-target cytotoxicity. Importantly, in an in vivo TME, Apt-2cNP showed promising signs of anti-tumorigenic immune response (increased mDC/pDC ratio, enhanced M1 macrophage population, and CD8 T-cells). Furthermore, in vivo upregulation of pro-apoptotic while downregulation of anti-apoptotic genes and significant healing efficacy on cancer tissue histopathology suggest that Apt-2cNP had predominantly greater therapeutic potential than the non-aptamer-conjugated nanoparticles and free drug. Moreover, we observed greater tumor accumulation of the radiolabeled Apt-2cNP by live imaging in the CRC rat model. CONCLUSIONS: Enhanced therapeutic efficacy and robust anti-tumorigenic immune response of Apt-2cNP in the CRC-TME are promising indicators of its potential as a prospective therapeutic agent for managing CRC. However, further studies are warranted.


Asunto(s)
Ácido Betulínico , Neoplasias Colorrectales , Molécula de Adhesión Celular Epitelial , Triterpenos Pentacíclicos , Microambiente Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Animales , Microambiente Tumoral/efectos de los fármacos , Ratones , Triterpenos Pentacíclicos/farmacología , Molécula de Adhesión Celular Epitelial/metabolismo , Humanos , Nanopartículas/química , Línea Celular Tumoral , Ratas
4.
Bioorg Chem ; 152: 107737, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39180862

RESUMEN

Betulinic acid (BA) is a lupinane-type pentacyclic triterpenoid natural product derived from lupeol that has favorable anti-inflammatory and anti-tumor activities. Currently, BA is mainly produced via botanical extraction, which significantly limits its widespread use. In this study, we investigated the de novo synthesis of BA in Saccharomyces cerevisiae, and to facilitate the synthesis and storage of hydrophobic BA, we adopted a dual-engineering strategy involving peroxisomes and lipid droplets to construct the BA biosynthetic pathway. By expressing Betula platyphylla-derived lupeol C-28 oxidase (BPLO) and Arabidopsis-derived ATR1, we succeeded in developing a BA-producing strain and following multiple expression optimizations of the linker between BPLO and ATR1, the BA titer reached 77.53 mg/L in shake flasks and subsequently reached 205.74 mg/L via fed-batch fermentation in a 5-L bioreactor. In this study, we developed a feasible approach for the de novo synthesis of BA and its direct precursor lupeol in engineered S. cerevisiae.


Asunto(s)
Ácido Betulínico , Triterpenos Pentacíclicos , Saccharomyces cerevisiae , Triterpenos , Saccharomyces cerevisiae/metabolismo , Triterpenos Pentacíclicos/metabolismo , Triterpenos Pentacíclicos/química , Triterpenos/metabolismo , Triterpenos/química , Estructura Molecular , Ingeniería Metabólica
5.
Molecules ; 29(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39064977

RESUMEN

Betulinic acid is a lupane-type pentacyclic triterpene mostly found in birch bark and thoroughly explored for its wide range of pharmacological activities. Despite its impressive biological potential, its low bioavailability has challenged many researchers to develop different formulations for achieving better in vitro and in vivo effects. We previously reported the synthesis of fatty acid esters of betulinic acid using butyric, stearic, and palmitic acids (But-BA, St-BA, and Pal-BA) and included them in surfaced-modified liposomes (But-BA-Lip, St-BA-Lip, Pal-BA-Lip). In the current study, we evaluated the cytotoxic effects of both fatty acid esters and their respective liposomal formulations against MCF-7, HT-29, and NCI-H460 cell line. The cytotoxic assessment of BA derivatives revealed that both the fatty esters and their liposomal formulations acted as cytotoxic agents in a dose- and time-dependent manner. But-BA-Lip exerted stronger cytotoxic effects than the parent compound, BA and its liposomal formulation, and even stronger effects than 5-FU against HT-29 cells (IC50 of 30.57 µM) and NCI-H460 cells (IC50 of 30.74 µM). BA's fatty esters and their respective liposomal formulations facilitated apoptosis in cancer cells by inducing nuclear morphological changes and increasing caspase-3/-7 activity. The HET-CAM assay proved that none of the tested compounds induced any irritative effect, suggesting that they can be used safely for local applications.


Asunto(s)
Ácido Betulínico , Neoplasias de la Mama , Ésteres , Liposomas , Triterpenos Pentacíclicos , Triterpenos , Humanos , Liposomas/química , Triterpenos Pentacíclicos/farmacología , Ésteres/química , Ésteres/farmacología , Triterpenos/farmacología , Triterpenos/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Células HT29 , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Apoptosis/efectos de los fármacos , Células MCF-7 , Antineoplásicos/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Ácidos Grasos/química , Femenino , Proliferación Celular/efectos de los fármacos
6.
Int Immunopharmacol ; 138: 112604, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38968863

RESUMEN

Betulinic acid (BA) is a natural triterpenoid extracted from Bacopa monnieri. BA has been reported to be used as a neuroprotective agent, but their molecular mechanisms are still unknown. Therefore, in this study, we attempted to investigate the precise mechanism of BA for its protective effect against Titanium dioxide nanoparticles (TiO2NP) induced neurotoxicity in zebrafish. Hence, our study observation showed that 10 µg/ml dose of TiO2NP caused a rigorous behavioral deficit in zebrafish. Further, biochemical analysis revealed TiO2NP significantly decreased GSH, and SOD, and increased MDA, AChE, TNF-α, IL-1ß, and IL-6 levels, suggesting it triggers oxidative stress and neuroinflammation. However, BA at doses of 2.5,5,10 mg/kg improved behavioral as well as biochemical changes in zebrafish brain. Moreover, BA also significantly raised the levels of DA, NE, 5-HT, and GABA and decreased glutamate levels in TiO2NP-treated zebrafish brain. Our histopathological analysis proved that TiO2NP causes morphological changes in the brain. These changes were expressed by increasing pyknotic neurons, which were dose-dependently reduced by Betulinic acid. Likewise, BA upregulated the levels of NRF-2 and HO-1, which can reduce oxidative stress and neuroinflammation. Thus, our study provides evidence for the molecular mechanism behind the neuroprotective effect of Betulinic acid. Rendering to the findings, we can consider BA as a suitable applicant for the treatment of AD-like symptoms.


Asunto(s)
Ácido Betulínico , Encéfalo , Fármacos Neuroprotectores , Estrés Oxidativo , Triterpenos Pentacíclicos , Titanio , Pez Cebra , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Triterpenos Pentacíclicos/farmacología , Titanio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/metabolismo , Síndromes de Neurotoxicidad/tratamiento farmacológico , Triterpenos/farmacología , Triterpenos/uso terapéutico , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Citocinas/metabolismo , Nanopartículas , Conducta Animal/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Masculino , Neuronas/efectos de los fármacos , Neuronas/patología
7.
Phytomedicine ; 132: 155858, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053249

RESUMEN

BACKGROUND: Betulinic acid (BA), which is a pentacyclic triterpenoid found in the bark of plane, birch, and eucalyptus trees, has emerged as a compound of significant interest in scientific research due to its potential therapeutic applications. BA has a range of well-documented pharmacological and biological effects, including antibacterial, immunomodulatory, diuretic, antiviral, antiparasitic, antidiabetic, and anticancer activities. Although numerous research studies have explored the potential anticancer effects of BA, there is a noticeable gap in the literature, highlighting the need for a more up-to-date and comprehensive evaluation of BA's anticancer potential. PURPOSE: The aim of this work is to critically assess the reported cellular and molecular mechanisms underlying the cancer preventive and therapeutic effects of BA. METHODS: Relevant research on the inhibitory effects of BA against cancerous cells was searched using Science Direct, Scopus, Web of Science, and PubMed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS: The anticancer properties of BA are mediated by the activation of cell death and cell cycle arrest, production of reactive oxygen species, increased mitochondrial permeability, modulation of nuclear factor-κB and Bcl-2 family signaling. Emerging evidence also underscores the combined anticancer effects of BA with other natural bioactive compounds or approved drugs. Notably, several novel BA nanoformulations have been found to exhibit encouraging antineoplastic activities. CONCLUSION: BA, whether used alone or in combination, or as a form of nanoformulation, shows significant potential for cancer prevention and treatment. Nevertheless, further detailed studies are necessary to confirm the therapeutic effectiveness of this natural compound.


Asunto(s)
Antineoplásicos Fitogénicos , Ácido Betulínico , Neoplasias , Triterpenos Pentacíclicos , Triterpenos , Triterpenos Pentacíclicos/farmacología , Humanos , Neoplasias/prevención & control , Neoplasias/tratamiento farmacológico , Triterpenos/farmacología , Antineoplásicos Fitogénicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos
8.
J Colloid Interface Sci ; 675: 1032-1039, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39008921

RESUMEN

Anticancer theranostic nanocarriers have the potential to enhance the efficacy of pharmaceutical evaluation of drugs. Semiconductor nanocrystals, also known as quantum dots (QDs), are particularly promising components of drug carrier systems due to their small sizes and robust photoluminescence properties. Herein, bright CdZnSeS quantum dots were synthesized in a single step via the hot injection method. The particles have a quasi-core/shell structure as evident from the high quantum yield (85 %), which decreased to 41 % after water solubilization. These water solubilized QDs were encapsulated into gallic acid / alginate (GA-Alg) matrices to fabricate imaging QDs@mod-PAA/GA-Alg particles with enhanced stability in aqueous media. Cell viability assessments demonstrated that these nanocarriers exhibited viability ranging from 63 % to 83 % across all tested cell lines. Furthermore, the QDs@mod-PAA/GA-Alg particles were loaded with betulinic acid (BA) and ceranib-2 (C2) for in vitro drug release studies against HL-60 leukemia and PC-3 prostate cancer cells. The BA loaded QDs@mod-PAA/GA-Alg had a half-maximal inhibitory concentration (IC50) of 8.76 µg/mL against HL-60 leukemia cells, which is 3-fold lower than that of free BA (IC50 = 26.55 µg/mL). Similar enhancements were observed with nanocarriers loaded with C2 and simultaneously with both BA and C2. Additionally, BA:C2 loaded QDs@mod-PAA/GA-Alg nanocarriers displayed a similar enhancement (IC50 = 3.37 µg/mL compared against IC50 = 11.68 µg/mL for free BA:C2). The C2 loaded QDs@mod-PAA/GA-Alg nanocarriers had an IC50 = 2.24 µg/mL against HL-60 cells. C2 and BA loaded QDs@mod-PAA/GA-Alg NCr had IC50 values of 7.37 µg/mL and 24.55 µg/mL against PC-3 cells, respectively.


Asunto(s)
Antineoplásicos , Supervivencia Celular , Neoplasias de la Próstata , Puntos Cuánticos , Nanomedicina Teranóstica , Puntos Cuánticos/química , Humanos , Masculino , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Tamaño de la Partícula , Leucemia/tratamiento farmacológico , Leucemia/patología , Ensayos de Selección de Medicamentos Antitumorales , Compuestos de Selenio/química , Compuestos de Selenio/farmacología , Compuestos de Cadmio/química , Propiedades de Superficie , Liberación de Fármacos , Alginatos/química , Portadores de Fármacos/química , Compuestos de Zinc/química , Proliferación Celular/efectos de los fármacos , Células PC-3 , Células HL-60
9.
J Ethnopharmacol ; 333: 118510, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945468

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Pain and inflammation are the most frequent reasons for which people seek medical care. Currently available analgesics against these conditions produce fatal adverse effects. NPK 500 capsules is an alternative herbal analgesic employed to treat dysmenorrhea, peptic ulcer and pain. NPK 500 is produced from Cassia sieberiana. A plant used in traditional medicine to treat pain and inflammation. AIM OF THE STUDY: This study reports the analysis, phytochemical characterization and mechanism of analgesic and anti-inflammatory activities of two NPK 500 capsules, called old and new NPK500 capsules (ONPK500 and NNPK500) respectively. MATERIALS AND METHODS: Physicochemical, organoleptic, GC-MS and LC-MS methods were employed to analyze the NPK 500 capsules. Analgesic activity was evaluated using tail immersion, Randall-Selitto and acetic acid induced writing tests. Anti-inflammatory activity was evaluated using carrageenan-induced rat paw inflammation. Additionally, pro-inflammatory mediators such as prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase 1 and 2 (COX-2 and COX-1) were quantified in the sera of the rats using Enzyme Linked Immunosorbent Assay (ELISA) kits. RESULTS: Thirteen major compounds were characterized in the NNPK 500 capsules via the GC-MS and LC-MS spectroscopies. Kaempferol was the major compound characterized in addition to physcion, ß-sitosterol 3-O-ß-D-glucopyranoside, betulinic acid and nine others. Physicochemical and organoleptic indices of the capsules were also derived for its authentication and quality control. Furthermore, NNPK 500 0.5-1.5 mg/kg p.o. produce significant (P < 0.5) analgesic activity (160-197%) higher than that of ONPK500 (109.8%) and Morphine (101%) in the tail immersion test. The analgesic activity of NNPK 500 0.5-1.5 mg/kg p.o. (171.0-258.3%) and ONPK 500 (179.5%) were also significant (P < 0.01) and higher than that of Aspirin (103.00%) in the Randall-Selitto test. Both capsules also demonstrated significant (P < 0.5) analgesic and anti-inflammatory activities in the acetic acid-induced writhing and carrageenan-indued paw edema tests respectively. The two NPK500 capsules also, significantly (P < 0.5) inhibited PGE2 and iNOS but not COX-2 and COX-1 in the carrageenan-indued paw edema test. CONCLUSION: These results show that NNPK 500 and ONPK 500 capsules possessed potent analgesic and anti-inflammatory activities via inhibition of PGE2 and iNOS as a result of their chemical constituents. NPK500 capsules thus, relief acute pain and inflammation without causing gastrointestinal, renal or hepatic injuries, since they did not inhibit COX-1.


Asunto(s)
Analgésicos , Antiinflamatorios , Cassia , Dinoprostona , Dismenorrea , Óxido Nítrico Sintasa de Tipo II , Animales , Femenino , Ratones , Ratas , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Cápsulas , Carragenina , Cassia/química , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Dismenorrea/tratamiento farmacológico , Dismenorrea/inducido químicamente , Edema/tratamiento farmacológico , Edema/inducido químicamente , Óxido Nítrico Sintasa de Tipo II/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Ratas Sprague-Dawley
10.
Dokl Biochem Biophys ; 517(1): 115-126, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38744737

RESUMEN

Cyclophosphamide (CYP) is a chemotherapeutic drug used to treat various cancers. However, its clinical use is limited due to severe organ damage, particularly to the kidneys. While several phytochemicals have been identified as potential therapeutic targets for CYP nephrotoxicity, the nephroprotective effects of boswellic acid (BOSW) and betulinic acid (BET) have not yet been investigated. Our study used 42 rats divided into six equal groups. The study included six groups: control, CYP (200 mg/kg), CYP+BOSW20 (20 mg/kg), CYP+BOSW40 (40 mg/kg), CYP+BET20 (20 mg/kg), and CYP+BET40 (40 mg/kg). The pre-treatments with BOSW and BET lasted for 14 days, while the application of cyclophosphamide was performed intraperitoneally only on the 4th day of the study. After the experimental protocol, the animals were sacrificed, and their kidney tissues were isolated. Renal function parameters, histological examination, oxidative stress, and inflammation parameters were assessed both biochemically and at the molecular level in kidney tissue. The results showed that oxidative stress and inflammatory response were increased in the kidney tissue of rats treated with CYP, leading to impaired renal histology and function parameters (p < 0.05). Oral administration of both doses of BET and especially high doses of BOSW improved biochemical, oxidative, and inflammatory parameters significantly (p < 0.05). Histological studies also showed the restoration of normal kidney tissue architecture. BOSW and BET have promising biological activity against CYP-induced nephrotoxicity by attenuating inflammation and oxidative stress and enhancing antioxidant status.


Asunto(s)
Ácido Betulínico , Ciclofosfamida , Riñón , Estrés Oxidativo , Triterpenos Pentacíclicos , Triterpenos , Animales , Ciclofosfamida/toxicidad , Triterpenos/farmacología , Triterpenos Pentacíclicos/farmacología , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Ratas , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control , Enfermedades Renales/patología , Enfermedades Renales/metabolismo , Antioxidantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...