Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(7): 114428, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38996073

RESUMEN

To achieve the functional polarization that underlies brain computation, neurons sort protein material into distinct compartments. Ion channel composition, for example, differs between axons and dendrites, but the molecular determinants for their polarized trafficking remain obscure. Here, we identify mechanisms that target voltage-gated Ca2+ channels (CaVs) to distinct subcellular compartments. In hippocampal neurons, CaV2s trigger neurotransmitter release at the presynaptic active zone, and CaV1s localize somatodendritically. After knockout of all three CaV2s, expression of CaV2.1, but not CaV1.3, restores neurotransmitter release. We find that chimeric CaV1.3s with CaV2.1 intracellular C-termini localize to the active zone, mediate synaptic vesicle exocytosis, and render release sensitive to CaV1 blockers. This dominant targeting function of the CaV2.1 C-terminus requires the first EF hand in its proximal segment, and replacement of the CaV2.1 C-terminus with that of CaV1.3 abolishes CaV2.1 active zone localization and function. We conclude that CaV intracellular C-termini mediate compartment-specific targeting.


Asunto(s)
Hipocampo , Animales , Hipocampo/metabolismo , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio/metabolismo , Canales de Calcio Tipo N/metabolismo , Canales de Calcio Tipo N/genética , Neuronas/metabolismo , Humanos , Ratones , Ratas , Vesículas Sinápticas/metabolismo , Exocitosis , Células HEK293
2.
J Ethnopharmacol ; 328: 117855, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38346524

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tea (Camellia sinensis) is a favorite drink worldwide. Tea extracts and green tea main component (-)-epigallocatechin gallate (EGCG) are recommended for various vascular diseases. Anji white tea is a very popular green tea. Its vascular effect profile, the mechanisms, and the contribution of EGCG to its integrated effect need elucidation. AIM: To characterize the vasomotion effects of Anji white tea and EGCG, and to explore possible involvement of voltage-gated Ca2+ channels (VGCCs) and voltage-gated K+ (Kv) channels in their vasomotion effects. MATERIALS AND METHODS: Anji white tea water soaking solution (AJWT) was prepared as daily tea-making process and concentrated to a concentration amounting to 200 mg/ml of dry tea leaves. The tension of rat arteries including aorta, coronary artery (RCA), cerebral basilar artery (CBA), intrarenal artery (IRA), intrapulmonary artery (IPA) and mesenteric artery (MA) was recorded with myographs. In arterial smooth muscle cells (ASMCs) freshly isolated from RCA, the levels of intracellular Ca2+ were measured with Ca2+-sensitive fluorescent probe fluo 4-AM, and Kv currents were recorded with patch clamp. The expressions of VGCCs and Kv channels were assayed with RT-qPCR and immunofluorescence staining. RESULTS: At 0.4-12.8 mg/ml of dry tea leaves, AJWT profoundly relaxed all tested arteries precontracted with various vasoconstrictors about half with a small transient potentiation on the precontractions before the relaxation. KCl-induced precontraction was less sensitive than precontractions induced by phenylephrine (PE), U46619 and serotonin (5-HT). IPA was less sensitive to the relaxation compared with other arteries. AJWT pretreatment for 1 h, 24 h and 72 h time-dependently inhibited the contractile responses of RCAs. In sharp contrast, at equivalent concentrations according to its content in AJWT, EGCG intensified the precontractions in most small arteries, except that it induced relaxation in PE-precontracted aorta and MA, U46619-precontracted aorta and CBA. EGCG pretreatment for 1 h and 24 h did not significantly affect RCA contractile responses. In RCA ASMCs, AJWT reduced, while EGCG enhanced, intracellular Ca2+ elevation induced by depolarization which activates VGCCs. Patch clamp study showed that both AJWT and EGCG reduced Kv currents. RT-qPCR and immunofluorescence staining demonstrated that both AJWT and EGCG reduced the expressions of VGCCs and Kv channels. CONCLUSION: AJWT, but not EGCG, consistently induces vasorelaxation. The vasomotion effects of either AJWT or EGCG vary with arterial beds and vasoconstrictors. Modulation of VGCCs, but not Kv channels, contributes to AJWT-induced vasorelaxation. It is suggested that Anji white tea water extract instead of EGCG may be a promising food supplement for vasospastic diseases.


Asunto(s)
Catequina/análogos & derivados , Miocitos del Músculo Liso , , Ratas , Animales , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Vasodilatación , Vasos Coronarios , Arterias Mesentéricas , Vasoconstrictores/farmacología , Agua/farmacología
3.
Adv Neurobiol ; 33: 171-202, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37615867

RESUMEN

Voltage-gated calcium channels (VGCCs), especially Cav2.1 and Cav2.2, are the major mediators of Ca2+ influx at the presynaptic membrane in response to neuron excitation, thereby exerting a predominant control on synaptic transmission. To guarantee the timely and precise release of neurotransmitters at synapses, the activity of presynaptic VGCCs is tightly regulated by a variety of factors, including auxiliary subunits, membrane potential, G protein-coupled receptors (GPCRs), calmodulin (CaM), Ca2+-binding proteins (CaBP), protein kinases, various interacting proteins, alternative splicing events, and genetic variations.


Asunto(s)
Canales de Calcio , Sinapsis , Humanos , Transmisión Sináptica
4.
J Mol Cell Cardiol ; 180: 10-21, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37120927

RESUMEN

Ca2+ dependent facilitation (CDF) and frequency dependent acceleration of relaxation (FDAR) are regulatory mechanisms that potentiate cardiomyocyte Ca2+ channel function and increase the rate of Ca2+ sequestration following a Ca2+-release event, respectively, when depolarization frequency increases. CDF and FDAR likely evolved to maintain EC coupling at increased heart rates. Ca2+/calmodulin-dependent kinase II (CaMKII) was shown to be indispensable to both; however, the mechanisms remain to be completely elucidated. CaMKII activity can be modulated by post-translational modifications but if and how these modifications impact CDF and FDAR is unknown. Intracellular O-linked glycosylation (O-GlcNAcylation) is a post-translational modification that acts as a signaling molecule and metabolic sensor. In hyperglycemic conditions, CaMKII was shown to be O-GlcNAcylated resulting in pathologic activity. Here we sought to investigate whether O-GlcNAcylation impacts CDF and FDAR through modulation of CaMKII activity in a pseudo-physiologic setting. Using voltage-clamp and Ca2+ photometry we show that cardiomyocyte CDF and FDAR are significantly diminished in conditions of reduced O-GlcNAcylation. Immunoblot showed that CaMKIIδ and calmodulin expression are increased but the autophosphorylation of CaMKIIδ and the muscle cell-specific CaMKIIß isoform are reduced by 75% or more when O-GlcNAcylation is inhibited. We also show that the enzyme responsible for O-GlcNAcylation (OGT) can likely be localized in the dyad space and/or at the cardiac sarcoplasmic reticulum and is precipitated by calmodulin in a Ca2+ dependent manner. These findings will have important implications for our understanding of how CaMKII and OGT interact to impact cardiomyocyte EC coupling in normal physiologic settings as well as in disease states where CaMKII and OGT may be aberrantly regulated.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calmodulina/metabolismo , Retículo Sarcoplasmático/metabolismo , Aceleración , Calcio/metabolismo
5.
Biochem Biophys Rep ; 34: 101468, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37102121

RESUMEN

Linalool, an essential oil component of lavender is commonly used in fragrances. It is known that linalool has anxiolytic, sedative, and analgesic actions. However, the mechanism of its analgesic action has not yet been fully clarified. Pain signals elicited by the activation of nociceptors on peripheral neurons are transmitted to the central nervous system. In the present study, we investigated the effects of linalool on transient receptor potential (TRP) channels and voltage-gated channels, both of which are important for pain signaling via nociceptors in somatosensory neurons. For detection of channel activity, the intracellular Ca2+ concentration ([Ca2+]i) was measured using a Ca2+-imaging system, and membrane currents were recorded using the whole-cell patch-clamp technique. Analgesic actions were also examined in vivo. In mouse sensory neurons linalool at concentrations that did not induce [Ca2+]i increases did not affect [Ca2+]i responses to capsaicin and acids, TRPV1 agonists, but suppressed those induced by allyl isothiocyanate (AITC) and carvacrol, TRPA1 agonists. Similar inhibitory effects of linalool were observed in cells that heterologously expressed TRPA1. Linalool attenuated the [Ca2+]i increases induced by KCl and voltage-gated Ca2+ currents but only slightly suppressed voltage-gated Na+currents in mouse sensory neurons. Linalool diminished TRPA1-mediated nociceptive behaviors. The present data suggest that linalool exerts an analgesic action via the suppression of nociceptive TRPA1 and voltage-gated Ca2+ channels.

6.
J Biol Chem ; 299(1): 102777, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496072

RESUMEN

Long QT syndrome (LQTS) is a human inherited heart condition that can cause life-threatening arrhythmia including sudden cardiac death. Mutations in the ubiquitous Ca2+-sensing protein calmodulin (CaM) are associated with LQTS, but the molecular mechanism by which these mutations lead to irregular heartbeats is not fully understood. Here, we use a multidisciplinary approach including protein biophysics, structural biology, confocal imaging, and patch-clamp electrophysiology to determine the effect of the disease-associated CaM mutation E140G on CaM structure and function. We present novel data showing that mutant-regulated CaMKIIδ kinase activity is impaired with a significant reduction in enzyme autophosphorylation rate. We report the first high-resolution crystal structure of a LQTS-associated CaM variant in complex with the CaMKIIδ peptide, which shows significant structural differences, compared to the WT complex. Furthermore, we demonstrate that the E140G mutation significantly disrupted Cav1.2 Ca2+/CaM-dependent inactivation, while cardiac ryanodine receptor (RyR2) activity remained unaffected. In addition, we show that the LQTS-associated mutation alters CaM's Ca2+-binding characteristics, secondary structure content, and interaction with key partners involved in excitation-contraction coupling (CaMKIIδ, Cav1.2, RyR2). In conclusion, LQTS-associated CaM mutation E140G severely impacts the structure-function relationship of CaM and its regulation of CaMKIIδ and Cav1.2. This provides a crucial insight into the molecular factors contributing to CaM-mediated arrhythmias with a central role for CaMKIIδ.


Asunto(s)
Canales de Calcio Tipo L , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Calmodulina , Síndrome de QT Prolongado , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Síndrome de QT Prolongado/genética , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Mutación , Estructura Secundaria de Proteína/genética , Unión Proteica/genética , Cristalografía
7.
Curr Top Membr ; 90: 95-121, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36368876

RESUMEN

Ischemic heart disease due to macrovascular atherosclerosis and microvascular dysfunction is the major cause of death worldwide and the unabated increase in metabolic syndrome is a major reason why this will continue. Intracellular free Ca2+ ([Ca2+]i) regulates a variety of cellular functions including contraction, proliferation, migration, and transcription. It follows that studies of vascular Ca2+ regulation in reductionist models and translational animal models are vital to understanding vascular health and disease. Swine with metabolic syndrome (MetS) develop the full range of coronary atherosclerosis from mild to severe disease. Intravascular imaging enables quantitative measurement of atherosclerosis in vivo, so viable coronary smooth muscle (CSM) cells can be dispersed from the arteries to enable Ca2+ transport studies in native cells. Transition of CSM from the contractile phenotype in the healthy swine to the proliferative phenotype in mild atherosclerosis was associated with increases in SERCA activity, sarcoplasmic reticulum Ca2+, and voltage-gated Ca2+ channel function. In vitro organ culture confirmed that SERCA activation induces CSM proliferation. Transition from the proliferative to a more osteogenic phenotype was associated with decreases in all three Ca2+ transporters. Overall, there was a biphasic change in Ca2+ transporters over the progression of atherosclerosis in the swine model and this was confirmed in CSM from failing explanted hearts of humans. A major determinant of endolysosome content in human CSM is the severity of atherosclerosis. In swine CSM endolysosome Ca2+ release occurred through the TPC2 channel. We propose a multiphasic change in Ca2+ transporters over the progression of coronary atherosclerosis.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Síndrome Metabólico , Porcinos , Humanos , Animales , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/metabolismo , Calcio/metabolismo , Músculo Liso/metabolismo , Aterosclerosis/complicaciones
8.
Elife ; 112022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36374183

RESUMEN

High-voltage-activated Ca2+ (CaV) channels that adjust Ca2+ influx upon membrane depolarization are differentially regulated by phosphatidylinositol 4,5-bisphosphate (PIP2) in an auxiliary CaV ß subunit-dependent manner. However, the molecular mechanism by which the ß subunits control the PIP2 sensitivity of CaV channels remains unclear. By engineering various α1B and ß constructs in tsA-201 cells, we reported that at least two PIP2-binding sites, including the polybasic residues at the C-terminal end of I-II loop and the binding pocket in S4II domain, exist in the CaV2.2 channels. Moreover, they were distinctly engaged in the regulation of channel gating depending on the coupled CaV ß2 subunits. The membrane-anchored ß subunit abolished the PIP2 interaction of the phospholipid-binding site in the I-II loop, leading to lower PIP2 sensitivity of CaV2.2 channels. By contrast, PIP2 interacted with the basic residues in the S4II domain of CaV2.2 channels regardless of ß2 isotype. Our data demonstrated that the anchoring properties of CaV ß2 subunits to the plasma membrane determine the biophysical states of CaV2.2 channels by regulating PIP2 coupling to the nonspecific phospholipid-binding site in the I-II loop.


Asunto(s)
Canales de Calcio Tipo N , Fosfatidilinositoles , Canales de Calcio Tipo N/genética , Canales de Calcio Tipo N/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositoles/metabolismo , Sitios de Unión
9.
Proc Natl Acad Sci U S A ; 119(19): e2201136119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35507876

RESUMEN

The skeletal muscle dihydropyridine receptor (DHPR) ß1a subunit is indispensable for full trafficking of DHPRs into triadic junctions (i.e., the close apposition of transverse tubules and sarcoplasmic reticulum [SR]), facilitation of DHPRα1S voltage sensing, and arrangement of DHPRs into tetrads as a consequence of their interaction with ryanodine receptor (RyR1) homotetramers. These three features are obligatory for skeletal muscle excitation­contraction (EC) coupling. Previously, we showed that all four vertebrate ß isoforms (ß1­ß4) facilitate α1S triad targeting and, except for ß3, fully enable DHPRα1S voltage sensing [Dayal et al., Proc. Natl. Acad. Sci. U.S.A. 110, 7488­7493 (2013)]. Consequently, ß3 failed to restore EC coupling despite the fact that both ß3 and ß1a restore tetrads. Thus, all ß-subunits are able to restore triad targeting, but only ß1a restores both tetrads and proper DHPR­RyR1 coupling [Dayal et al., Proc. Natl. Acad. Sci. U.S.A. 110, 7488­7493 (2013)]. To investigate the molecular region(s) of ß1a responsible for the tetradic arrangement of DHPRs and thus DHPR­RyR1 coupling, we expressed loss- and gain-of-function chimeras between ß1a and ß4, with systematically swapped domains in zebrafish strain relaxed (ß1-null) for patch clamp, cytoplasmic Ca2+ transients, motility, and freeze-fracture electron microscopy. ß1a/ß4 chimeras with either N terminus, SH3, HOOK, or GK domain derived from ß4 showed complete restoration of SR Ca2+ release. However, chimera ß1a/ß4(C) with ß4 C terminus produced significantly reduced cytoplasmic Ca2+ transients. Conversely, gain-of-function chimera ß4/ß1a(C) with ß1a C terminus completely restored cytoplasmic Ca2+ transients, DHPR tetrads, and motility. Furthermore, we found that the nonconserved, distal C terminus of ß1a plays a pivotal role in reconstitution of DHPR tetrads and thus allosteric DHPR­RyR1 interaction, essential for skeletal muscle EC coupling.


Asunto(s)
Canales de Calcio Tipo L , Fibras Musculares Esqueléticas , Canal Liberador de Calcio Receptor de Rianodina , Proteínas Adaptadoras Transductoras de Señales , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Acoplamiento Excitación-Contracción , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
10.
Curr Top Behav Neurosci ; 52: 39-79, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-32808092

RESUMEN

γ-Aminobutyric acid B receptors (GABABRs) are broadly expressed throughout the central nervous system where they play an important role in regulating neuronal excitability and synaptic transmission. GABABRs are G protein-coupled receptors that mediate slow and sustained inhibitory actions via modulation of several downstream effector enzymes and ion channels. GABABRs are obligate heterodimers that associate with diverse arrays of proteins to form modular complexes that carry out distinct physiological functions. GABABR-dependent signaling is fine-tuned and regulated through a multitude of mechanisms that are relevant to physiological and pathophysiological states. This review summarizes the current knowledge on GABABR signal transduction and discusses key factors that influence the strength and sensitivity of GABABR-dependent signaling in neurons.


Asunto(s)
Receptores de GABA-B , Transducción de Señal , Neuronas , Receptores de GABA , Ácido gamma-Aminobutírico
11.
Food Chem ; 376: 131923, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34968905

RESUMEN

Seven new (1-4, 6-8) diterpenoids with rare skeletons and seven known ones (9, 12, 17, 18 and 23-25) were isolated from roasted beans of Coffea arabica L. Together with previously obtained diterpenoids, a total of 26 molecules (1-25, 4a) were evaluated their activities on Cav3.1 low voltage-gated Ca2+ channel. Compounds 1, 3, 6, 7, 12, 13, 17, 19 and 24 exhibited noticeable Cav3.1 inhibitions (41.2%-96.1%) at 10 µM. The IC50 values of 1, 6, 7, 12, 13, 17 and 24 are 2.9, 2.3, 0.68, 14.8, 11.6, 6.1 and 6.8 µM, respectively. The ring moiety at C-18 and C-19, and esterification of OH-17 with long-chain fatty acids seem important for their activities. Further studies indicated that 1 and cafestol may act on different binding sits with the Cav3.1 blocker Z944, which is in clinical trial. Significantly, the present study initially shows that coffee diterpenoids are potential natural resources for Cav3.1 inhibitors.

12.
Biomolecules ; 11(7)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34356653

RESUMEN

Rosmarinic acid, a major component of rosemary, is a polyphenolic compound with potential neuroprotective effects. Asreducing the synaptic release of glutamate is crucial to achieving neuroprotectant's pharmacotherapeutic effects, the effect of rosmarinic acid on glutamate release was investigated in rat cerebrocortical nerve terminals (synaptosomes). Rosmarinic acid depressed the 4-aminopyridine (4-AP)-induced glutamate release in a concentration-dependent manner. The removal of extracellular calcium and the blockade of vesicular transporters prevented the inhibition of glutamate release by rosmarinic acid. Rosmarinic acid reduced 4-AP-induced intrasynaptosomal Ca2+ elevation. The inhibition of N-, P/Q-type Ca2+ channels and the calcium/calmodulin-dependent kinase II (CaMKII) prevented rosmarinic acid from having effects on glutamate release. Rosmarinic acid also reduced the 4-AP-induced activation of CaMKII and the subsequent phosphorylation of synapsin I, the main presynaptic target of CaMKII. In addition, immunocytochemistry confirmed the presence of GABAA receptors. GABAA receptor agonist and antagonist blocked the inhibitory effect of rosmarinic acid on 4-AP-evoked glutamate release. Docking data also revealed that rosmarinic acid formed a hydrogen bond with the amino acid residues of GABAA receptor. These results suggested that rosmarinic acid activates GABAA receptors in cerebrocortical synaptosomes to decrease Ca2+ influx and CaMKII/synapsin I pathway to inhibit the evoked glutamate release.


Asunto(s)
Cinamatos/farmacología , Depsidos/farmacología , Ácido Glutámico/metabolismo , Sinaptosomas/efectos de los fármacos , 4-Aminopiridina/farmacología , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Cinamatos/química , Depsidos/química , Agonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/farmacología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Ratas Sprague-Dawley , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Sinaptosomas/metabolismo , Ácido Rosmarínico
13.
Expert Opin Pharmacother ; 22(17): 2311-2322, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34431423

RESUMEN

INTRODUCTION: Neuropathic pain (NeP) is a chronic and refractory condition in many patients, and its treatment is a challenge for physicians. A new voltage-gated Ca2+ channel α2δ ligand, mirogabalin, has a high specific binding affinity for the α2δ subunit, with a slower dissociation rate for α2δ-1 than α2δ-2 compared to that of pregabalin. Mirogabalin was shown to be effective in NeP animal models, with a margin of safety between central nervous system side effects and the analgesic effect of the dose. It exerted a favorable analgesic effect, was well tolerated in patients with peripheral NeP (P-NeP), and was first approved in Japan in 2019 and subsequently in Korea and Taiwan in 2020. AREAS COVERED: The purpose of this article is to review the pharmacological characteristics, pharmacokinetics, and efficacy and safety of mirogabalin for NeP based on the results of non-clinical and clinical studies. EXPERT OPINION: Although there are several first-line therapies for NeP, insufficient efficacy and adverse drug reactions of NeP drugs often cause patient dissatisfaction. Mirogabalin was effective and well tolerated with a step-wise dose increase in clinical studies on P-NeP patients. Thus, mirogabalin is expected to be a useful treatment option for patients with P-NeP.


Asunto(s)
Compuestos Bicíclicos con Puentes , Neuralgia , Animales , Humanos , Ligandos , Neuralgia/tratamiento farmacológico , Pregabalina/uso terapéutico
14.
Elife ; 102021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34061024

RESUMEN

Skeletal muscle excitation-contraction (EC) coupling roots in Ca2+-influx-independent inter-channel signaling between the sarcolemmal dihydropyridine receptor (DHPR) and the ryanodine receptor (RyR1) in the sarcoplasmic reticulum. Although DHPR Ca2+ influx is irrelevant for EC coupling, its putative role in other muscle-physiological and developmental pathways was recently examined using two distinct genetically engineered mouse models carrying Ca2+ non-conducting DHPRs: DHPR(N617D) (Dayal et al., 2017) and DHPR(E1014K) (Lee et al., 2015). Surprisingly, despite complete block of DHPR Ca2+-conductance, histological, biochemical, and physiological results obtained from these two models were contradictory. Here, we characterize the permeability and selectivity properties and henceforth the mechanism of Ca2+ non-conductance of DHPR(N617). Our results reveal that only mutant DHPR(N617D) with atypical high-affinity Ca2+ pore-binding is tight for physiologically relevant monovalent cations like Na+ and K+. Consequently, we propose a molecular model of cooperativity between two ion selectivity rings formed by negatively charged residues in the DHPR pore region.


Asunto(s)
Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Calcio/metabolismo , Músculo Esquelético/metabolismo , Mutación Puntual , Animales , Células Cultivadas , Acoplamiento Excitación-Contracción , Ratones Transgénicos , Simulación de Dinámica Molecular , Permeabilidad , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
15.
J Exp Biol ; 224(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33944932

RESUMEN

Calcium ions (Ca2+) entering cilia through the ciliary voltage-gated calcium channels (CaV) during the action potential causes reversal of the ciliary power stroke and backward swimming in Paramecium tetraurelia. How calcium is returned to the resting level is not yet clear. Our focus is on calcium pumps as a possible mechanism. There are 23 P. tetraurelia genes for calcium pumps that are members of the family of plasma membrane Ca2+ ATPases (PMCAs). They have domains homologous to those found in mammalian PMCAs. Of the 13 pump proteins previously identified in cilia, ptPMCA2a and ptPMCA2b are most abundant in the cilia. We used RNAi to examine which PMCA might be involved in regulating intraciliary Ca2+ after the action potential. RNAi for only ptPMCA2a and ptPMCA2b causes cells to significantly prolong their backward swimming, which indicates that Ca2+ extrusion in the cilia is impaired when these PMCAs are depleted. We used immunoprecipitations (IP) to find that ptPMCA2a and ptPMCA2b are co-immunoprecipitated with the CaV channel α1 subunits that are found only in the cilia. We used iodixanol (OptiPrep) density gradients to show that ptPMCA2a and ptPMCA2b and CaV1c are found in the same density fractions. These results suggest that ptPMCA2a and ptPMCA2b are located in the proximity of ciliary CaV channels.


Asunto(s)
Paramecium , Potenciales de Acción , Animales , Calcio/metabolismo , Canales de Calcio/genética , Cilios/metabolismo , Iones , Paramecium/genética , Paramecium/metabolismo
16.
Nat Prod Bioprospect ; 11(6): 671-678, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33893991

RESUMEN

Saldigones A-C (1, 3, 4), three new isoprenylated flavonoids with diverse flavanone, pterocarpan, and isoflavanone architectures, were characterized from the roots of Salvia digitaloides, together with a known isoprenylated flavanone (2). Notably, it's the first report of isoprenylated flavonoids from Salvia species. The structures of these isolates were elucidated by extensive spectroscopic analysis. All of the compounds were evaluated for their activities on Cav3.1 low voltage-gated Ca2+ channel (LVGCC), of which 2 strongly and dose-dependently inhibited Cav3.1 peak current.

17.
Explor Target Antitumor Ther ; 2(6): 543-575, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36046118

RESUMEN

Aim: To investigate alterations in transcription of genes, encoding Ca2+ toolkit proteins, in oesophageal adenocarcinoma (OAC) and to assess associations between gene expression, tumor grade, nodal-metastatic stage, and patient survival. Methods: The expression of 275 transcripts, encoding components of the Ca2+ toolkit, was analyzed in two OAC datasets: the Cancer Genome Atlas [via the University of Alabama Cancer (UALCAN) portal] and the oesophageal-cancer, clinical, and molecular stratification [Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS)] dataset. Effects of differential expression of these genes on patient survival were determined using Kaplan-Meier log-rank tests. OAC grade- and metastatic-stage status was investigated for a subset of genes. Adjustment for the multiplicity of testing was made throughout. Results: Of the 275 Ca2+-toolkit genes analyzed, 75 displayed consistent changes in expression between OAC and normal tissue in both datasets. The channel-encoding genes, N-methyl-D-aspartate receptor 2D (GRIN2D), transient receptor potential (TRP) ion channel classical or canonical 4 (TRPC4), and TRP ion channel melastatin 2 (TRPM2) demonstrated the greatest increase in expression in OAC in both datasets. Nine genes were consistently upregulated in both datasets and were also associated with improved survival outcomes. The 6 top-ranking genes for the weighted significance of altered expression and survival outcomes were selected for further analysis: voltage-gated Ca2+ channel subunit α 1D (CACNA1D), voltage-gated Ca2+ channel auxiliary subunit α2 δ4 (CACNA2D4), junctophilin 1 (JPH1), acid-sensing ion channel 4 (ACCN4), TRPM5, and secretory pathway Ca2+ ATPase 2 (ATP2C2). CACNA1D, JPH1, and ATP2C2 were also upregulated in advanced OAC tumor grades and nodal-metastatic stages in both datasets. Conclusions: This study has unveiled alterations of the Ca2+ toolkit in OAC, compared to normal tissue. Such Ca2+ signalling findings are consistent with those from studies on other cancers. Genes that were consistently upregulated in both datasets might represent useful markers for patient diagnosis. Genes that were consistently upregulated, and which were associated with improved survival, might be useful markers for patient outcome. These survival-associated genes may also represent targets for the development of novel chemotherapeutic agents.

18.
Annu Rev Physiol ; 83: 183-203, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33106102

RESUMEN

The identification of a gain-of-function mutation in CACNA1C as the cause of Timothy syndrome, a rare disorder characterized by cardiac arrhythmias and syndactyly, highlighted roles for the L-type voltage-gated Ca2+ channel CaV1.2 in nonexcitable cells. Previous studies in cells and animal models had suggested that several voltage-gated Ca2+ channels (VGCCs) regulated critical signaling events in various cell types that are not expected to support action potentials, but definitive data were lacking. VGCCs occupy a special position among ion channels, uniquely able to translate membrane excitability into the cytoplasmic Ca2+ changes that underlie the cellular responses to electrical activity. Yet how these channels function in cells not firing action potentials and what the consequences of their actions are in nonexcitable cells remain critical questions. The development of new animal and cellular models and the emergence of large data sets and unbiased genome screens have added to our understanding of the unanticipated roles for VGCCs in nonexcitable cells. Here, we review current knowledge of VGCC regulation and function in nonexcitable tissues and cells, with the goal of providing a platform for continued investigation.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Potenciales de Acción/fisiología , Animales , Trastorno Autístico/metabolismo , Humanos , Síndrome de QT Prolongado/metabolismo , Transducción de Señal/fisiología , Sindactilia/metabolismo
19.
Eur J Med Chem ; 210: 112950, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33148494

RESUMEN

Depending on the substitution pattern and stereochemistry, 1,3-dioxanes 1 with an aminoethyl moiety in 4-position represent potent σ1 receptor antagonists. In order to increase the stability, a cyclohexane ring first replaced the acetalic 1, 3-dioxane ring of 1. A large set of aminoethyl substituted cyclohexane derivatives was prepared in a six-step synthesis. All enantiomers and diastereomers were separated by chiral HPLC at the stage of the primary alcohol 7, and their absolute configuration was determined by CD spectroscopy. Neither the relative nor the absolute configuration had a large impact on the σ1 affinity. The highest σ1 affinity was found for cis-configured benzylamines (1R,3S)-11 (Ki = 0.61 nM) and (1S,3R)-11 (Ki = 1.3 nM). Molecular dynamics simulations showed that binding of (1R,3S)-11 at the σ1 receptor is stabilized by the typical polar interaction of the protonated amino moiety with the carboxy group of E172 which is optimally oriented by an H-bond interaction with Y103. The lipophilic interaction of I124 with the N-substituent also contributes to the high σ1 affinity of the benzylamines. The antagonistic activity was determined in a Ca2+ influx assay in retinal ganglion cells. The enantiomeric cis-configured benzylamines (1R,3S)-11 and (1S,3R)-11 were able to inhibit the growth of DU145 cells, a highly aggressive human prostate tumor cell line. Moreover, cis-11 could also inhibit the growth of further human tumor cells expressing σ1 receptors. The experimentally determined logD7.4 value of 3.13 for (1R,3S)-11 is in a promising range regarding membrane penetration. After incubation with mouse liver microsomes and NADPH for 90 min, 43% of the parent (1R,3S)-11 remained unchanged, indicating intermediate metabolic stability. Altogether, nine metabolites including one glutathione adduct were detected by means of LC-MS analysis.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Ciclohexanos/química , Ciclohexanos/farmacología , Receptores sigma/antagonistas & inhibidores , Aminación , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Masculino , Ratones , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Receptores sigma/metabolismo , Relación Estructura-Actividad , Receptor Sigma-1
20.
Am J Physiol Regul Integr Comp Physiol ; 319(5): R584-R591, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32966123

RESUMEN

We evaluated the hypothesis that the activation of L-type voltage-gated Ca2+ channels contributes to exercise training-induced augmentation in cholinergic sweating. On separate days, 10 habitually trained and 10 untrained men participated in two experimental protocols. Prior to each protocol, we administered 1% verapamil (Verapamil, L-type voltage-gated Ca2+ channel blocker) and saline (Control) at forearm skin sites on both arms via transdermal iontophoresis. In protocol 1, we administered low (0.001%) and high (1%) doses of pilocarpine at both the verapamil-treated and verapamil-untreated forearm sites. In protocol 2, participants were passively heated by immersing their limbs in hot water (43°C) until rectal temperature increased by 1.0°C above baseline resting levels. Sweat rate at all forearm sites was continuously measured throughout both protocols. Pilocarpine-induced sweating in Control was higher in trained than in untrained men for both the concentrations of pilocarpine (both P ≤ 0.001). Pilocarpine-induced sweating at the low-dose site was attenuated at the Verapamil versus the Control site in both the groups (both P ≤ 0.004), albeit the reduction was greater in trained as compared with in untrained men (P = 0.005). The verapamil-mediated reduction in sweating remained intact at the high-dose pilocarpine site in the untrained men (P = 0.004) but not the trained men (P = 0.180). Sweating did not differ between Control and Verapamil sites with increases in rectal temperature in both groups (interaction, P = 0.571). We show that activation of L-type voltage-gated Ca2+ channels modulates sweat production in habitually trained men induced by a low dose of pilocarpine. However, no effect on sweating was observed during passive heating in either group.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Ejercicio Físico , Calor , Sudoración/efectos de los fármacos , Verapamilo/farmacología , Adulto , Bloqueadores de los Canales de Calcio/farmacología , Humanos , Masculino , Agonistas Muscarínicos/farmacología , Pilocarpina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...