Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chem Biodivers ; 21(7): e202400145, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38738490

RESUMEN

As a medicinal and edible resource, Hippophae rhamnoides Linn. subsp. sinensis Rousi is rich in bioactive secondary metabolites, including flavonoids and their derivatives, which offer protective effects against oxidative damage. This study reported the isolation of three new kaempferol derivatives from the seed residue of H. rhamnoides - Hippophandine A, B, and C (compounds 1-3). Their structures were elucidated by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), nuclear magnetic resonance (NMR), and chemical analyses. The compounds were evaluated for their ability to mitigate hydrogen peroxide (H2O2)-induced cell death in SH-SY5Y cells. The results elucidated that Hippophandine A-C at concentrations of 1, 5, and 10 µM reduced the levels of malondialdehyde (MDA) and increased the activity of antioxidative enzymes, such as superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT). Furthermore, they significantly altered the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream heme oxygenase-1 (HO-1), which is an indicator of redox detection in H2O2-induced SH-SY5Y.


Asunto(s)
Hippophae , Peróxido de Hidrógeno , Quempferoles , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Regulación hacia Arriba , Humanos , Quempferoles/farmacología , Quempferoles/química , Quempferoles/aislamiento & purificación , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Hippophae/química , Factor 2 Relacionado con NF-E2/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Relación Estructura-Actividad , Supervivencia Celular/efectos de los fármacos , Estructura Molecular , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga
2.
Foods ; 12(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37685254

RESUMEN

Hippophae rhamnoides L. has been widely used in research and application for almost two decades. While significant progress was achieved in the examination of its fruits and seeds, the exploration and utilization of its by-products have received relatively less attention. This study aims to address this research gap by investigating the effects and underlying mechanisms of sea buckthorn seed residues both in vitro and in vivo. The primary objective of this study is to assess the potential of the hydroalcoholic extract from sea buckthorn seed residues (HYD-SBSR) to prevent cell apoptosis and mitigate oxidative stress damage. To achieve this, an H2O2-induced B16F10 cell model and a D-galactose-induced mouse model were used. The H2O2-induced oxidative stress model using B16F10 cells was utilized to evaluate the cellular protective and reparative effects of HYD-SBSR. The results demonstrated the cytoprotective effects of HYD-SBSR, as evidenced by reduced apoptosis rates and enhanced resistance to oxidative stress alongside moderate cell repair properties. Furthermore, this study investigated the impact of HYD-SBSR on antioxidant enzymes and peroxides in mice to elucidate its reparative potential in vivo. The findings revealed that HYD-SBSR exhibited remarkable antioxidant performance, particularly at low concentrations, significantly enhancing antioxidant capacity under oxidative stress conditions. To delve into the mechanisms underlying HYD-SBSR, a comprehensive proteomics analysis was conducted to identify differentially expressed proteins (DEPs). Additionally, a Gene Ontology (GO) analysis and an Encyclopedia of Genes and Genomes (KEGG) pathway cluster analysis were performed to elucidate the functional roles of these DEPs. The outcomes highlighted crucial mechanistic pathways associated with HYD-SBSR, including the PPAR signaling pathway, fat digestion and absorption, glycerophospholipid metabolism, and cholesterol metabolism. The research findings indicated that HYD-SBSR, as a health food supplement, exhibits favorable effects by promoting healthy lipid metabolism, contributing to the sustainable and environmentally friendly production of sea buckthorn and paving the way for future investigations and applications in the field of nutraceutical and pharmaceutical research.

3.
Polymers (Basel) ; 15(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37112119

RESUMEN

The aim of this work was to study the valorization of argan seed pulp, a waste material obtained from argan oil extraction, for the biosynthesis of polyhydroxybutyrate (PHB). A new species that showed the metabolic capacity for the conversion of argan waste into the bio-based polymer was isolated from an argan crop located in Teroudant, a southwestern region of Morocco, where the arid soil is exploited for goat grazing. The PHB accumulation efficiency of this new species was compared to the previously identified species 1B belonging to the genus Sphingomonas, and results were reported as dry cell weight residual biomass and PHB final yield measured. Temperature, incubation time, pH, NaCl concentration, nitrogen sources, residue concentrations, and culture medium volumes were analyzed with the aim of obtaining a maximum accumulation of PHB. UV-visible spectrophotometry and FTIR analysis confirmed that PHB was present in the material extracted from the bacterial culture. The results of this wide investigation indicated that the new isolated species 2D1 had a higher efficiency in PHB production compared to the previously identified strain 1B, which was isolated from a contaminated argan soil in Teroudant. PHB final yield of the two bacterial species, i.e., the new isolated and 1B, cultivated under optimal culture conditions, in 500 mL MSM enriched with 3% argan waste, were 21.40% (5.91 ± 0.16 g/L) and 8.16% (1.92 ± 0.23 g/L), respectively. For the new isolated strain, the result of the UV-visible spectrum indicates the absorbance at 248 nm, while the FTIR spectrum showed peaks at 1726 cm-1 and 1270 cm-1: these characteristic peaks indicated the presence of PHB in the extract. The data from the species 1B UV-visible and FTIR spectra were previously reported and were used in this study for a correlation analysis. Furthermore, additional peaks, uncharacteristic of standard PHB, suggest the presence of impurities (e.g., cell debris, solvent residues, biomass residues) that persisted after extraction. Therefore, a further enhancement of the sample purification during extraction is recommended for more accuracy in the chemical characterization. If 470,000 tons of argan fruit waste can be produced annually, and 3% of waste is consumed in 500 mL culture by 2D1 to produce 5.91 g/L (21.40%) of the bio-based polymer PHB, it can be estimated that the amount of putative PHB that can be extracted annually from the total argan fruit waste is about 2300 tons.

4.
Foods ; 12(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36900505

RESUMEN

Perilla frutescens (PF) seed residue is a waste from perilla oil production that still contains nutrients and phytochemicals. This study aimed to investigate the chemoprotective action of PF seed residue crude ethanolic extract (PCE) on the inflammatory-induced promotion stage of rat colon carcinogenesis and cell culture models. PCE 0.1 and 1 g/kg body weight were administered by oral gavage to rats after receiving dimethylhydrazine (DMH) with one week of dextran sulfate sodium (DSS) supplementation. PCE at high dose exhibited a reduction in aberrant crypt foci (ACF) number (66.46%) and decreased pro-inflammatory cytokines compared to the DMH + DSS group (p < 0.01). Additionally, PCE could either modulate the inflammation induced in murine macrophage cells by bacterial toxins or suppress the proliferation of cancer cell lines, which was induced by the inflammatory process. These results demonstrate that the active components in PF seed residue showed a preventive effect on the aberrant colonic epithelial cell progression by modulating inflammatory microenvironments from the infiltrated macrophage or inflammatory response of aberrant cells. Moreover, consumption of PCE could alter rat microbiota, which might be related to health benefits. However, the mechanisms of PCE on the microbiota, which are related to inflammation and inflammatory-induced colon cancer progression, need to be further investigated.

5.
Foods ; 12(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36673450

RESUMEN

After cold-pressing, small particles of seed residue remain in raspberry seed oil (RSO), even after passing it through cold filtration. The removal of the remaining seed residue is rather an alternative option to improve the visual properties of RSO. This study investigated the influence that the seeds' age (0, 10, 20 months) and clarification process after pressing has on the oxidative stability and phase transition of RSO by means of differential scanning calorimetry (DSC). The results proved that the oil centrifugation process reduces the DPPH radical scavenging activity and oxidative stability measured by p-anisidine value (p-AnV) and DSC oxidation induction time (OIT) at 120 °C of all RSO samples, regardless of the age of the seeds (p ≤ 0.05). No significant differences were observed on the DSC melting and crystallization properties at 1 °C/min after the oil clarification by centrifugation (p > 0.05). The storage time of raspberry seeds, i.e., 10 and 20 months after expiry date, influenced the quality deterioration of RSO, as measured by higher p-AnV, lower DPPH, and OIT values (p ≤ 0.05). The results presented provide new information about oil production processing, suggesting that producers should reconsider giving up the clarification process of oil, since it lowers all quality parameters.

6.
Molecules ; 27(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36235210

RESUMEN

The present work was aimed at studying the biosorption of two important heavy metals, viz. Pb and Cr, using defatted seed residue of Cucumis melo as biosorbent. As this study for the biosorption of the selected biosorbent is being carried out for the first time, optimization of the% sorption was carried out with the help of Taguchi method. Three most influential experimental factors were taken into account for this purpose, including the amount of sorbent, amount of sorbate and shaking time. For Pb, maximum% sorption was found to be 94.1%, using 2 g of sorbent and 5 ppm of sorbate after 2 h of shaking. Similarly, for Cr, maximum% sorption was 92.5% using 2 g of sorbent, 10 ppm of sorbate and 3 h of shaking. For Pb, the highest% contribution, which was determined by ANOVA, was given by the amount of sorbate (54.7%) followed by the amount of sorbent (38.8%) and the least contribution was given by the shaking time (6.47%). Similarly, for Cr, the highest% contribution, which was determined by ANOVA, was given by the amount of sorbate (75%) followed by the amount of sorbent (16%) and the least contribution was given by the shaking time (8.65%). Kinetic and isothermal studies were also performed to understand the nature of adsorption mechanism. For this purpose, linear and non-linear forms of three sorption isotherms were employed including Freundlich, Langmuir and Dubnin-Radushkevich isotherm. From these observations, it can be concluded that the defatted seed residue of Cucumis melo can be regarded as a novel, renewable, green and cost-effective biosorbent for removal of heavy metals from wastewater.


Asunto(s)
Cucumis melo , Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Plomo , Metales Pesados/análisis , Semillas/química , Aguas Residuales , Contaminantes Químicos del Agua/análisis
7.
Ultrason Sonochem ; 90: 106200, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36265291

RESUMEN

Belamcanda chinensis is a common garden herb. The extraction technology of B. chinensis seed oil (BSO) was optimized by ultrasonic-assisted extraction (UAE) method, the composition, relative content of main fatty acids and physicochemical properties of BSO were determined, and the isolation, identification and determination of chemical constituent in BSO residue (BSOR) were also investigated. The optimum process conditions of BSO by UAE were optimized as ultrasound time 14 min, extraction temperature 42℃, the ultrasound power 413 W and the liquid-solid ratio 27:1 mL/g. Under this condition, the extraction yield was 22.32 % with the high contents of linoleic acid and oleic acid in BSO. Ten compounds were isolated and identified from BSOR, and belamcandaoid P (9) was a new compound. The contents of the determined compounds were all at high level in B. chinensis seed. The study provided a certain scientific reference for the comprehensive development and utilization of B. chinensis seeds.


Asunto(s)
Ácidos Grasos , Aceites de Plantas , Ácidos Grasos/análisis , Aceites de Plantas/química , Ultrasonido , Semillas/química , Temperatura
8.
Environ Sci Pollut Res Int ; 28(2): 2342-2354, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32885336

RESUMEN

Two novel ecological and low-cost adsorbents were prepared from seed residues of the tree species Anadenanthera macrocarpa and Cedrela fissilis for the removal of methylene blue dye in water. The materials were comminuted and characterized by different techniques. The particles of samples have a rough surface with cavities. The optimum dosage and pH for both materials were 1 g L-1 and pH 8. The pseudo-second-order model was the most suitable for describing the adsorption kinetics for both systems. The Anadenanthera macrocarpa presented a maximum experimental capacity of 228 mg g-1, while the Cedrela fissilis, a similar capacity of 230 mg g-1 at 328 K. The Tóth model was proper for describing the equilibrium curves for both systems. The thermodynamic indicators show that the adsorption process is spontaneous and endothermic for both materials. The application of materials for the simulated effluent treatment showed 74 and 78% of color removal using Anadenanthera macrocarpa and Cedrela fissilis samples, respectively. Overall, seed residues of Anadenanthera macrocarpa and Cedrela fissilis could be potentially applied for adsorptive removal of colored contaminants in wastewater.


Asunto(s)
Cedrela , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno/análisis , Semillas/química , Soluciones , Termodinámica , Agua , Contaminantes Químicos del Agua/análisis
9.
Nutrients ; 12(10)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33007803

RESUMEN

Moringa oleifera is a miracle plant with many nutritional and medicinal properties. Chemopreventive values of the combined mixture of moringa leaves and seed residue (MOLSr) at different ratios (M1S9, M1S1 and M9S1) were investigated. MOLSr extracts were subjected to phytochemical screening, antioxidant assays, metabolite profiling and cytotoxic activity on the primary mammary epithelial cells (PMECs), non-malignant Chang's liver cells and various human cancer cell lines (including breast, cervical, colon and liver cancer cell lines). The MOLSr ratio with the most potent cytotoxic activity was used in xenograft mice injected with MDA-MB-231 cells for in vivo tumorigenicity study as well as further protein and gene expression studies. M1S9, specifically composed of saponin and amino acid, retained the lowest antioxidant activity but the highest glucosinolate content as compared to other ratios. Cell viability decreased significantly in MCF-7 breast cancer cells and PMECs after treatment with M1S9. Solid tumor from MDA-MB-231 xenograft mice was inhibited by up to 64.5% at third week after treatment with high-dose M1S9. High-dose M1S9 significantly decreased the expression of calcineurin (CaN) and vascular endothelial cell growth factor (VEGF) proteins as well as the secreted frizzled-related protein 1 (SFRP1) and solute carrier family 39 member 6 (SLC39A6) genes. This study provides new scientific evidence for the chemoprevention potential of MOLSr extracts in a breast cancer model; however, the precise mechanism warrants further investigation.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Moringa oleifera/química , Extractos Vegetales/farmacología , Animales , Antioxidantes/farmacología , Calcineurina/metabolismo , Proteínas de Transporte de Catión/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Xenoinjertos , Proteínas de la Membrana/metabolismo , Ratones , Hojas de la Planta/química , Semillas/química , Factores de Crecimiento Endotelial Vascular/metabolismo
10.
Food Chem ; 246: 48-57, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29291876

RESUMEN

Oil extraction from green coffee seeds generates residual mass that is discarded by agribusiness and has not been previously studied. Bioactive secondary metabolites in coffee include antioxidant phenolic compounds, such as chlorogenic acids. Coffee seeds also contain caffeine, a pharmaceutically important methylxanthine. Here, we report the chemical profile, antioxidant activity, and cytotoxicity of hydroethanolic extracts of green Coffea arabica L. seed residue. The extracts of the green seeds and the residue have similar chemical profiles, containing the phenolic compounds chlorogenic acid and caffeine. Five monoacyl and three diacyl esters of trans-cinnamic acids and quinic acid were identified by ultra-performance liquid chromatography/electrospray ionization-quadruple time of flight mass spectrometry. The residue extract showed antioxidant potential in DPPH, ABTS, and pyranine assays and low cytotoxicity. Thus, coffee oil residue has great potential for use as a raw material in dietary supplements, cosmetic and pharmaceutical products, or as a source of bioactive compounds.


Asunto(s)
Antioxidantes/farmacología , Coffea/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Semillas/química , Antioxidantes/química , Arilsulfonatos/química , Cafeína/análisis , Línea Celular , Ácido Clorogénico/análisis , Suplementos Dietéticos , Manipulación de Alimentos , Humanos , Fenoles/análisis , Ácido Quínico/análisis , Residuos/análisis , Xantinas/análisis
11.
Nat Prod Res ; 32(8): 892-897, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28826244

RESUMEN

In this study, a valid method was established for the isolation and purification of flavone glycosides from Hippophae rhamnoides L. seed residues using high-speed counter-current chromatography in one step, with a solvent system of ethyl acetate-methanol-n-butyl alcohol-water (9:1:0.5:9, v/v/v/v). A total of 28.8 mg compound I and 57.3 mg compound II were obtained from 200 mg of flavone H-glycosides rich extract, with purities of 98.3 and 96.4%, respectively. The structures of two compounds were identified by MS and NMR. 3-O-ß-D-Sophorosylkaempferol-7-O-{3-O-[2(E)-2,6-dimethyl-6-hydroxyocta-2,7-dienoyl]}-α-L-rhamnoside is compound I and compound II named hippophanone is a new compound were identified by MS and NMR. The method was efficient and convenient, which could be used for the preparative separation of flavone glycosides from H. rhamnoides L. seed residues.


Asunto(s)
Flavonas/química , Glicósidos/química , Hippophae/química , 1-Butanol/química , Distribución en Contracorriente/métodos , Flavonas/aislamiento & purificación , Glicósidos/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Estructura Molecular , Semillas/química , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...