Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(25): 10941-10955, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38865299

RESUMEN

The recent regulatory spotlight on continuous monitoring (CM) solutions and the rapid development of CM solutions have demanded the characterization of solution performance through regular, rigorous testing using consensus test protocols. This study is the second known implementation of such a protocol involving single-blind controlled testing of 9 CM solutions. Controlled releases of rates (6-7100 g) CH4/h over durations (0.4-10.2 h) under a wind speed range of (0.7-9.9 m/s) were conducted for 11 weeks. Results showed that 4 solutions achieved method detection limits (DL90s) within the tested emission rate range, with all 4 solutions having both the lowest DL90s (3.9 [3.0, 5.5] kg CH4/h to 6.2 [3.7, 16.7] kg CH4/h) and false positive rates (6.9-13.2%), indicating efforts at balancing low sensitivity with a low false positive rate. These results are likely best-case scenario estimates since the test center represents a near-ideal upstream field natural gas operation condition. Quantification results showed wide individual estimate uncertainties, with emissions underestimation and overestimation by factors up to >14 and 42, respectively. Three solutions had >80% of their estimates within a quantification factor of 3 for controlled releases in the ranges of [0.1-1] kg CH4/h and > 1 kg CH4/h. Relative to the study by Bell et al., current solutions performance, as a group, generally improved, primarily due to solutions from the study by Bell et al. that were retested. This result highlights the importance of regular quality testing to the advancement of CM solutions for effective emissions mitigation.


Asunto(s)
Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Método Simple Ciego , Metano/análisis , Contaminantes Atmosféricos/análisis
2.
Sci Total Environ ; 898: 165350, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37419367

RESUMEN

Despite considerable decreases in fine particulate matter (PM2.5) in Chinese megacities over the past decade, many second- and third-tier cities that distribute abundant industrial enterprises are still facing great challenges for PM2.5 further reduction under the recent policy background of eliminating heavily-polluted weather. In view of core effects of NOx on PM2.5, the deeper reductions of NOx in these cities are expected to break the plateau of PM2.5 decline, however, the link between NOx emission and PM2.5 mass loading is currently lacking. Herein, we progressively construct an evaluation system for PM2.5 productions based on daily NOx emissions in a typical industrial city (Jiyuan), considering a sequence of nested parameters involving evolutions of NO2 into nitric acid and then nitrate, and contributions of nitrate to PM2.5. The evaluation system was subsequently validated to better reproduce real increasing processes for PM2.5 pollution based on 19 pollution cases, with root mean square errors of 19.2 ± 16.4 %, suggesting the feasibility of developing NOx emission indicators linked to goals of mitigating atmospheric PM2.5. Additionally, further comparative results reveal that currently high NOx emissions in this industrial city severely hinder the achievement of atmospheric PM2.5 environmental capacity targets, especially in the scenarios of high initial PM2.5 level, low planetary boundary layer height and long pollution duration. It is anticipated that these methodologies and findings would supply guidelines for further regional PM2.5 mitigation, in which source-oriented NOx indicators could also provide some orientations for industrial cleaner production such as denitrification and low nitrogen combustion.

3.
Environ Sci Technol ; 57(14): 5794-5805, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36977200

RESUMEN

Continuous emission monitoring (CM) solutions promise to detect large fugitive methane emissions in natural gas infrastructure sooner than traditional leak surveys, and quantification by CM solutions has been proposed as the foundation of measurement-based inventories. This study performed single-blind testing at a controlled release facility (release from 0.4 to 6400 g CH4/h) replicating conditions that were challenging, but less complex than typical field conditions. Eleven solutions were tested, including point sensor networks and scanning/imaging solutions. Results indicated a 90% probability of detection (POD) of 3-30 kg CH4/h; 6 of 11 solutions achieved a POD < 6 kg CH4/h, although uncertainty was high. Four had true positive rates > 50%. False positive rates ranged from 0 to 79%. Six solutions estimated emission rates. For a release rate of 0.1-1 kg/h, the solutions' mean relative errors ranged from -44% to +586% with single estimates between -97% and +2077%, and 4 solutions' upper uncertainty exceeding +900%. Above 1 kg/h, mean relative error was -40% to +93%, with two solutions within ±20%, and single-estimate relative errors were from -82% to +448%. The large variability in performance between CM solutions, coupled with highly uncertain detection, detection limit, and quantification results, indicates that the performance of individual CM solutions should be well understood before relying on results for internal emissions mitigation programs or regulatory reporting.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Metano/análisis , Gas Natural/análisis , Método Simple Ciego
4.
J Environ Manage ; 329: 117041, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528940

RESUMEN

Implementing runoff control infrastructure has been regarded as an efficacious measure in stormwater management. The issue of its cost-effectiveness is a primary concern for decision makers since it is an exorbitant investment. However, most of existed studies only concentrated on the cost-effectiveness optimization of runoff control infrastructure, especially green infrastructure, between hydrological and economic aspects, and therefore, the potential layout scenarios with high extra environmental benefits could be neglected in the traditional two-dimensional frameworks. In this study, a novel carbon dioxide equivalent-based index was quantified to represent the extra environmental benefits of runoff control infrastructure besides stormwater management and was further integrated into the assessment framework. The effectiveness of green and grey infrastructure was comprehensively evaluated and traded off between hydrological, environmental and economic aspects. The results demonstrated that grey infrastructure is a better measure than green infrastructure when only hydrological (HF index) and economic (CI index) performances were considered. Nevertheless, the environmental performance (EROI index) of green infrastructure prevails over grey infrastructure, and when optimizing green and grey infrastructure simultaneously in the three-dimensional framework considering environmental effectiveness, green infrastructure is comparable with grey infrastructure. Furthermore, an appropriate composition of coupled green-grey infrastructure is requisite, which could achieve an optimal trade-off between hydrological and environmental effectiveness. The sources of environmental benefits were also identified and analyzed from three representative preference scenarios. The findings of the study could serve as a trade-off basis between green and grey infrastructure, as well as between EROI and HF.


Asunto(s)
Hidrología , Lluvia , Inversiones en Salud , Dióxido de Carbono
5.
J Environ Manage ; 328: 116975, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36527801

RESUMEN

Aerobic pre-treatment of liquid dairy manure has previously been reported as an effective nutrient export and emissions mitigation approach. The first objective of this study was to experimentally determine the optimal intermittent aeration ratio for nutrient recovery from liquid dairy manure through an on-site pilot-scale reactor to partially reduce the required energy for the aerobic process. The second objective was to theoretically investigate the total carbon footprints of direct manure spreading on croplands and permanent manure storage in open anaerobic lagoons in response to nutrient removal by the optimal determined intermittent aerobic treatment ratio. Four scenarios (S) were included; S1 was the traditional scenario of manure spread on croplands without the aerobic pre-treatment, S2 was the modified scenario of manure spread on croplands that included the aerobic pre-treatment, S3 was the traditional scenario of manure storage in lagoons, and S4 was the modified scenario of manure storage in lagoons that included the aerobic pre-treatment. The results showed that comparable nutrient removal efficiencies could be obtained with a 5:1 intermittent aeration ratio. Total nitrogen (TN) and total phosphorus (TP) were recovered were 41.5 ± 1.3% and 37.0 ± 4.0%, respectively, in ammonium sulfate and phosphorus-rich sludge, while 55.3 ± 1.4% of the chemical oxygen demand (COD) was removed. The estimated total carbon footprint for S1, S2, S3, and S4 were 24.4, 37.9, 45.3, and 45.9 kg CO2-eqton-1, respectively. However, the total carbon footprint of S2' and S4', which used renewable-based energy to run the reactor instead of fossil-based energy used in S2 and S4, were estimated to 29.5 and 37.5 kg CO2-eqton-1, respectively. Clearly, applying the aerobic pre-treatment increased the total carbon footprint of all cases except S4', in which the total carbon footprint was mitigated by -17.2%. Accordingly, the aerobic pre-treatment is only recommended in the case of S4' from a carbon footprint point of view although it is an effective nutrient recovery technology.


Asunto(s)
Huella de Carbono , Estiércol , Dióxido de Carbono/análisis , Análisis de la Demanda Biológica de Oxígeno , Nitrógeno , Fósforo
6.
NanoImpact ; 28: 100424, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36087836

RESUMEN

To supply adequate food, the ongoing and unrestrained administration of nitrogen fertilizer to agricultural fields is polluting the climate and living organisms. On the other hand, the agriculture sector urgently needs a technological upgrade to effectively confront hunger and poverty. Here, we report a rapid synthesis of zinc and magnesium-doped hydroxyapatite-urea nanohybrids for slow release and delivery of nitrogen to wheat and rice crops. Nanohybrids slowly release nitrogen for up to six weeks compared to the burst release of nitrogen from urea, and their use substantially reduces, by at least 3.8 times, ammonia emissions into the environment compared with that of urea fertilizer. A half­nitrogen dose applied as multi-nutrient complexed nanohybrids maintained crop growth, yield, and nutritional compositions in wheat and subsequent rice crops. Nanohybrids enhanced the wheat crop yield and nitrogen uptake by 22.13% and 58.30%, respectively. The synthesized nitrogen nanohybrids remained in the soil for two continuous crop cycles, reduced ammonia volatilization, and achieved nitrogen delivery to the crops. Additionally, soil dehydrogenase activity (534.55% above control) and urease activities (81.82% above control) suggest that nanohybrids exhibited no adverse impact on soil microorganisms. Our comprehensive study demonstrates the advantages of 'doping' as a method for tailoring hydroxyapatite nanoparticles properties for extended agricultural and environmental applications. The use of nanohybrids substantially reduced greenhouse gas emissions and enabled the reduction, by half, of nitrogen inputs into the agricultural fields. This study, therefore, reports a novel nano-enabled platform of engineered hydroxyapatite-urea nanohybrids as a nitrogen fertilizer for efficient nitrogen delivery that results in improved crop growth while minimizing environmental pollution.


Asunto(s)
Amoníaco , Nitrógeno , Durapatita , Urea
7.
Environ Res ; 214(Pt 3): 114015, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35944622

RESUMEN

Excessive application of chemical nitrogen (N) fertilizer and inefficient N management are still common in the North China Plain, leading to large reactive N (Nr) losses and pollution, threatening environmental security and public health. Three improved N management practices (33% reduction in N applied (OU), OU combined with partial organic fertilizer substitution (UOM) and the urea in UOM amended with a urease inhibitor (ULOM)) together with no N application (CK) and farmers' conventional practice (CU) were tested on a maize-wheat rotation at Quzhou, Hebei, North China Plain (NCP). Nr emissions were related to WFPS (Water Filled Pore Space), soil mineral N (NH4+-N and NO3--N) and soil temperature. Nr emissions and yield-scaled Nr emissions were significantly reduced by partial substitution of organic fertilizer for chemical fertilizer: NH3 emissions were reduced by 55.8-62.4%. Using a urease inhibitor (Limus®), further reduced NH3 emissions by 40.2-64.5%. Yield-scaled NH3 emissions were, on average, reduced by 60.0% and 55.2% in the maize and wheat growing season, respectively, relative to the UOM treatment. Long-term application of organic fertilizer had a significant positive effect on N use efficiency (NUE). Overall, the study shows that appropriated N management such as reducing the N application rate, partial substitution of chemical N by organic N and using a urease inhibitor can reduce Nr emissions and promote NUE in the North China Plain. The methods corresponding to the ULOM and UOM treatments were the most and second most effective, respectively, with high net economic benefits.


Asunto(s)
Fertilizantes , Óxido Nitroso , Agricultura/métodos , China , Productos Agrícolas , Fertilizantes/análisis , Nitrógeno/análisis , Suelo , Triticum , Ureasa , Zea mays
8.
Environ Sci Technol ; 56(14): 10269-10278, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35772406

RESUMEN

In industrial symbiosis, byproducts and wastes are used to substitute other process inputs, with the goal of reducing the environmental impact of production. Potentially, such symbiosis could reduce greenhouse gas emissions; although there exists literature exploring this at specific industrial sites, there has not yet been a quantitative global assessment of the potential toward climate mitigation by industrial symbiosis in bulk material production of steel, cement, paper, and aluminum. A model based on physical production recipes is developed to estimate global mass flows for production of these materials with increasing levels of symbiosis. The results suggest that even with major changes to byproduct utilization in cement production, the emission reduction potential is low (7% of the total bulk material system emissions) and will decline as coal-fired electricity generation and blast furnace steel production are phased out. Introducing new technologies for heat recovery allows a greater potential reduction in emissions (up to 18%), but the required infrastructure and technologies have not yet been deployed at scale. Therefore, further industrial symbiosis is unlikely to make a significant contribution to GHG emission mitigation in bulk material production.

9.
J Environ Manage ; 298: 113485, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34385114

RESUMEN

Quantifying the decoupling states of carbon emissions from a multi-sectoral and dual-perspective can guide more detailed emission reduction strategies. Based on the single-regional input-output (SRIO), Tapio decoupling analysis (TDA), and structural decomposition analysis (SDA), this study investigated the dynamic variation feature and decoupling state of multi-sectoral carbon emissions, and revealed their driving factors of consumption-based emissions in Guangdong province from 2002 to 2017. The main discovery can be summarized as follows from results analysis. Firstly, electricity production sector and construction sector were the largest direct and embodied carbon emission sources, and capital formation was the most important factor with the contribution of approximately 100 % that led to embodied carbon emissions of construction. For most of the manufacturing and service sectors, the embodied carbon emissions caused by international export exceed 50 %. Secondly, the consumption structure, consumption per capita, and population effect promoted the embodied emissions during 2002-2012, while the emission intensity effect was the greatest offsetting factor for all sectors. Consumption structure effect was becoming a major driver to the increase of embodied carbon emissions for construction. Thirdly, agriculture, mining, energy transformation, and service sector showed the unsatisfactory decoupling relationship between direct carbon emissions and economic output. According to the decoupling states, the decoupling relationships in some secondary industries were overestimated under the situation of only considering direct carbon emissions. The obtained results and policy implications are expected to provide holistic reference for policymakers to promote the short-term carbon peak and long-term carbon neutrality of Guangdong province from the sectoral perspective.


Asunto(s)
Carbono , Desarrollo Económico , Carbono/análisis , Dióxido de Carbono/análisis , China , Industrias
10.
J Environ Manage ; 294: 112956, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34126527

RESUMEN

Open anaerobic lagoons are widely used for liquid manure storage and treatment, with excess greenhouse gas (GHG) and odor emissions. In this study, liquid manure was valorized through hybrid nitrogen and phosphorous recovery as value-added products using an airlift reactor. Also, the organic load of liquid manure was reduced before discharging into anaerobic lagoons, which simultaneously mitigated GHG emissions. The results showed that 14.5% of total nitrogen (TN) was recovered as ammonium sulfate, while 38.8% of TN and 79.3% of total phosphorus (TP) were recovered as phosphorus-rich sludge. After the pre-treatment in the reactor, the odor could be controlled effectively due to a 94.2% decrease in total VFAs. In addition, 59.0% of COD was removed, which decreased the theoretical modeled GHG emissions by 51.7% compared to the traditional direct discharging. The application is promising for upgrading anaerobic lagoons of liquid manure.


Asunto(s)
Gases de Efecto Invernadero , Anaerobiosis , Efecto Invernadero , Estiércol/análisis , Metano , Nutrientes
11.
Environ Pollut ; 279: 116931, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33756242

RESUMEN

Stringent mitigation measures have reduced wintertime fine particulate matter (PM2.5) concentrations by 42.2% from 2013 to 2018 in the Beijing-Tianjin-Hebei (BTH) region, but severe PM pollution still frequently engulfs the region. The observed nitrate aerosols have not exhibited a significant decreasing trend and constituted a major fraction (about 20%) of the total PM2.5, although the surface-measured NO2 concentration has decreased by over 20%. The contributions of nitrogen oxides (NOX) emissions mitigation to the nitrate and PM2.5 concentrations and how to alleviate nitrate aerosols efficiently under the current situation still remains elusive. The WRF-Chem model simulations of a persistent and heavy PM pollution episode in January 2019 in the BTH reveal that NOX emissions mitigation does not help lower wintertime nitrate and PM2.5 concentrations under current conditions in the BTH. A 50% reduction in NOX emissions only decreases nitrate mass by 10.3% but increases PM2.5 concentrations by 3.2%, because the substantial O3 increase induced by NOX mitigation offsets the HNO3 loss and enhances sulfate and secondary organic aerosols formation. Our results are further consolidated by the occurrence of severe PM pollution in the BTH during the COVID-19 outbreak, with a significant reduction in NO2 concentration. Mitigation of NH3 emissions constitutes the priority measure to effectively lower the nitrate and PM2.5 concentrations in the BTH under current conditions, with 35.5% and 12.7% decrease, respectively, when NH3 emissions are reduced by 50%.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Beijing , China , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , SARS-CoV-2
12.
Transp Res D Transp Environ ; 86: 102421, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32834738

RESUMEN

Transport emissions need to be drastically decreased in order to put Europe on a path towards a long-term climate neutrality. Commercial transport, and especially last mile delivery is expected to grow because of the rise of e-commerce. In this frame, electric light commercial vehicles (eLCVs) can be a promising low-emission solution. Literature holistically analysing the potential of eLCVs as well as related support policies is sparse. This paper attempts to close this research gap. To this aim, the total cost of ownership (TCO) comparisons for eLCVs and benchmark vehicles are performed and support measures that target the improvement of the eLCV TCO are analysed. Various eLCV deployment scenarios until 2030 are explored and their impact on carbon dioxide (CO2) and other pollutant emissions as well as pollutant concentrations are calculated. It is found that while in several European Union (EU) countries eLCVs are already cost competitive, because of fiscal support, some remaining market barriers need to be overcome to pave the way to mass market deployment of eLCVs. High penetration of eLCVs alone can lead to a reduction of total transport CO2 emissions by more than 3% by 2030. For pollutant emissions, such as nitrogen oxide (NOx) and particulate matter (PM), the reduction would be equal or even higher. In the case of PM, this can translate to reductions in concentrations by nearly 2% in several urban areas by 2030. Carefully designed support policies could help to ensure that the potential of eLCVs as a low-emission alternative is fully leveraged in the EU.

13.
Environ Sci Pollut Res Int ; 27(26): 32637-32658, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32514910

RESUMEN

Municipal solid waste (MSW) incineration contributes significantly to carbon emissions, and has become a serious problem in China, which has seen an exponential rise in waste over the last twenty years due to rapid urbanization and the associated consumer economy growth. To tackle this issue, this paper develops a leader-follower optimized approach for economic and environmental equilibrium in incineration power plants that includes a carbon allowance allocation scheme (IPP-CAAS) under combustion and pollutant limitations. In the leader-follower (bi-level) game, the regional authority on the upper level determines the carbon allocations and environmental targets and the IPPs on the lower level develop schemes to maximize revenue under the upper-level restrictions. By employing uncertain parameters for the carbon and power conversion fluctuations, the approach is able to more accurately depict the industry characteristics of waste incineration process in this carbon-economy balance problem. The robustness and practicality of the proposed methodology was then validated through a case study. Scenario analysis under different political parameters indicates that the proposed methodology can assist the authorities to achieve carbon-economy trade-off and under serious carbon-control situations, encourage the IPPs to reduce their blended coal ratios, and invest in low-carbon incineration technology. Managerial insights on further industrial developments are also given for the authority and relevant practitioners.


Asunto(s)
Incineración , Residuos Sólidos/análisis , Carbono , China , Carbón Mineral
14.
J Clean Prod ; 212: 1478-1489, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30828137

RESUMEN

This article presents experience curves and cost-benefit analyses for electric and plug-in hybrid cars sold in Germany. We find that between 2010 and 2016, the prices and price differentials relative to conventional cars declined at learning rates of 23 ±â€¯2% and 32 ±â€¯2% for electric cars and 6 ±â€¯1% and 37 ±â€¯2% for plug-in hybrids. If trends persist, price beak-even with conventional cars may be reached after another 7 ±â€¯1 million electric cars and 5 ±â€¯1 million plug-in hybrids are produced. The user costs of electric and plug-in hybrid cars relative to their conventional counterparts are declining annually by 14% and 26%. Also the costs for mitigating CO2 and air pollutant emissions through the deployment of electrified cars tend to decline. However, at current levels, NOX and particle emissions are still mitigated at lower costs by state-of-the-art after-treatment systems than through the electrification of powertrains. Overall, the observation of robust technological learning suggests policy makers should focus their support on non-cost market barriers for the electrification of road transport, addressing specifically the availability of recharging infrastructure.

15.
J Environ Manage ; 233: 499-512, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30594115

RESUMEN

Due to rapid urbanization and modernization, the construction sector now generates one third of all greenhouse gas emissions in China. Using an equilibrium strategy combined with the carbon allowance allocation, this study presents a synergistic Stackelberg model based on a construction project planning framework to deal with cumulative CO2 emissions. The bi-level model simultaneously considers the sequential decision-making relationship between the authority (leader) and the enterprises' interactive objectives and constraints. Unlike previous research, this bi-level model gives a holistic analysis of the interactivity of multiple stakeholders, thereby enabling the inherent conflicts and equilibrium between environmental protection and decision makers' profits to be reconciled and balanced. To deal with the bi-level model complexity, an interactive solution method that integrates an evolutionary mechanism and improved particle swarm optimization (IPSO) is designed for solving a construction supply planning problem. The robustness and practicality of the proposed methodology are then validated in a real world case, and sensitivity analyses under different carbon emissions quotas are also given. The results indicate that the methodology can systematically reduce carbon emissions in the Chinese construction sector, and when the authority has a strict emissions reduction altitude, construction practitioners are able to attain high carbon efficiencies; therefore, the model provides valuable strategy guidance for policymakers and business executives.


Asunto(s)
Carbono , Conservación de los Recursos Naturales , China , Comercio
16.
Artículo en Inglés | MEDLINE | ID: mdl-29194376

RESUMEN

Appropriate agricultural practices for carbon sequestration and emission mitigation have a significant influence on global climate change. However, various agricultural practices on farmland carbon sequestration usually have a major impact on greenhouse gas (GHG) emissions. It is very important to accurately quantify the effect of agricultural practices. This study developed a platform-the Denitrification Decomposition (DNDC) online model-for simulating and evaluating the agricultural carbon sequestration and emission mitigation based on the scientific process of the DNDC model, which is widely used in the simulation of soil carbon and nitrogen dynamics. After testing the adaptability of the platform on two sampling fields, it turned out that the simulated values matched the measured values well for crop yields and GHG emissions. We used the platform to estimate the effect of three carbon sequestration practices in a sampling field: nitrogen fertilization reduction, straw residue and midseason drainage. The results indicated the following: (1) moderate decrement of the nitrogen fertilization in the sampling field was able to decrease the N2O emission while maintaining the paddy rice yield; (2) ground straw residue had almost no influence on paddy rice yield, but the CH4 emission and the surface SOC concentration increased along with the quantity of the straw residue; (3) compared to continuous flooding, midseason drainage would not decrease the paddy rice yield and could lead to a drop in CH4 emission. Thus, this study established the DNDC online model, which is able to serve as a reference and support for the study and evaluation of the effects of agricultural practices on agricultural carbon sequestration and GHG emissions mitigation in China.


Asunto(s)
Agricultura/métodos , Secuestro de Carbono , Cambio Climático , Modelos Teóricos , Carbono/análisis , China , Granjas , Nitrógeno/análisis , Sistemas en Línea , Oryza , Suelo/química
17.
Sci Total Environ ; 568: 236-244, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27295595

RESUMEN

Reducing global carbon dioxide (CO2) emissions is often thought to be at odds with economic growth and poverty reduction. Using an integrated assessment modeling approach, we find that China can cap CO2 emissions at 2015 level while sustaining economic growth and reducing the urban-rural income gap by a third by 2030. As a result, the Chinese economy becomes less dependent on exports and investments, as household consumption emerges as a driver behind economic growth, in line with current policy priorities. The resulting accumulated greenhouse gas emissions reduction 2016-2030 is about 60billionton (60Mg) CO2e. A CO2 tax combined with income re-distribution initially leads to a modest warming due to reduction in sulfur dioxide (SO2) emissions. However, the net effect is eventually cooling when the effect of reduced CO2 emissions dominates due to the long-lasting climate response of CO2. The net reduction in global temperature for the remaining part of this century is about 0.03±0.02°C, corresponding in magnitude to the cooling from avoiding one year of global CO2 emissions.

18.
J Food Sci Technol ; 52(3): 1383-93, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25745206

RESUMEN

Drying experiments have been performed with potato cylinders and slices using a laboratory scale designed natural convection mixed-mode solar dryer. The drying data were fitted to eight different mathematical models to predict the drying kinetics, and the validity of these models were evaluated statistically through coefficient of determination (R(2)), root mean square error (RMSE) and reduced chi-square (χ (2)). The present investigation showed that amongst all the mathematical models studied, the Modified Page model was in good agreement with the experimental drying data for both potato cylinders and slices. A mathematical framework has been proposed to estimate the performance of the food dryer in terms of net CO2 emissions mitigation potential along with unit cost of CO2 mitigation arising because of replacement of different fossil fuels by renewable solar energy. For each fossil fuel replaced, the gross annual amount of CO2 as well as net amount of annual CO2 emissions mitigation potential considering CO2 emissions embodied in the manufacture of mixed-mode solar dryer has been estimated. The CO2 mitigation potential and amount of fossil fuels saved while drying potato samples were found to be the maximum for coal followed by light diesel oil and natural gas. It was inferred from the present study that by the year 2020, 23 % of CO2 emissions can be mitigated by the use of mixed-mode solar dryer for drying of agricultural products.

19.
Environ Pollut ; 190: 139-49, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24747346

RESUMEN

Urbanization is a strong and extensive driver that causes environmental pollution and climate change from local to global scale. Modeling cities as ecosystems has been initiated by a wide range of scientists as a key to addressing challenging problems concomitant with urbanization. In this paper, 'urban ecosystem modeling (UEM)' is defined in an inter-disciplinary context to acquire a broad perception of urban ecological properties and their interactions with global change. Furthermore, state-of-the-art models of urban ecosystems are reviewed, categorized as top-down models (including materials/energy-oriented models and structure-oriented models), bottom-up models (including land use-oriented models and infrastructure-oriented models), or hybrid models thereof. Based on the review of UEM studies, a future framework for explicit UEM is proposed based the integration of UEM approaches of different scales, guiding more rational urban management and efficient emissions mitigation.


Asunto(s)
Contaminación del Aire/prevención & control , Conservación de los Recursos Naturales/métodos , Modelos Teóricos , Ciudades , Cambio Climático , Ecosistema , Humanos , Urbanización
20.
Annu Rev Chem Biomol Eng ; 5: 479-505, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24702296

RESUMEN

Reducing CO2 in the atmosphere and preventing its release from point-source emitters, such as coal and natural gas-fired power plants, is a global challenge measured in gigatons. Capturing CO2 at this scale will require a portfolio of gas-separation technologies to be applied over a range of applications in which the gas mixtures and operating conditions will vary. Chemical scrubbing using absorption is the current state-of-the-art technology. Considerably less attention has been given to other gas-separation technologies, including adsorption and membranes. It will take a range of creative solutions to reduce CO2 at scale, thereby slowing global warming and minimizing its potential negative environmental impacts. This review focuses on the current challenges of adsorption and membrane-separation processes. Technological advancement of these processes will lead to reduced cost, which will enable subsequent adoption for practical scaled-up application.


Asunto(s)
Dióxido de Carbono/aislamiento & purificación , Secuestro de Carbono , Monitoreo del Ambiente/métodos , Membranas Artificiales , Adsorción , Contaminación del Aire/prevención & control , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Carbón Mineral , Monitoreo del Ambiente/instrumentación , Combustibles Fósiles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...