Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
BMC Res Notes ; 17(1): 51, 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38369539

RESUMEN

OBJECTIVES: The collection of genotype data was conducted as an essential part of a pivotal research project with the goal of examining the genetic variability of skin, hair, and iris color among the Kazakh population. The data has practical application in the field of forensic DNA phenotyping (FDA). Due to the limited size of forensic databases from Central Asia (Kazakhstan), it is practically impossible to obtain an individual identification result based on forensic profiling of short tandem repeats (STRs). However, the pervasive use of the FDA necessitates validation of the currently employed set of genetic markers in a variety of global populations. No such data existed for the Kazakhs. The Phenotype Expert kit (DNA Research Center, LLC, Russia) was used for the first time in this study to collect data. DATA DESCRIPTION: The present study provides genotype data for a total of 60 SNP genetic markers, which were analyzed in a sample of 515 ethnic Kazakhs. The dataset comprises a total of 41 single nucleotide polymorphisms (SNPs) obtained from the HIrisPlex-S panel. Additionally, there are 4 SNPs specifically related to the AB0 gene, 1 marker associated with the AMELX/Y genes, and 14 SNPs corresponding to the primary haplogroups of the Y chromosome. The aforementioned data could prove valuable to researchers with an interest in investigating genetic variability and making predictions about phenotype based on eye color, hair color, skin color, AB0 blood group, gender, and biogeographic origin within the male lineage.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Pueblo de Asia Central , Cromosomas Humanos Y , Haplotipos , Pigmentación , Humanos , Masculino , Sistema del Grupo Sanguíneo ABO/genética , Pueblo de Asia Central/genética , Cromosomas Humanos Y/genética , ADN/genética , Marcadores Genéticos , Genética de Población , Genotipo , Cabello , Haplotipos/genética , Polimorfismo de Nucleótido Simple/genética , Pigmentación de la Piel/genética , Pigmentación/genética , Variación Genética/genética
2.
Int J Legal Med ; 138(3): 859-872, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38087053

RESUMEN

BACKGROUND: Forensic DNA phenotyping (FDP) consists of the use of methodologies for predicting externally visible characteristics (EVCs) from the genetic material of biological samples found in crime scenes and has proven to be a promising tool in aiding human identification in police activities. Currently, methods based on multiplex assays and statistical models of prediction of EVCs related to hair, skin, and iris pigmentation using panels of SNP and INDEL biomarkers have already been developed and validated by the forensic scientific community. As well as traces of pigmentation, an individual's perceived age (PA) can also be considered an EVC and its estimation in unknown individuals can be useful for the progress of investigations. Liu and colleagues (2016) were pioneers in evidencing that, in addition to lifestyle and environmental factors, the presence of SNP and INDEL variants in the MC1R gene - which encodes a transmembrane receptor responsible for regulating melanin production - seems to contribute to an individual's PA. The group highlighted the association between these MC1R gene polymorphisms and the PA in the European population, where carriers of risk haplotypes appeared to be up to 2 years older in comparison to their chronological age (CA). PURPOSE: Understanding that genotype-phenotype relationships cannot be extrapolated between different population groups, this study aimed to test this hypothesis and verify the applicability of this variant panel in the Rio Grande do Sul admixed population. METHODS: Based on genomic data from a sample of 261 volunteers representative of gaucho population and using a multiple linear regression (MLR) model, our group was able to verify a significant association among nine intronic variants in loci adjacent to MC1R (e.g., AFG3L1P, TUBB3, FANCA) and facial age appearance, whose PA was defined after age heteroclassification of standard frontal face images through 11 assessors. RESULTS: Different from that observed in European populations, our results show that the presence of effect alleles (R) of the selected variants in our sample influenced both younger and older face phenotypes. The influence of each variant on PA is expressed as ß values. CONCLUSIONS: There are important molecular mechanisms behind the effects of MC1R locus on PA, and the genomic background of each population seems to be crucial to determine this influence.


Asunto(s)
ADN , Polimorfismo Genético , Humanos , Fenotipo , ADN/genética , Haplotipos , Color del Ojo/genética , Polimorfismo de Nucleótido Simple , Genotipo
3.
Forensic Sci Int Genet ; 68: 102976, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000161

RESUMEN

RNA has gained a substantial amount of attention within the forensic field over the last decade. There is evidence that RNAs are differentially expressed with biological age. Since RNA can be co-extracted with DNA from the same piece of evidence, RNA-based analysis appears as a promising molecular alternative for predicting the biological age and hence inferring the chronological age of a person. Using RNA-Seq data we searched for markers in blood potentially associated with age. We used our own RNA-Seq data from dried blood stains as well as publicly available RNA-Seq data from whole blood, and compared two different approaches to select candidate markers. The first approach focused on individual gene analysis with DESeq2 to select the genes most correlated with age, while the second approach employed lasso regression to select a set of genes for optimal prediction of age. We present two lists with 270 candidate markers, one for each approach.


Asunto(s)
Colorantes , ADN , Humanos , ARN Mensajero/genética , ADN/análisis , Genética Forense
4.
Forensic Sci Int Genet ; 67: 102938, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37832204

RESUMEN

Over a decade after the publication of the first forensic DNA phenotyping (FDP) studies, DNA-based appearance predictions are now becoming a reality in routine crime scene investigations. The significant number of publications dedicated to the subject of FDP clearly demonstrates a sustained interest and a strong need for further method development. However, the implementation of FDP in routine work still encounters obstacles, and one of these challenges is making phenotype predictions from DNA mixtures. In this study, we examined single-cell sequencing as a potential tool to enable reliable phenotyping of contributors within mixtures. Two mock mixtures, each containing two contributors with similar and different physical appearances, were analyzed using two different workflows. In the first workflow, the mixtures were sequenced using the Ion AmpliSeq™ PhenoTrivium Panel, which includes 41 HIrisPlex-S (HPS) markers. Subsequently, the genotypes were analyzed using the HPS Deconvolution Tool to predict the phenotypes of both contributors. The second workflow involved the introduction of single-cell separation and collection using the DEPArray™ PLUS System. Two different PhenoTrivium amplification protocols were tested, and the phenotype predictions from single cells were compared with the results obtained using the HPS Tool. Our results suggest that the approach presented here allows for the obtainment of nearly complete HIrisPlex-S profiles with accurate genotypes and reliable phenotype predictions from single cells. This method proves successful in deconvoluting mixtures submitted to forensic DNA phenotyping.


Asunto(s)
Dermatoglifia del ADN , Polimorfismo de Nucleótido Simple , Humanos , Fenotipo , ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN , Análisis de la Célula Individual
5.
Genes (Basel) ; 14(7)2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37510353

RESUMEN

It is very important to generate phenotypic results that are reliable when processing chronological old skeletal remains for cases involving the identification of missing persons. To improve the success of pigmentation prediction in Second World War victims, three bones from each of the eight skeletons analyzed were included in the study, which makes it possible to generate a consensus profile. The PowerQuant System was used for quantification, the ESI 17 Fast System was used for STR typing, and a customized version of the HIrisPlex panel was used for PCR-MPS. The HID Ion Chef Instrument was used for library preparation and templating. Sequencing was performed with the Ion GeneStudio S5 System. Identical full profiles and identical hair and eye color predictions were achieved from three bones analyzed per skeleton. Blue eye color was predicted in five skeletons and brown in three skeletons. Blond hair color was predicted in one skeleton, blond to dark blond in three skeletons, brown to dark brown in two skeletons, and dark brown to black in two skeletons. The reproducibility and reliability of the results proved the multisample analysis method to be beneficial for phenotyping chronological old skeletons because differences in DNA yields in different bone types provide a greater possibility of obtaining a better-quality consensus profile.


Asunto(s)
Restos Mortales , ADN , Humanos , Reproducibilidad de los Resultados , ADN/genética , Dermatoglifia del ADN , Huesos
6.
Forensic Sci Int Genet ; 66: 102893, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37290253

RESUMEN

Predicting the outward appearance of dogs via their DNA, also known as Canine DNA Phenotyping, is a young, emerging field of research in forensic genetics. The few previous studies published in this respect were restricted to the consecutive analysis of single DNA markers, a process that is time- and sample-consuming and therefore not a viable option for limited forensic specimens. Here, we report on the development and evaluation of a Massively Parallel Sequencing (MPS) based molecular genetic assay, the LASSIE MPS Panel. This panel aims to predict externally visible as well as skeletal traits, which include coat color, coat pattern, coat structure, tail morphology, skull shape, ear shape, eye color and body size from DNA using 44 genetic markers in a single molecular genetic assay. A biostatistical naïve Bayes classification approach was applied to identify the most informative marker combinations for predicting phenotypes. Overall, the predictive performance was characterized by a very high classification success for some of the trait categories, and high to moderate success for others. The performance of the developed predictive framework was further evaluated using blind samples from three randomly selected dog individuals, whose appearance was well predicted.


Asunto(s)
ADN , Genética Forense , Perros , Animales , Teorema de Bayes , Genética Forense/métodos , Fenotipo , ADN/genética , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
7.
Forensic Sci Int Genet ; 65: 102870, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084623

RESUMEN

Forensic DNA Phenotyping (FDP) comprises the prediction of a person's externally visible characteristics regarding appearance, biogeographic ancestry and age from DNA of crime scene samples, to provide investigative leads to help find unknown perpetrators that cannot be identified with forensic STR-profiling. In recent years, FDP has advanced considerably in all of its three components, which we summarize in this review article. Appearance prediction from DNA has broadened beyond eye, hair and skin color to additionally comprise other traits such as eyebrow color, freckles, hair structure, hair loss in men, and tall stature. Biogeographic ancestry inference from DNA has progressed from continental ancestry to sub-continental ancestry detection and the resolving of co-ancestry patterns in genetically admixed individuals. Age estimation from DNA has widened beyond blood to more somatic tissues such as saliva and bones as well as new markers and tools for semen. Technological progress has allowed forensically suitable DNA technology with largely increased multiplex capacity for the simultaneous analysis of hundreds of DNA predictors with targeted massively parallel sequencing (MPS). Forensically validated MPS-based FDP tools for predicting from crime scene DNA i) several appearance traits, ii) multi-regional ancestry, iii) several appearance traits together with multi-regional ancestry, and iv) age from different tissue types, are already available. Despite recent advances that will likely increase the impact of FDP in criminal casework in the near future, moving reliable appearance, ancestry and age prediction from crime scene DNA to the level of detail and accuracy police investigators may desire, requires further intensified scientific research together with technical developments and forensic validations as well as the necessary funding.


Asunto(s)
ADN , Genética Forense , Humanos , Fenotipo , ADN/genética , Medicina Legal , Pigmentación de la Piel , Polimorfismo de Nucleótido Simple , Color del Ojo
8.
Healthcare (Basel) ; 11(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36900653

RESUMEN

In the last few years, predicting externally visible characteristics (EVCs) by adopting informative DNA molecular markers has become a method in forensic genetics that has increased its value, giving rise to an interesting field called "Forensic DNA Phenotyping" (FDP). The most meaningful forensic applications of EVCs prediction are those in which, having only a DNA sample isolated from highly decomposed remains, it is essential to reconstruct the physical appearance of a person. Through this approach, we set out to evaluate 20 skeletal remains of Italian provenance in order to associate them with as many cases of missing persons as possible. To achieve the intended goal, in this work we applied the HIrisPlex-S multiplex system through the conventional short tandem repeats (STR) method to confirm the expected identity of subjects by evaluating phenotypic features. To investigate the reliability and accuracy of the DNA-based EVCs prediction, pictures of the cases were compared as they were available to researchers. Results showed an overall prediction accuracy greater than 90% for all three phenotypic features-iris, hair, and skin colour-at a probability threshold of 0.7. The experimental analysis showed inconclusive results in only two cases; this is probably due to the characteristics of subjects who had an intermediate eye and hair colour, for which the DNA-based system needs to improve the prediction accuracy.

9.
J Forensic Sci ; 68(2): 608-613, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36762775

RESUMEN

Multiplex DNA typing methods using massively parallel sequencing can be used to predict externally visible characteristics (EVCs) in forensic DNA phenotyping through the analysis of single-nucleotide polymorphisms. The focus of EVC determination has focused on hair color, eye color, and skin tone as well as visible biogeographical ancestry features. In this study, we researched off-label applications beyond what is currently marketed by the manufacturer of the Verogen ForenSeq kit primer set B and Imagen primer set E SNP loci. We investigated additional EVC predictions by examining published genome wide sequencing studies and reported allele-specific gene expression and predictive values. We have identified 15 SNPs included in the ForenSeq kit panel and Imagen kits that have additional EVC prediction capabilities beyond what is published in the Verogen manuals. The additional EVCs that can be predicted include hair graying, ephelides hyperpigmented spots, dermatoheliosis, facial pigmented spots, standing height, pattern balding, helix-rolling ear morphology, hair shape, hair thickness, facial morphology, eyebrow thickness, sarcoidosis, obesity, vitiligo, and tanning propensity. The loci can be used to augment and refine phenotype predictions with software such as MetaHuman for missing persons, cold case, and historic case investigations.


Asunto(s)
Dermatoglifia del ADN , ADN , Fenotipo , ADN/genética , Pigmentación de la Piel , Cabello , Polimorfismo de Nucleótido Simple , Genética Forense/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Color del Ojo
10.
Sci Justice ; 63(1): 135-148, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631178

RESUMEN

Microscopic traits and ultrastructure of hair such as cross-sectional shape, pigmentation, curvature, and internal structure help determine the level of variations between and across human populations. Apart from cosmetics and anthropological applications, such as determining species, somatic origin (body area), and biogeographic ancestry, the evidential value of hair has increased with rapid progression in the area of forensic DNA phenotyping (FDP). Individuals differ in the features of their scalp hair (greying, shape, colour, balding, thickness, and density) and facial hair (eyebrow thickness, monobrow, and beard thickness) features. Scalp and facial hair characteristics are genetically controlled and lead to visible inter-individual variations within and among populations of various ethnic origins. Hence, these characteristics can be exploited and made more inclusive in FDP, thereby leading to more comprehensive, accurate, and robust prediction models for forensic purposes. The present article focuses on understanding the genetics of scalp and facial hair characteristics with the goal to develop a more inclusive approach to better understand hair biology by integrating hair microscopy with genetics for genotype-phenotype correlation research.


Asunto(s)
Cabello , Cuero Cabelludo , Humanos , Fenotipo , ADN/genética , Genética Forense , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...