Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 368: 122210, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39146649

RESUMEN

The positive contributions of carriers to aerobic granulation have been wildly appreciated. In this study, as a way resource utilization, the dredged sediment was thermally-treated to prepared as carriers to promote aerobic granular sludge (AGS) formation and stability. The system was started under low superficial gas velocity (SGV, 0.6 cm/s)for a lower energy consumption. Two sequencing batch reactors (SBR) labeled R1 (no added carriers) and R2 (carriers added), were used in the experiment. R2 had excellent performance of granulation time (shortened nearly 43%). The maximum mean particle size at the maturity stage of AGS in R2 (0.545 mm) was larger compared to R1 (0.296 mm). The sludge settling performance in R2 was better. The reactors exhibited high chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) removal rates. The total phosphorus (TP) removal rate in R2 was higher than R1 (almost 15% higher) on stage II (93-175d). R2 had a higher microbial abundance and dominant bacteria content. The relative abundance of dominant species was mainly affected by the carrier. However, the enrichment of dominant microorganisms and the evolution of subdominant species were more influenced by the increase of SGV. The results indicated that the addition of carriers induced the secretion of extracellular polymeric substances (EPS) by microorganisms and accelerated the rapid formation of initial microbial aggregates. This work provided a low-cost method and condition to enhance aerobic granulation, which may be helpful in optimizing wastewater treatment processes.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Fósforo , Análisis de la Demanda Biológica de Oxígeno , Nitrógeno , Aerobiosis
2.
Plants (Basel) ; 13(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38592795

RESUMEN

Dredged sediment contaminated with heavy metals can be remediated through phytoremediation. The main challenge in phytoremediation is the limited availability of heavy metals for plant uptake, particularly in multi-contaminated soil or sediment. This study aimed to assess the effect of the nitrogen fertilizers (ammonium nitrate (AN), ammonium sulfate (AS), and urea (UR)), organic acids (oxalic (OA) and malic (MA) acids), and their combined addition to sediment on enhancing the bioavailability and phytoremediation efficiency of heavy metals. The sediment dredged from Begej Canal (Serbia) had high levels of Cr, Cd, Cu, and Pb and was used in pot experiments to cultivate energy crop rapeseed (Brassica napus), which is known for its tolerance to heavy metals. The highest accumulation and translocation of Cu, Cd, and Pb were observed in the treatment with AN at a dose of 150 mg N/kg (AN150), in which shoot biomass was also the highest. The application of OA and MA increased heavy metal uptake but resulted in the lowest biomass production. A combination of MA with N fertilizers showed high uptake and accumulation of Cr and Cu.

3.
Environ Sci Pollut Res Int ; 31(17): 25964-25977, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492144

RESUMEN

Solidification/stabilization technology is commonly used in the rehabilitation of dredged sediment due to its cost-effectiveness. However, traditional solidification/stabilization technology relies on cement, which increases the risk of soil alkalization and leads to increased CO2 emissions during cement production. To address this issue, this study proposed an innovative approach by incorporating bentonite and citrus peel powder as additives in the solidifying agent, with the aim of reducing cement usage in the dredged sediment solidification process. The research results showed that there is a significant interaction among cement, bentonite, and citrus peel powder. After response surface methodology (RSM) optimization, the optimal ratio of the cementitious mixture was determined to be 14.86 g/kg for cement, 5.85 g/kg for bentonite, and 9.31 g/kg for citrus peel powder. The unconfined compressive strength (UCS) of the solidified sediments reached 3144.84 kPa. The reaction products of the solidification materials, when mixed with sediment, facilitated adsorption, gelation, and network structure connection. Simultaneously, the leaching concentration of heavy metals was significantly decreased with five heavy metals (Zn, As, Cd, Hg, and Pb) leaching concentrations decreasing by more than 50%, which met the prescribed thresholds for green planting. This study demonstrated the ecological benefits of employing bentonite and citrus peel powder in the solidification process of dredged sediment, providing an effective solution for sediment solidification.


Asunto(s)
Mercurio , Metales Pesados , Bentonita/química , Polvos , Metales Pesados/química , Adsorción
4.
J Hazard Mater ; 466: 133664, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309161

RESUMEN

The remediation of Cd-polluted sediment in coastal rivers is essential because of its potential hazards to river and marine ecosystems. Herein, a co-pyrolysis product of contaminated dredged sediment (S@BC) was innovatively applied to cap and immobilize Cd-contaminated sediment in coastal rivers in situ, and their remediation efficiencies, mechanisms, and microbial responses were explored based on a 360 d incubation experiment. The results showed that although S@BC immobilization and capping restrained sediment Cd release to the overlying water, S@BC capping presented a high inhibitory efficiency (66.0% vs. 95.3% at 360 d). Fraction analysis indicated that labile Cd was partially transformed to stable fraction after remediation, with decreases of 0.5%- 32.7% in the acid-soluble fraction and increases of 5.0%- 182.8% in the residual fraction. S@BC immobilization and capping had minor influences on the sediment bacterial community structure compared to the control. S@BC could directly adsorb sediment mobile Cd (precipitation and complexation) to inhibit Cd release and change sediment properties (e.g., pH and cation exchange capacity) to indirectly reduce Cd release. Particularly, S@BC capping also promoted Cd stabilization by enhancing the sediment sulfate reduction process. Comparatively, S@BC capping was a priority approach for Cd-polluted sediment remediation. This study provides new insights into the remediation of Cd-contaminated sediments in coastal rivers.

5.
J Environ Manage ; 353: 120133, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38308985

RESUMEN

Enhanced phytoextraction of metal-polluted soils using EDTA is phasing out in favor of biodegradable chelants. However, these are too short-lived to be effective in the acclimated biodegrading soil environment established in long-term phytoextraction operations. We hypothesize that full-scale EDTA-enhanced phytoextraction can be both effective and environmentally safe, provided that soil leaching is prevented while EDTA persists in the soil profile. This was tested for 4 years in two sealed, well-monitored constructed lagoons (70-m3 each) packed with Cd-contaminated dredged sediment. Fast-growing, high-biomass, salinity-resistant eucalypts were planted in June 2010. Under controlled deficit irrigation, the 3-year average EC was 14.2 dS m-1. Summer leakage accounted for ∼1.2 % of the overall irrigation water and was prescribed for monitoring the composition of the soil solution. Altogether, 486 leachate and 261 suction-cap solutions were collected at average intervals of 5.5 days. EDTA was intermittently applied with summer irrigation, in multiple low doses at average seasonal concentrations of 1.1-9.2 mM. The soil solution EDTA biodegraded quickly after those applications were stopped. This cessation was timed well before the start of the rainy season. Spontaneous EDTA leaching during the three winters accounted for <0.02 % of the total 423 mol/basin applied. Prescribed summer leaching constituted ∼1 % of this total. Peak heavy metal (HM) concentrations in the leachate and suction-cap solutions (e.g., Cd, up to 18.5 and 14 mg L-1, respectively) were observed soon after EDTA application. Winter HM concentrations were not significantly different from the background. As the amounts of EDTA diminished, HM also disappeared from the soil solution, probably by adsorption. Eucalyptus occidentalis was by far the most efficient Cd sink of the five species tested,. The results of this study strongly support our hypothesis that EDTA-enhanced phytoextraction can be both effective and environmentally safe.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Ácido Edético , Cadmio , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Metales Pesados/análisis , Suelo , Quelantes
6.
Environ Sci Pollut Res Int ; 31(10): 15078-15090, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38286931

RESUMEN

Green and low-carbon materialization for dredged sediment (DS) is limited due to its low pozzolanic activity. In this study, a novel DS-based non-sintered lightweight aggregate (LWA) is developed by steel slag (SS) and fly ash (FA) activation. Process optimization is performed by the response surfaces, and the basic properties and characterization of the optimal product are investigated. Results indicated that the optimized design ceramic aggregate (ODCA) was prepared as follows: raw pellets comprising of 59.2% DS, 5% SS, 35.8% FA, 5% MK, 5% H2O2, and 2‰ foam stabilizer were activated by alkali activator (1.5 weight ratio of 14 M NaOH to water glass) and then cured at 80 °C and 95% humidity for 24 h. The basic and environmental performances of ODCA were in accordance with standards, whose bulk density was as low as 665.8 kg/m3, the high cylinder compressive strength was 6.143 MPa, and leaching concentrations of heavy metals were controllable. The regulation mechanism of LWA performances could be summarized as follows. SS and FA additives played the role for the mechanical strength enhancement and passivation of heavy metals, which promoted the formation of sillimanite, chabazite, and C-S-H / C-S-A-H gels in ODCA. The bulk density of ODCA was greatly reduced by H2O2 addition, where ODCA had an open-pore structure with a median pore size of 4969.75 nm. Note that C-S-H/C-S-A-H were the key hydration products to give ODCA light density and high mechanical strength, simultaneously.


Asunto(s)
Ceniza del Carbón , Mezclas Complejas , Metales Pesados , Ceniza del Carbón/química , Residuos Industriales/análisis , Acero , Peróxido de Hidrógeno , Metales Pesados/química
7.
Waste Manag ; 174: 487-495, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38128367

RESUMEN

In this study, dredged sediment from Baiyang Lake was used as raw material to prepare DSB at a pyrolysis temperature of 600 °C and in an anoxic pyrolysis atmosphere. The adsorption and removal performance of tetracycline in water of DSB were investigated using fulvic acid (FA) as the activator. The biochar materials were first characterized (SEM, BET, XRD, FTIR, and XPS), and the elemental composition and surface functional groups of F-DSB were investigated. The maximum adsorption capacity of F-DSB, according to the Langmuir model, was 72.3 mg/g. Results demonstrated that F-DSB exhibited good adsorption performance. In conclusion, FA is a potential green modifier that can be used to improve the adsorption properties of DSB. This research will be useful in improving our understanding of the possible adsorption mechanism and process optimization of modified DSB. This work offers a novel approach to the resource utilization of dredged sediment.


Asunto(s)
Benzopiranos , Tetraciclina , Contaminantes Químicos del Agua , Temperatura , Antibacterianos , Carbón Orgánico , Adsorción , Contaminantes Químicos del Agua/análisis , Cinética
8.
J Environ Manage ; 344: 118700, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37573698

RESUMEN

Using dredged sediments as substrate for aquatic plants is a low-cost and ecological friendly way for in situ aquatic ecological restoration. However, the limited information available about how aquatic plant restoration affects the microbial ecology and nutrients in dredged sediments. In this study, nutrient contents, enzyme activities, and bacterial and archaeal communities in vertical sediment layers were determined in bulk and reed zones of wetlands constructed with dredged sediments in west Lake Taihu for three years. Reed restoration significantly decreased total nitrogen, total phosphorus, and organic carbon contents and increased alkaline phosphatase, urease, and sucrase activities compared to bulk area. Bacterial communities in vertical sediment layers had higher similarity in reed zone in comparison to bulk zone, and many bacterial and archaeal genera were only detected in reed rhizosphere zones. Compared with the bulk zone, the reed restoration area has a higher abundance of phylum Actinobacteriota, Hydrothermarchaeota, and class α-proteobacteria. The assembly process of the bacterial and archaeal communities was primarily shaped by dispersal limitation (67.03% and 32.97%, respectively), and stochastic processes were enhanced in the reed recovery area. Network analysis show that there were more complicated interactions among bacteria and archaea and low-abundance taxa were crucial in maintaining the microbial community stability in rhizosphere of reed zone. PICRUST2 analysis demonstrate that reed restoration promotes metabolic pathways related to C and N cycle in dredged sediments. These data highlight that using dredged sediments as substrates for aquatic plants can transform waste material into a valuable resource, enhancing the benefits to the environment.


Asunto(s)
Microbiota , Rizosfera , Humedales , Bacterias , Archaea , Plantas , Nutrientes , Sedimentos Geológicos/química
9.
Sci Total Environ ; 903: 166160, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37574070

RESUMEN

The economic and environmental life cycle assessment (LCA) was integrated into a laboratory-based experiment to evaluate the feasibility and sustainability of phytoremediation of chloride-rich marine dredged sediment, using perennial reed Arundo Donax along with biomass valorization. As a prerequisite for life cycle assessments, a baseline mathematical model was developed to estimate the yields of biomass to bioenergy valorization chain including the estimation of biomass yield per m3 sediment, bioenergy yields from valorization schemes, expected green electricity yield, and the phytoremediation time frame. This mathematical model was applied to develop a parametric life cycle inventory for two scenarios of sediment phytoremediation separately or integrated with biomass valorization, for LCA and further sensitivity and uncertainty analysis. Comparative LCA unveiled that the cost and environmental impacts of annual phytoremediation of 1m3 sediment alone or integrated with biomass valorization are much inferior to the corresponding sediment landfill as the inevitable alternative approach for sediment management. With the chloride bioaccumulation capacity of 9940 mg per kg dry biomass of A. donax, the phytoremediation of sediment with chloride concentration higher than 1650 mg/kg may not be achievable in a realistic time frame. Due to the importance of considering sediment depth and the effectiveness of the plant rooting system in estimating the performance of phytoremediation and the time frame, the volume of sediment (1m3) is a more appropriate functional unit than the surface area (ha) for LCA studies of phytoremediation. In addition, considering the volume of sediment as a functional unit retains comparability to other valorization scenarios such as sediment incorporation in cementitious matrices and management scenarios such as landfill, which are generally expressed on a volume or mass basis. Integrating biomass-derived bioenergy production into phytoremediation could offer local and global benefits in terms of economy and environment mainly due to carbon sequestration and avoiding fossil-based fuels.

10.
Waste Manag ; 166: 13-24, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141783

RESUMEN

The worldwide concern is caused by a large quantity of dredged sediment. The issue becomes more severe when contaminated sediment has to be landfilled. Therefore, researchers involved in the dredged sediment management are increasingly motivated to improve circularity in sediment management processes. Prior to the dredged sediment usage in agriculture, its necessary to confirm conclusively its safety in the context of trace elements (TEs) levels. This study reports the use of different solidification/stabilization (S/S) sediment amendments (cement, clay, fly ash and green synthetized nano-zerovalent iron-nZVI) to remediate dredged sediment. The aim was to identify the effects of applied sediment S/S treatments on the growth and development of Brassica napus. The results showed that in all S/S mixtures TEs levels in the highly labile and bioavailable fraction were significantly decreased (less than 10%, while untreated sediment contained up to 36% of TEs). Simultaneously, the highest share of metals (69-92%) was in the residual fraction, which is considered as chemically stable and biologically inert fraction. Nevertheless, it was noticed that different S/S treatments trigger plants' functional traits indicating that plants' establishment in S/S treated sediment can be limited to certain extent. Besides, based on primary and secondary metabolites (elevated specific leaf area along with declined malondialdehyde content) it was concluded that Brassica plants employ a conservative resource use strategy aiming to buffer phenotypes against stress condition. Lastly, it was inferred that among all analyzed S/S treatments, green synthetized nZVI from oak leaves can effectively promote TEs stabilization in dredged sediment, concurrently enabling plant's establishment and fitness.


Asunto(s)
Metales Pesados , Oligoelementos , Agricultura , Hierro , Metales , Plantas , Ceniza del Carbón , Sedimentos Geológicos/química , Metales Pesados/análisis
11.
Materials (Basel) ; 16(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37049074

RESUMEN

A large amount of silt may be produced in river and lake regulation. It not only occupies land but also pollutes the environment. Therefore, it is urgent to seek effective disposal and utilization methods. Based on the problems of poor stability of stabilized soil and its tendency to soften easily in water, as well as its low strength with low curing agent dosage, this paper proposes a method to improve stabilized soil's solidification effect by adding materials such as cement, lime, fly ash, triethanolamine, sodium hydroxide, sodium silicate, etc., while mixing different grain diameters and quantities of building waste materials and ordinary sand. Using construction waste and ordinary sand as a comparative test, the curing mechanism of construction waste debris on the mechanical properties, permeability, and microstructure of solidified sludge was studied through unconfined compression tests, dry and wet cycle tests, permeability tests, and micro-structure tests such as XRD, MIP, and SEM. The test results show that the strength increases 8.5%~72.1% by adding building waste materials, and it grew with the increase in particle size and amount. It reduced the content of large pore size of solidified sediment and optimized the internal pore structure. At the same time, it formed a new structure filled by rigid skeleton material. Thus, it improved its unit section stress, built up the curing effect and water stability. The findings of this study can be used to modify solidified silt to improve stability and compaction characteristics.

12.
Environ Sci Pollut Res Int ; 30(19): 54914-54926, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36881230

RESUMEN

Each year, hundreds of millions of tons of sediments are dredged around the world. Alternatively to sea or land disposal, the reuse of these sediments as raw material in various civil engineering applications is developing. In this context, the French SEDIBRIC project (valorisation de SEDIments en BRIQues et tuiles) aims to replace, in the preparation of clay-fired bricks, a part of natural clays by harbor dredged sediments. The present study focuses on the fate of some potentially toxic elements (Cd, Cr, Cu, Ni, Pb, and Zn) that are initially present in the sediments. A fired brick is elaborated exclusively from one dredged sediment, after a desalination step. The total content of each element of interest is evaluated by ICP-AES, after a microwave-assisted acid (aqua regia) digestion, in the raw sediment and in the brick. Then, single extractions (H2O, HCl, or EDTA as reactant) and one sequential extraction procedure (according to Leleyter and Probst, Int J Environ Anal Chem 73(2): 109-128 1999) are applied to the raw sediment and to the brick, in order to assess the environmental availability of the elements of interest. For Cu, Ni, Pb, and Zn, the results obtained with the various extractions procedures applied are consistent and confirm that the firing process induces their stabilization in the brick. The availability however increases for Cr and remains unchanged for Cd.


Asunto(s)
Metales Pesados , Oligoelementos , Cadmio , Plomo , Arcilla , Sedimentos Geológicos , Oligoelementos/análisis , Metales Pesados/análisis , Monitoreo del Ambiente
13.
J Environ Manage ; 334: 117502, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796196

RESUMEN

Proper treatment of heavy metal-contaminated dredged sediment (DS) is crucial to avoid secondary pollution. Effective and sustainable technologies are desired for the treatment of Zn- and Cu-contaminated DS. Due to the advantages of low energy consumption and time saving, co-pyrolysis technology was innovatively applied to treat Cu- and Zn-polluted DS in this study, and the effects of the co-pyrolysis conditions on Cu and Zn stabilization efficiencies, potential stabilization mechanisms, and the possibility for resource utilization of co-pyrolysis product were also investigated. The results showed that pine sawdust is an appropriate co-pyrolysis biomass for the stabilization of Cu and Zn based on the leaching toxicity analysis. The ecological risks of Cu and Zn in DS were reduced after co-pyrolysis treatment. The total concentrations of Zn and Cu in co-pyrolysis products were decreased by 5.87%-53.45% and 8.61%-57.45% of that in DS before co-pyrolysis. However, the total concentrations of Zn and Cu in DS remained basically unchanged after co-pyrolysis, which indicating the decreases in total concentrations of Zn and Cu in co-pyrolysis products were mainly related to dilution effect. Fraction analysis indicated that co-pyrolysis treatment contributed to transforming weakly bound Cu and Zn into stable fractions. The co-pyrolysis temperature and mass ratio of pine sawdust/DS had a greater influence than co-pyrolysis time on the fraction transformation of Cu and Zn. The leaching toxicity of Zn and Cu from the co-pyrolysis products was eliminated when the co-pyrolysis temperature reached 600 and 800 °C, respectively. Analysis of the X-ray photoelectron spectroscopy and X-ray diffraction results demonstrated that co-pyrolysis treatment could transform mobile Cu and Zn in DS into metal oxides, metal sulfides, phosphate compounds, etc. Batch adsorption procedures suggested that the co-pyrolysis product possessed a high adsorption capacity for Cd (95.70 mg/g at 318 K). The formation of CdCO3 precipitates and the complexation effects of oxygen-containing functional groups were the principal adsorption mechanisms of the co-pyrolysis product. Overall, this study provides new insights into sustainable disposal and resource utilization for heavy metal-contaminated DS.


Asunto(s)
Metales Pesados , Pinus , Cobre/química , Cadmio , Zinc/química , Adsorción , Pirólisis , Metales Pesados/química
14.
Sci Total Environ ; 858(Pt 2): 159980, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36347296

RESUMEN

The integrated life cycle assessment (LCA), life cycle cost assessment (LCC) and laboratory-based experimental assessment were applied to provide insight for early stage decision-making on the valorization of the dredged sediments. The objective was to find a viable and sustainable solution for the valorization of the dredged sediment in concrete, holding up a certain level of standard concrete performance without compromising in terms of economy and environment. For the sensitivity analysis, parametric life cycle inventories were developed to assess the sensitivity of environmental and economic costs to the rate of sand substitution by sediment, as well as the variations in the concrete components. The workability of fresh concrete and the compressive strength of hardened concrete at 28 days were assigned as the quality indicators to evaluate the influence of sand substitution by sediment on the concrete performance. The compressive strength evaluation in the laboratory demonstrated that a maximum rate of sand substitution in concrete up to 40 % by predominantly sandy sediment could sustain the concrete strength class. However, LCA and LCC negated the rate of sand substitution by sediment higher than 20 %. The integrated environmental, economic, and experimental assessments demonstrated that the substitution of sand by predominantly fine sediment downgrades the strength class of concrete, even in the low rate of incorporation (10 %) and increases the environmental and economic costs. Inferred from the results, the maximum rate of sustainable sand substitution by sediment in concrete could be optimized through a compromise between the expected mechanical strength and workability of the concrete, the economic and environmental impacts of the superplasticiser and the sediment transport. Overall, integrating environmental and economic cost assessments into the laboratory-based assessment of the valorization scenarios would determine the threshold for the sustainable rate of incorporation of sediment in valorization scenarios.


Asunto(s)
Ambiente , Arena , Fuerza Compresiva
15.
Chemosphere ; 307(Pt 4): 135832, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35963373

RESUMEN

Dredged sediments, as a product of mitigating endogenous pollution of rivers and lakes, cause severe environmental pollution without suitable disposal. To reduce dredged sediments, the electrochemical oxidation (EO) of peroxydisulfate (PS) on a boron-doped diamond (BDD) anode (EO/BDD-PS) was utilized to enhance the dewaterability of the dredged sediments. The soluble chemical oxygen demand increased in the EO/BDD-PS system, and more than 70.0% of the specific resistance to filtration was reduced by EO/BDD-PS within 20 min. The optimal conditions were determined to be as follows: current density, 30 mA cm-2; PS dosage 4 g L-1; and initial pH, 6.96. After treatment with EO/BDD-PS, the electronegativity of the sludge flocs was alleviated and the particle size increased from 7.61 to 10.64 µm. Furthermore, proteins and polysaccharides were degraded, and tightly bound extracellular polymeric substances (TB-EPS) and loosely bound EPS (LB-EPS) were effectively transported to soluble EPS (S-EPS). Furthermore, humification of organic matter occurred in S-EPS and LB-EPS when the dredged sediment was treated with EO/BDD-PS. Dominant hydroxyl radicals (•OH) and sulfate radicals (SO4•-) were generated in the EO/BDD-PS system. Moreover, the efficiency of the filtrate as an electrolyte decreased slightly after recycling five times. Therefore, this method may be economical for enhancing the dewaterability of dredged sediments.


Asunto(s)
Boro , Aguas del Alcantarillado , Diamante , Electrodos , Lagos , Oxidación-Reducción , Polisacáridos/metabolismo , Aguas del Alcantarillado/química , Sulfatos , Agua/química
16.
Environ Res ; 214(Pt 1): 113779, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35780855

RESUMEN

The disposal of dredged sediment is a considerable challenge for environmental protection and resource utilization. In this study, the dredged sediment was thermally-treated to prepare as adsorbent and utilized for tetracycline adsorption. Sediments based adsorbents under different pyrolysis temperature and atmosphere (N2 and limited oxygen) were obtained and 600 °C and N2 atmosphere (600AN) exhibited maximum TC adsorption capacity (15.45 mg/g). SEM, N2 adsorption-desorption isotherm, XRD, FTIR and XPS analysis suggested larger pore volume, relatively higher surface area, effective pore size distribution and abundant surface functional groups were the main reasons. Moreover, the influence of key adsorption parameters, including adsorbent dosage, initial pH, coexisting ions, ionic strength, contact time, initial TC concentration and ambient temperature had also been investigated. Results revealed that TC adsorption by 600AN were more consistent with pseudo-second order kinetic and Freundlich isothermal models. Combined with characterization results, which reasonably inferred that the adsorption mechanisms of 600AN were mainly involved pore-filling effect, hydrogen bonding interaction and π-π EDA interaction. This work has provided a low-cost, high efficiency and promising method for the dredged sediment reduction and resource recovery.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Antibacterianos , Concentración de Iones de Hidrógeno , Cinética , Tetraciclina
17.
Materials (Basel) ; 15(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35591512

RESUMEN

Cement-stabilized dredged sediment (CDS) when used as a new road construction material cannot only solve the problem of abandoned sediment disposal, but also effectively save natural soil resources. This study aimed to evaluate the strength and permeability of CDS and establish corresponding prediction models from the perspective of a stabilization mechanism. The soil-water composition and pore size distribution were investigated by the nuclear magnetic resonance (NMR) technique. The results demonstrated that more liquid pore water inside the CDS specimen transformed into combined water with cement hydration. The amount of combined water, which essentially characterized the hydration process of cement, presented a linear relationship with log (t). The cementation and filling action of hydrates resulted in the transformation of large pores into smaller ones, hence the optimal pore size decreased with an increasing curing period and cement content. The stress-strain curves and hydraulic conductivity were determined based on unconfined compression and flexible wall penetration tests, respectively. The unconfined compressive strength increased exponentially with the amount of combined water, and the functional correlations of hydraulic conductivity and micropore parameters were established. The reliability of the NMR technique as a new method to study the microscopic evolution mechanism of the strength and permeability of CDS was further verified by scanning electron microscopy and mercury intrusion porosimetry tests.

18.
Waste Manag ; 146: 20-35, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35545007

RESUMEN

Dredging is an essential technique to maintain proper water depths in ports and bays. Many dredged sediments are considered as toxic waste due to their significant amounts of metals and other pollutants. In consequence, they need to be treated to reduce this toxicity and avoid pollutant resuspensions. Physical operations and chemical, thermal and biological processes have been conventionally used to this aim, but the traditional linear sediment approach is often unsustainable and economically and environmentally demanding. Considering the increasing people's awareness in environmental issues, more efficient dredged sediment management schemes are required. Some authors are making significant efforts to improve circularity in sediment management processes by taking advantage of the mineral composition of sediments to obtain products for the building and road construction sectors, therefore decreasing the need of raw materials while reducing the amounts of sediments wasted to landfills. However, information related to the characteristics of these products, their mechanical behaviour and their functionality is still scarce, being sediment-based by-products developed mainly at low Technological Readiness Level (TRL), showing low global impact in the market. To implement circular economy in the dredged sediment sector, some technical and socio-political barriers must be still overcome. To this aim, further research and technological applications must be developed, with the support of decision makers and stakeholders. This review aims at giving an overview of the circular trends applied to toxic dredged sediment management, pointing at current opportunities, barriers and constraints that hinder its wide development.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Sedimentos Geológicos/química , Humanos , Instalaciones de Eliminación de Residuos , Agua , Contaminantes Químicos del Agua/análisis
19.
Environ Sci Pollut Res Int ; 29(22): 32763-32772, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35018602

RESUMEN

Land reclamation projects are increasingly incorporating dredged sediment from waterways. The high water content of dredged sediment is a major issue, making the dewatering process difficult and time-consuming. The chemical-physical combined method (CP) is therefore used in this study, which simultaneously uses vacuum dewatering by utilising vacuum pressure (VP) in conjunction with prefabricated horizontal drain (PHD) and Portland cement (PC)-based solidification/stabilisation (SS), thereby significantly reducing the duration of treatment of DS with high water content. The effectiveness and feasibility of the chemical-physical combined method with Portland cement (PC) as a binder are evaluated and compared with the traditional PC-based solidification/stabilisation (SS) method. A number of experimental tests were performed to accomplish the objectives of the study, such as unconfined compressive strength (USS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The experimental results indicated that the CP method showed better performance compared to the traditional SS method in treating high water content DS at low cement content. The water content of DS treated with the chemical-physical combined method was reduced by half in just about 3 days, and the final rate of settlement was 2.9 times higher than with SS-treated DS. The USC results showed that the strength of CP cases was 4.8 times higher than SS-treated DS after 56 days of curing age. The microstructural tests revealed the development of CSH and CASH as major hydration products of both CP and SS cases. Moreover, CP cases exhibited a densely stabilised matrix compared to SS cases.


Asunto(s)
Agua , Fuerza Compresiva
20.
Environ Sci Pollut Res Int ; 29(6): 8306-8322, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34482457

RESUMEN

The vertical distribution pattern of 19 organochlorine pesticides (OCPs), together with microbial ester-linked fatty acid methyl ester (EL-FAME) profiles were investigated in sediments from an abandoned oxidation pond of Ya-Er lake, China, which had been heavily polluted by hexachlorocyclohexanes (HCHs) and chlorobenzenes in 1980s. Subsurface sediment samples were taken from five sediment cores along the transect running from the lakeshore (0.5~2.7 m in depth) to lakebed (0.1~0.4 m). The total OCP concentration ranged from 29.8 to 941.8 ng g-1 dw. Hexachlorobenzene (HCB), HCHs, and dichlorodiphenyl-trichloroethanes (DDTs) were the three dominant OCP classes, accounting for 26.5-97.4%, 1.8-33.2%, and 0.4-15.5% of the total OCP concentration, respectively. Hot spots of HCB, HCHs, and DDTs were detected at 0.9~2.7 m deep layers of the lakeshore, where was once the main dredged sediment backfill site for in-situ remediation of the oxidation pond in 2002-2004. HCHs and HCB still showed high potential ecological risks. The sources of OCPs were identified and quantified using principal component analysis with absolute principal component scores-multiple linear regression model. The first three major sources were persistent residues, recent agricultural input, and historical industrial input, contributing on average 28.2%, 17.9%, and 17.1% of total OCPs, respectively. Redundancy analysis of microbial EL-FAME profiles and nine dominant OCPs revealed that the spatial variation in microbial community structure was significantly corresponded with the OCP composition. This is the first study highlighting the concern on historical industrial inputs of OCPs in subsurface sediments of the lakeshore disposal zone. The findings could help to distinguish the artificial backfill sediments from undisturbed polluted sediments for optimization of further dredging plans.


Asunto(s)
Microbiota , Plaguicidas , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...