Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioinspir Biomim ; 19(3)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38579732

RESUMEN

In the field of robotic hands, finger force coordination is usually achieved by complex mechanical structures and control systems. This study presents the design of a novel transmission system inspired from the physiological concept of force synergies, aiming to simplify the control of multifingered robotic hands. To this end, we collected human finger force data during six isometric grasping tasks, and force synergies (i.e. the synergy weightings and the corresponding activation coefficients) were extracted from the concatenated force data to explore their potential for force modulation. We then implemented two force synergies with a cable-driven transmission mechanism consisting of two spring-loaded sliders and five V-shaped bars. Specifically, we used fixed synergy weightings to determine the stiffness of the compression springs, and the displacements of sliders were determined by time-varying activation coefficients. The derived transmission system was then used to drive a five-finger robotic hand named SYN hand. We also designed a motion encoder to selectively activate desired fingers, making it possible for two motors to empower a variety of hand postures. Experiments on the prototype demonstrate successful grasp of a wide range of objects in everyday life, and the finger force distribution of SYN hand can approximate that of human hand during six typical tasks. To our best knowledge, this study shows the first attempt to mechanically implement force synergies for finger force modulation in a robotic hand. In comparison to state-of-the-art robotic hands with similar functionality, the proposed hand can distribute humanlike force ratios on the fingers by simple position control, rather than resorting to additional force sensors or complex control strategies. The outcome of this study may provide alternatives for the design of novel anthropomorphic robotic hands, and thus show application prospects in the field of hand prostheses and exoskeletons.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Humanos , Mano/fisiología , Dedos/fisiología , Fuerza de la Mano
2.
Biomimetics (Basel) ; 9(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38534827

RESUMEN

Gripping, holding, and moving objects are among the main functional purposes of robots. Ever since automation first took hold in society, optimizing these functions has been of high priority, and a multitude of approaches has been taken to enable cheaper, more reliable, and more versatile gripping. Attempts are ongoing to reduce grippers' weight, energy consumption, and production and maintenance costs while simultaneously improving their reliability, the range of eligible objects, working loads, and environmental independence. While the upper bounds of precision and flexibility have been pushed to an impressive level, the corresponding solutions are often dependent on support systems (e.g., sophisticated sensors and complex actuation machinery), advanced control paradigms (e.g., artificial intelligence and machine learning), and typically require more maintenance owed to their complexity, also increasing their cost. These factors make them unsuited for more modest applications, where moderate to semi-high performance is desired, but simplicity is required. In this paper, we attempt to highlight the potential of the tarsal chain principle on the example of a prototype biomimetic gripping device called the TriTrap gripper, inspired by the eponymous tarsal chain of insects. Insects possess a rigid exoskeleton that receives mobility due to several joints and internally attaching muscles. The tarsus (foot) itself does not contain any major intrinsic muscles but is moved by an extrinsically pulled tendon. Just like its biological counterpart, the TriTrap gripping device utilizes strongly underactuated digits that perform their function using morphological encoding and passive conformation, resulting in a gripper that is versatile, robust, and low cost. Its gripping performance was tested on a variety of everyday objects, each of which represented different size, weight, and shape categories. The TriTrap gripper was able to securely hold most of the tested objects in place while they were lifted, rotated, and transported without further optimization. These results show that the insect tarsus selected approach is viable and warrants further development, particularly in the direction of interface optimization. As such, the main goal of the TriTrap gripper, which was to showcase the tarsal chain principle as a viable approach to gripping in general, was achieved.

3.
Front Robot AI ; 10: 1234835, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810203

RESUMEN

This paper presents an in-pipe robot with three underactuated parallelogram crawler modules, which can automatically shift its body shape when encountering obstacles. The shape-shifting movement is achieved by only a single actuator through a simple differential mechanism by only combining a pair of spur gears. It can lead to downsizing, cost reduction, and simplification of control for adaptation to obstacles. The parallelogram shape does not change the total belt circumference length, thus, a new mechanism to maintain the belt tension is not necessary. Moreover, the proposed crawler can form the anterior-posterior symmetric parallelogram relative to the moving direction, which generates high adaptability in both forward and backward directions. However, whether the locomotion or shape-shifting is driven depends on the gear ratio of the differential mechanism because their movements are only switched mechanically. Therefore, to clarify the requirements of the gear ratio for the passive adaptation, two outputs of each crawler mechanism (torques of the flippers and front pulley) are quasi-statically analyzed, and how the environmental and design parameters influence the robot performance are verified by real experiments. From the experiments, although the robot could not adapt to the stepped pipe in vertical section, it successfully shifted its crawler's shape to parallelogram in horizontal section only with our simulated output ratio.

4.
Biomimetics (Basel) ; 7(4)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36546933

RESUMEN

The advent of 3D printing technologies has enabled the development of low-cost prosthetic underactuated hands, with cables working as tendons for flexion. Despite the particular relevance to human grasp, its conception in prosthetics is based on vague intuitions of the designers due to the lack of studies on its relevance to the functionality and performance of the device. In this work, some criteria for designers are provided regarding the carpometacarpal joint of the thumb in these devices. To this end, we studied four prosthetic hands of similar characteristics with the motion of abduction/adduction of the thumb resolved in three different ways: fixed at a certain abduction, coupled with the motion of flexion/extension, and actuated independently of the flexion/extension. The functionality and performance of the hands were assessed for the basic grasps using the Anthropomorphic Hand Assessment Protocol (AHAP) and a reduced version of the Southampton Hand Assessment Procedure (SHAP). As a general rule, it seems desirable that thumb adduction/abduction is performed independently of flexion/extension, although this adds one degree of control. If having this additional degree of control is beyond debate, coupled flexion/extension and adduction/abduction should be avoided in favour of the thumb having a fixed slight palmar abduction.

5.
ISA Trans ; 131: 264-273, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35680451

RESUMEN

We deal with the linear controllability of two underactuated multi-link robotic systems in this paper. First, for a general n-link inverted pendulum mounted on a cart in a vertical plane, we prove that it is linearly controllable around the equilibrium point with the cart in a desired position and each link of the pendulum in the upright position regardless of its physical parameters, if and only if the cart is actuated. Second, for an n-link underactuated planar robot with its first joint mounted on a fixed base in a horizontal plane, we prove that it is linearly controllable around the trajectory where each link of the robot stretches straight out and rotates with a constant angular velocity, if and only if its first joint is actuated, regardless of its physical parameters and regardless of the actuation or underactuation of its rest joints. We illustrate the above results via a quintuple pendulum-cart system and a four-link planar gymnastic robot in literature. We give new insights into the linear controllability around an equilibrium point or a trajectory of underactuated robotic planar systems with multiple unactuated joints.

6.
Front Neurorobot ; 16: 815716, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35355833

RESUMEN

Hand prostheses should provide functional replacements of lost hands. Yet current prosthetic hands often are not intuitive to control and easy to use by amputees. Commercially available prostheses are usually controlled based on EMG signals triggered by the user to perform grasping tasks. Such EMG-based control requires long training and depends heavily on the robustness of the EMG signals. Our goal is to develop prosthetic hands with semi-autonomous grasping abilities that lead to more intuitive control by the user. In this paper, we present the development of prosthetic hands that enable such abilities as first results toward this goal. The developed prostheses provide intelligent mechatronics including adaptive actuation, multi-modal sensing and on-board computing resources to enable autonomous and intuitive control. The hands are scalable in size and based on an underactuated mechanism which allows the adaptation of grasps to the shape of arbitrary objects. They integrate a multi-modal sensor system including a camera and in the newest version a distance sensor and IMU. A resource-aware embedded system for in-hand processing of sensory data and control is included in the palm of each hand. We describe the design of the new version of the hands, the female hand prosthesis with a weight of 377 g, a grasping force of 40.5 N and closing time of 0.73 s. We evaluate the mechatronics of the hand, its grasping abilities based on the YCB Gripper Assessment Protocol as well as a task-oriented protocol for assessing the hand performance in activities of daily living. Further, we exemplarily show the suitability of the multi-modal sensor system for sensory-based, semi-autonomous grasping in daily life activities. The evaluation demonstrates the merit of the hand concept, its sensor and in-hand computing systems.

7.
Front Robot AI ; 8: 631242, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33693032

RESUMEN

This paper proposes an underactuated grippers mechanism that grasps and pulls in different types of objects. These two movements are generated by only a single actuator while two independent actuators are used in conventional grippers. To demonstrate this principle, we have developed two kinds of gripper by different driving systems: one is driven by a DC motor with planetary gear reducers and another is driven by pneumatic actuators with branch tubes as a differential. Each pulling-in mechanism in the former one and the latter one is achieved by a belt-driven finger surface and a linear slider with an air cylinder, respectively. The motor-driven gripper with planetary gear reducers can pull-up the object after grasping. However, the object tends to fall when placing because it opens the finger before pushing out the object during the reversed movement. In addition, the closing speed and the picking-up speed of the fingers are slow due to the high reduction gear. To solve these drawbacks, a new pneumatic gripper by combining three valves, a speed control valve, a relief valve, and non-return valves, is proposed. The proposed pneumatic gripper is superior in the sense that it can perform pulling-up after grasping the object and opening the fingers after pushing-out the object. In the present paper, a design methodology of the different underactuated grippers that can not only grasp but also pull up objects is discussed. Then, to examine the performance of the grippers, experiments were conducted using various objects with different rigidity, shapes, size, and mass, which may be potentially available in real applications.

8.
Soft Robot ; 8(5): 594-610, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33337925

RESUMEN

Bringing tactile sensation to robotic hands will allow for more effective grasping, along with a wide range of benefits of human-like touch. Here, we present a three-dimensional-printed, three-fingered tactile robot hand comprising an OpenHand ModelO customized to house a TacTip soft biomimetic tactile sensor in the distal phalanx of each finger. We expect that combining the grasping capabilities of this underactuated hand with sophisticated tactile sensing will result in an effective platform for robot hand research-the Tactile Model O (T-MO). The design uses three JeVois machine vision systems, with each comprising a miniature camera in the tactile fingertip with a processing module in the base of the hand. To evaluate the capabilities of the T-MO, we benchmark its grasping performance by using the Gripper Assessment Benchmark on the Yale-CMU-Berkeley object set. Tactile sensing capabilities are evaluated by performing tactile object classification on 26 objects and predicting whether a grasp will successfully lift each object. Results are consistent with the state of the art, taking advantage of advances in deep learning applied to tactile image outputs. Overall, this work demonstrates that the T-MO is an effective platform for robot hand research and we expect it to open up a range of applications in autonomous object handling.


Asunto(s)
Robótica , Tacto , Dedos , Mano , Humanos , Impresión Tridimensional
9.
Soft Robot ; 7(3): 362-369, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31851862

RESUMEN

Soft robots leverage deformable bodies to achieve different types of locomotion, improve transportability, and safely navigate cluttered environments. In this context, variable-stiffness structures provide soft robots with additional properties, such as the ability to increase forces transmitted to the environment, to lock into different body configurations, and to reduce the number of actuators required for morphological change. Tensegrity structures have been recently proposed as a biologically inspired design principle for soft robots. However, the few examples of tensegrity structures with variable stiffness displayed relatively small stiffness change (i.e., by a factor of 3) or resorted to multiple and bulky actuators. In this article, we describe a novel design approach to variable-stiffness tensegrity structures (VSTSs) that relies on the use of variable-stiffness cables (VSCs). As an example, we describe the design and implementation of a three-strut tensegrity structure with VSCs made of low melting point alloys. The resulting VSTS displays unprecedented stiffness changes by a factor of 28 in compression and 13 in bending. We show the capabilities of the proposed VSTS in three validation scenarios with different tensegrity architectures: (1) a beam with tunable load-bearing capability, (2) a structure that can self-deploy and lock its shape in both deployed and undeployed states, and (3) a joint with underactuated shape deformations.


Asunto(s)
Robótica , Locomoción , Robótica/métodos
10.
Front Neurorobot ; 13: 39, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275129

RESUMEN

The size, weight, and power consumption of soft wearable robots rapidly scale with their number of active degrees of freedom. While various underactuation strategies have been proposed, most of them impose hard constrains on the kinetics and kinematics of the device. Here we propose a paradigm to independently control multiple degrees of freedom using a set of modular components, all tapping power from a single motor. Each module consists of three electromagnetic clutches, controlled to convert a constant unidirectional motion in an arbitrary output trajectory. We detail the design and functioning principle of each module and propose an approach to control the velocity and position of its output. The device is characterized in free space and under loading conditions. Finally, we test the performance of the proposed actuation scheme to drive a soft exosuit for the elbow joint, comparing it with the performance obtained using a traditional DC motor and an unpowered-exosuit condition. The exosuit powered by our novel scheme reduces the biological torque required to move by an average of 46.2%, compared to the unpowered condition, but negatively affects movement smoothness. When compared to a DC motor, using the our paradigm slightly deteriorates performance. Despite the technical limitations of the current design, the method proposed in this paper is a promising way to design more portable wearable robots.

11.
Front Robot AI ; 6: 23, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33501039

RESUMEN

Inspired by nature, soft robotics aims at enhancing robots capabilities through the use of soft materials. This article presents the study of soft continuum robots which can change their dynamic behavior thanks to a proper design of their damping properties. It enables an under-actuated dynamic strategy to control multi-chamber pneumatic systems using a reduced number of feeding lines. The present work starts from the conceptual investigation of a way to tune the damping properties of soft continuum robots, and leverages on the introduction of viscous fluid within the soft chamber wall to produce dissipative actions. Several solutions are analyzed in simulations and the most promising one is tested experimentally. The proposed approach employs a layer of granular material immersed in viscous silicone oil to increase the damping effect. After validation and experimental characterization, the method is employed to build soft continuum actuators with different deformation patterns, i.e., extending, contracting and bending. Experimental results show the dynamic behavior of the presented actuators. Finally, the work reports information on how the actuators are designed and builded, together with a discussion about possible applications and uses.

12.
Front Robot AI ; 6: 47, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33501063

RESUMEN

This paper presents an adaptive actuation mechanism that can be employed for the development of anthropomorphic, dexterous robot hands. The tendon-driven actuation mechanism achieves both flexion/extension and adduction/abduction on the finger's metacarpophalangeal joint using two actuators. Moment arm pulleys are employed to drive the tendon laterally and achieve a simultaneous execution of abduction and flexion motion. Particular emphasis has been given to the modeling and analysis of the actuation mechanism. More specifically, the analysis determines specific values for the design parameters for desired abduction angles. Also, a model for spatial motion is provided that relates the actuation modes with the finger motions. A static balance analysis is performed for the computation of the tendon force at each joint. A model is employed for the computation of the stiffness of the rotational flexure joints. The proposed mechanism has been designed and fabricated with the hybrid deposition manufacturing technique. The efficiency of the mechanism has been validated with experiments that include the assessment of the role of friction, the computation of the reachable workspace, the assessment of the force exertion capabilities, the demonstration of the feasible motions, and the evaluation of the grasping and manipulation capabilities. An anthropomorphic robot hand equipped with the proposed actuation mechanism was also fabricated to evaluate its performance. The proposed mechanism facilitates the collaboration of actuators to increase the exerted forces, improving hand dexterity and allowing the execution of dexterous manipulation tasks.

13.
Front Robot AI ; 5: 89, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-33500968

RESUMEN

This work presents a bio-inspired grasp stiffness control for robotic hands based on the concepts of Common Mode Stiffness (CMS) and Configuration Dependent Stiffness (CDS). Using an ellipsoid representation of the desired grasp stiffness, the algorithm focuses on achieving its geometrical features. Based on preliminary knowledge of the fingers workspace, the method starts by exploring the possible hand poses that maintain the grasp contacts on the object. This outputs a first selection of feasible grasp configurations providing the base for the CDS control. Then, an optimization is performed to find the minimum joint stiffness (CMS control) that would stabilize these grasps. This joint stiffness can be increased afterwards depending on the task requirements. The algorithm finally chooses among all the found stable configurations the one that results in a better approximation of the desired grasp stiffness geometry (CDS). The proposed method results in a reduction of the control complexity, needing to independently regulate the joint positions, but requiring only one input to produce the desired joint stiffness. Moreover, the usage of the fingers pose to attain the desired grasp stiffness results in a more energy-efficient configuration than only relying on the joint stiffness (i.e., joint torques) modifications. The control strategy is evaluated using the fully actuated Allegro Hand while grasping a wide variety of objects. Different desired grasp stiffness profiles are selected to exemplify several stiffness geometries.

14.
Med Eng Phys ; 48: 131-141, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28728864

RESUMEN

An anthropomorphic transhumeral robotic arm prosthesis is proposed in this study. It is capable of generating fifteen degrees-of-freedom, seven active and eight passive. In order to realize wrist motions, a parallel manipulator-based mechanism is proposed. It simulates the human anatomical structure and generates motions in two axes. The hand-of-arm prosthesis consists of under-actuated fingers with intrinsic actuation. The finger mechanism is capable of generating three degrees of freedom, and it exhibits the capability of adjusting the joint angles passively according to the geometry of the grasping object. Additionally, a parameter to evaluate finger mechanisms is introduced, and it measures the adoptability of a finger mechanism. In order to verify the mechanism's efficacy in terms of motion generation, motion simulation and kinematic analysis were carried out. Results demonstrated that the mechanisms are capable of generating the required motions.


Asunto(s)
Miembros Artificiales , Húmero , Diseño de Prótesis/métodos , Robótica , Humanos , Fenómenos Mecánicos , Movimiento (Física)
15.
Artículo en Inglés | MEDLINE | ID: mdl-28421179

RESUMEN

Endowing tele-manipulation frameworks with the capability to accommodate a variety of robotic hands is key to achieving high performances through permitting to flexibly interchange the end-effector according to the task considered. This requires the development of control policies that not only cope with asymmetric master-slave systems but also whose high-level components are designed in a unified space in abstraction from the devices specifics. To address this dual challenge, a novel synergy port is developed that resolves the kinematic, sensing, and actuation asymmetries of the considered system through generating motion and force feedback references in the hardware-independent hand postural synergy space. It builds upon the concept of the Cartesian-based synergy matrix, which is introduced as a tool mapping the fingertips Cartesian space to the directions oriented along the grasp principal components. To assess the effectiveness of the proposed approach, the synergy port has been integrated into the control system of a highly asymmetric tele-manipulation framework, in which the 3-finger hand exoskeleton HEXOTRAC is used as a master device to control the SoftHand, a robotic hand whose transmission system relies on a single motor to drive all joints along a soft synergistic path. The platform is further enriched with the vision-based motion capture system Optitrack to monitor the 6D trajectory of the user's wrist, which is used to control the robotic arm on which the SoftHand is mounted. Experiments have been conducted with the humanoid robot COMAN and the KUKA LWR robotic manipulator. Results indicate that this bilateral interface is highly intuitive and allows users with no prior experience to reach, grasp, and transport a variety of objects exhibiting very different shapes and impedances. In addition, the hardware and control solutions proved capable of accommodating users with different hand kinematics. Finally, the proposed control framework offers a universal, flexible, and intuitive interface allowing for the performance of effective tele-manipulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...