Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
ACS Infect Dis ; 10(4): 1201-1211, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38457660

RESUMEN

Tuberculosis (TB) is the leading infectious disease caused by Mycobacterium tuberculosis and the second-most contagious killer after COVID-19. The emergence of drug-resistant TB has caused a great need to identify and develop new anti-TB drugs with novel targets. Indole propionic acid (IPA), a structural analog of tryptophan (Trp), is active against M. tuberculosis in vitro and in vivo. It has been verified that IPA exerts its antimicrobial effect by mimicking Trp as an allosteric inhibitor of TrpE, which is the first enzyme in the Trp synthesis pathway of M. tuberculosis. However, other Trp structural analogs, such as indolmycin, also target tryptophanyl-tRNA synthetase (TrpRS), which has two functions in bacteria: synthesis of tryptophanyl-AMP by catalyzing ATP + Trp and producing Trp-tRNATrp by transferring Trp to tRNATrp. So, we speculate that IPA may also target TrpRS. In this study, we found that IPA can dock into the Trp binding pocket of M. tuberculosis TrpRS (TrpRSMtb), which was further confirmed by isothermal titration calorimetry (ITC) assay. The biochemical analysis proved that TrpRS can catalyze the reaction between IPA and ATP to generate pyrophosphate (PPi) without Trp as a substrate. Overexpression of wild-type trpS in M. tuberculosis increased the MIC of IPA to 32-fold, and knock-down trpS in Mycolicibacterium smegmatis made it more sensitive to IPA. The supplementation of Trp in the medium abrogated the inhibition of M. tuberculosis by IPA. We demonstrated that IPA can interfere with the function of TrpRS by mimicking Trp, thereby impeding protein synthesis and exerting its anti-TB effect.


Asunto(s)
Mycobacterium tuberculosis , Propionatos , Triptófano-ARNt Ligasa , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Triptófano-ARNt Ligasa/genética , Triptófano-ARNt Ligasa/química , Triptófano-ARNt Ligasa/metabolismo , ARN de Transferencia de Triptófano/metabolismo , Indoles/farmacología , Adenosina Trifosfato
2.
RNA ; 30(2): 171-187, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38071471

RESUMEN

In Saccharomyces cerevisiae, a single homolog of the tRNA methyltransferase Trm10 performs m1G9 modification on 13 different tRNAs. Here we provide evidence that the m1G9 modification catalyzed by S. cerevisiae Trm10 plays a biologically important role for one of these tRNA substrates, tRNATrp Overexpression of tRNATrp (and not any of 38 other elongator tRNAs) rescues growth hypersensitivity of the trm10Δ strain in the presence of the antitumor drug 5-fluorouracil (5FU). Mature tRNATrp is depleted in trm10Δ cells, and its levels are further decreased upon growth in 5FU, while another Trm10 substrate (tRNAGly) is not affected under these conditions. Thus, m1G9 in S. cerevisiae is another example of a tRNA modification that is present on multiple tRNAs but is only essential for the biological function of one of those species. In addition to the effects of m1G9 on mature tRNATrp, precursor tRNATrp species accumulate in the same strains, an effect that is due to at least two distinct mechanisms. The levels of mature tRNATrp are rescued in the trm10Δmet22Δ strain, consistent with the known role of Met22 in tRNA quality control, where deletion of met22 causes inhibition of 5'-3' exonucleases that catalyze tRNA decay. However, none of the known Met22-associated exonucleases appear to be responsible for the decay of hypomodified tRNATrp, based on the inability of mutants of each enzyme to rescue the growth of the trm10Δ strain in the presence of 5FU. Thus, the surveillance of tRNATrp appears to constitute a distinct tRNA quality control pathway in S. cerevisiae.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Exonucleasas/metabolismo , Fluorouracilo/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia de Triptófano/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
3.
RNA ; 29(9): 1379-1387, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37221013

RESUMEN

Under certain circumstances, any of the three termination codons can be read through by a near-cognate tRNA; i.e., a tRNA whose two out of three anticodon nucleotides base pair with those of the stop codon. Unless programed to synthetize C-terminally extended protein variants with expanded physiological roles, readthrough represents an undesirable translational error. On the other side of a coin, a significant number of human genetic diseases is associated with the introduction of nonsense mutations (premature termination codons [PTCs]) into coding sequences, where stopping is not desirable. Here, the tRNA's ability to induce readthrough opens up the intriguing possibility of mitigating the deleterious effects of PTCs on human health. In yeast, the UGA and UAR stop codons were described to be read through by four readthrough-inducing rti-tRNAs-tRNATrp and tRNACys, and tRNATyr and tRNAGln, respectively. The readthrough-inducing potential of tRNATrp and tRNATyr was also observed in human cell lines. Here, we investigated the readthrough-inducing potential of human tRNACys in the HEK293T cell line. The tRNACys family consists of two isoacceptors, one with ACA and the other with GCA anticodons. We selected nine representative tRNACys isodecoders (differing in primary sequence and expression level) and tested them using dual luciferase reporter assays. We found that at least two tRNACys can significantly elevate UGA readthrough when overexpressed. This indicates a mechanistically conserved nature of rti-tRNAs between yeast and human, supporting the idea that they could be used in the PTC-associated RNA therapies.


Asunto(s)
Cisteína , Saccharomyces cerevisiae , Humanos , Codón de Terminación/genética , Cisteína/genética , Cisteína/metabolismo , Células HEK293 , Saccharomyces cerevisiae/genética , ARN de Transferencia de Cisteína/metabolismo , ARN de Transferencia de Triptófano/metabolismo , ARN de Transferencia de Tirosina , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Anticodón , Codón sin Sentido/genética , Biosíntesis de Proteínas
4.
Nature ; 613(7945): 751-758, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631608

RESUMEN

Cognate tRNAs deliver specific amino acids to translating ribosomes according to the standard genetic code, and three codons with no cognate tRNAs serve as stop codons. Some protists have reassigned all stop codons as sense codons, neglecting this fundamental principle1-4. Here we analyse the in-frame stop codons in 7,259 predicted protein-coding genes of a previously undescribed trypanosomatid, Blastocrithidia nonstop. We reveal that in this species in-frame stop codons are underrepresented in genes expressed at high levels and that UAA serves as the only termination codon. Whereas new tRNAsGlu fully cognate to UAG and UAA evolved to reassign these stop codons, the UGA reassignment followed a different path through shortening the anticodon stem of tRNATrpCCA from five to four base pairs (bp). The canonical 5-bp tRNATrp recognizes UGG as dictated by the genetic code, whereas its shortened 4-bp variant incorporates tryptophan also into in-frame UGA. Mimicking this evolutionary twist by engineering both variants from B. nonstop, Trypanosoma brucei and Saccharomyces cerevisiae and expressing them in the last two species, we recorded a significantly higher readthrough for all 4-bp variants. Furthermore, a gene encoding B. nonstop release factor 1 acquired a mutation that specifically restricts UGA recognition, robustly potentiating the UGA reassignment. Virtually the same strategy has been adopted by the ciliate Condylostoma magnum. Hence, we describe a previously unknown, universal mechanism that has been exploited in unrelated eukaryotes with reassigned stop codons.


Asunto(s)
Anticodón , Codón de Terminación , Células Eucariotas , Código Genético , Mutación , Factores de Terminación de Péptidos , ARN de Transferencia , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Cilióforos/genética , Codón de Terminación/genética , Código Genético/genética , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia de Triptófano/genética , Saccharomyces cerevisiae/genética , ARN de Transferencia de Ácido Glutámico/genética , Trypanosoma brucei brucei/genética
5.
J Med Genet ; 59(1): 79-87, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33208382

RESUMEN

BACKGROUND: Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episode (MELAS) is a group of genetic diseases caused by mutations in mitochondrial DNA and nuclear DNA. The causative mutations of MELAS have drawn much attention, among them, mutations in mitochondrial tRNA genes possessing prominent status. However, the detailed molecular pathogenesis of these tRNA gene mutations remains unclear and there are very few effective therapies available to date. METHODS: We performed muscle histochemistry, genetic analysis, molecular dynamic stimulation and measurement of oxygen consumption rate and respiratory chain complex activities to demonstrate the molecular pathomechanisms of m.5541C>T mutation. Moreover, we use cybrid cells to investigate the potential of taurine to rescue mitochondrial dysfunction caused by this mutation. RESULTS: We found a pathogenic m.5541C>T mutation in the tRNATrp gene in a large MELAS family. This mutation first affected the maturation and stability of tRNATrp and impaired mitochondrial respiratory chain complex activities, followed by remarkable mitochondrial dysfunction. Surprisingly, we identified that the supplementation of taurine almost completely restored mitochondrial tRNATrp levels and mitochondrial respiration deficiency at the in vitro cell level. CONCLUSION: The m.5541C>T mutation disturbed the translation machinery of mitochondrial tRNATrp and taurine supplementation may be a potential treatment for patients with m.5541C>T mutation. Further studies are needed to explore the full potential of taurine supplementation as therapy for patients with this mutation.


Asunto(s)
Genoma Mitocondrial , Síndrome MELAS/genética , Mitocondrias/metabolismo , Mutación , ARN de Transferencia de Triptófano/genética , Adulto , Línea Celular , ADN Mitocondrial , Femenino , Humanos , Simulación de Dinámica Molecular
6.
J Mol Biol ; 434(8): 167304, 2022 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-34655653

RESUMEN

We report the development of a robust user-friendly Escherichia coli (E. coli) expression system, derived from the BL21(DE3) strain, for site-specifically incorporating unnatural amino acids (UAAs) into proteins using engineered E. coli tryptophanyl-tRNA synthetase (EcTrpRS)-tRNATrp pairs. This was made possible by functionally replacing the endogenous EcTrpRS-tRNATrp pair in BL21(DE3) E. coli with an orthogonal counterpart from Saccharomyces cerevisiae, and reintroducing it into the resulting altered translational machinery tryptophanyl (ATMW-BL21) E. coli strain as an orthogonal nonsense suppressor. The resulting expression system benefits from the favorable characteristics of BL21(DE3) as an expression host, and is compatible with the broadly used T7-driven recombinant expression system. Furthermore, the vector expressing the nonsense-suppressing engineered EcTrpRS-tRNATrp pair was systematically optimized to significantly enhance the incorporation efficiency of various tryptophan analogs. Together, the improved strain and the optimized suppressor plasmids enable efficient UAA incorporation (up to 65% of wild-type levels) into several different proteins. This robust and user-friendly platform will significantly expand the scope of the genetically encoded tryptophan-derived UAAs.


Asunto(s)
Escherichia coli , ARN de Transferencia de Triptófano , ARN de Transferencia , Triptófano-ARNt Ligasa , Triptófano , Escherichia coli/genética , Escherichia coli/metabolismo , Mutagénesis , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Triptófano/genética , Triptófano-ARNt Ligasa/genética , Triptófano-ARNt Ligasa/metabolismo
7.
RNA Biol ; 18(sup1): 278-286, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34224320

RESUMEN

In kinetoplastid protists, all mitochondrial tRNAs are encoded in the nucleus and imported from the cytoplasm to maintain organellar translation. This also applies to the tryptophanyl tRNA (tRNATrp) encoded by a single-copy nuclear gene, with a CCA anticodon to read UGG codon used in the cytosolic translation. Yet, in the mitochondrion it is unable to decode the UGA codon specifying tryptophan. Following mitochondrial import of tRNATrp, this problem is solved at the RNA level by a single C34 to U34 editing event that creates the UCA anticodon, recognizing UGA. To identify the enzyme responsible for this critical editing activity, we scrutinized the genome of Trypanosoma brucei for putative cytidine deaminases as the most likely candidates. Using RNAi silencing and poisoned primer extension, we have identified a novel deaminase enzyme, named here TbmCDAT for mitochondrial Cytidine Deaminase Acting on tRNA, which is responsible for this organelle-specific activity in T. brucei. The ablation of TbmCDAT led to the downregulation of mitochondrial protein synthesis, supporting its role in decoding the UGA tryptophan codon.


Asunto(s)
Codón de Terminación , Citidina Desaminasa/metabolismo , Citidina/genética , Mitocondrias/enzimología , ARN Protozoario/genética , Trypanosoma brucei brucei/genética , Uridina/genética , Secuencia de Aminoácidos , Secuencia de Bases , Citidina/química , Citidina Desaminasa/genética , Mitocondrias/genética , Conformación de Ácido Nucleico , ARN Mitocondrial/análisis , ARN Mitocondrial/genética , ARN Protozoario/análisis , ARN de Transferencia de Triptófano , Homología de Secuencia , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo , Uridina/química
8.
Nucleic Acids Res ; 49(9): 5202-5215, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34009360

RESUMEN

Regulation of translation via stop codon readthrough (SC-RT) expands not only tissue-specific but also viral proteomes in humans and, therefore, represents an important subject of study. Understanding this mechanism and all involved players is critical also from a point of view of prospective medical therapies of hereditary diseases caused by a premature termination codon. tRNAs were considered for a long time to be just passive players delivering amino acid residues according to the genetic code to ribosomes without any active regulatory roles. In contrast, our recent yeast work identified several endogenous tRNAs implicated in the regulation of SC-RT. Swiftly emerging studies of human tRNA-ome also advocate that tRNAs have unprecedented regulatory potential. Here, we developed a universal U6 promotor-based system expressing various human endogenous tRNA iso-decoders to study consequences of their increased dosage on SC-RT employing various reporter systems in vivo. This system combined with siRNA-mediated downregulations of selected aminoacyl-tRNA synthetases demonstrated that changing levels of human tryptophan and tyrosine tRNAs do modulate efficiency of SC-RT. Overall, our results suggest that tissue-to-tissue specific levels of selected near-cognate tRNAs may have a vital potential to fine-tune the final landscape of the human proteome, as well as that of its viral pathogens.


Asunto(s)
Codón de Terminación , Biosíntesis de Proteínas , ARN de Transferencia de Triptófano/metabolismo , ARN de Transferencia de Tirosina/metabolismo , Línea Celular , Genes Reporteros , Humanos , Mutación , Plásmidos/genética , Regiones Promotoras Genéticas , Proteínas/genética , ARN Nuclear Pequeño/genética , ARN de Transferencia de Triptófano/genética , ARN de Transferencia de Tirosina/genética , Triptófano-ARNt Ligasa/genética , Proteína p53 Supresora de Tumor/biosíntesis , Proteína p53 Supresora de Tumor/genética , Tirosina-ARNt Ligasa/genética , Proteínas Virales/genética
9.
Nucleic Acids Res ; 49(1): 383-399, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33313903

RESUMEN

Translational control is essential in response to stress. We investigated the translational programmes launched by the fission yeast Schizosaccharomyces pombe upon five environmental stresses. We also explored the contribution of defence pathways to these programmes: The Integrated Stress Response (ISR), which regulates translation initiation, and the stress-response MAPK pathway. We performed ribosome profiling of cells subjected to each stress, in wild type cells and in cells with the defence pathways inactivated. The transcription factor Fil1, a functional homologue of the yeast Gcn4 and the mammalian Atf4 proteins, was translationally upregulated and required for the response to most stresses. Moreover, many mRNAs encoding proteins required for ribosome biogenesis were translationally downregulated. Thus, several stresses trigger a universal translational response, including reduced ribosome production and a Fil1-mediated transcriptional programme. Surprisingly, ribosomes stalled on tryptophan codons upon oxidative stress, likely due to a decrease in charged tRNA-Tryptophan. Stalling caused ribosome accumulation upstream of tryptophan codons (ribosome queuing/collisions), demonstrating that stalled ribosomes affect translation elongation by other ribosomes. Consistently, tryptophan codon stalling led to reduced translation elongation and contributed to the ISR-mediated inhibition of initiation. We show that different stresses elicit common and specific translational responses, revealing a novel role in Tryptophan-tRNA availability.


Asunto(s)
Codón , Estrés Oxidativo/genética , Extensión de la Cadena Peptídica de Translación , ARN de Transferencia de Triptófano/genética , Ribosomas/metabolismo , Schizosaccharomyces/genética , Triptófano/genética , Compuestos de Cadmio/farmacología , Factor 2 Eucariótico de Iniciación/genética , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Calor , Peróxido de Hidrógeno/farmacología , Sistema de Señalización de MAP Quinasas , Metilmetanosulfonato/farmacología , Proteínas Quinasas Activadas por Mitógenos/deficiencia , Presión Osmótica , ARN de Hongos/genética , ARN Mensajero/genética , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Sorbitol/farmacología , Sulfatos/farmacología
10.
RNA ; 27(1): 66-79, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33023933

RESUMEN

Most mammalian cytoplasmic tRNAs contain ribothymidine (T) and pseudouridine (Ψ) at positions 54 and 55, respectively. However, some tRNAs contain Ψ at both positions. Several Ψ54-containing tRNAs function as primers in retroviral DNA synthesis. The Ψ54 of these tRNAs is produced by PUS10, which can also synthesize Ψ55. Two other enzymes, TRUB1 and TRUB2, can also produce Ψ55. By nearest-neighbor analyses of tRNAs treated with recombinant proteins and subcellular extracts of wild-type and specific Ψ55 synthase knockdown cells, we determined that while TRUB1, PUS10, and TRUB2 all have tRNA Ψ55 synthase activities, they have different tRNA structural requirements. Moreover, these activities are primarily present in the nucleus, cytoplasm, and mitochondria, respectively, suggesting a compartmentalization of Ψ55 synthase activity. TRUB1 produces the Ψ55 of most elongator tRNAs, but cytoplasmic PUS10 produces both Ψs of the tRNAs with Ψ54Ψ55. The nuclear isoform of PUS10 is catalytically inactive and specifically binds the unmodified U54U55 versions of Ψ54Ψ55-containing tRNAs, as well as the A54U55-containing tRNAiMet This binding inhibits TRUB1-mediated U55 to Ψ55 conversion in the nucleus. Consequently, the U54U55 of Ψ54Ψ55-containing tRNAs are modified by the cytoplasmic PUS10. Nuclear PUS10 does not bind the U55 versions of T54Ψ55- and A54Ψ55-containing elongator tRNAs. Therefore, TRUB1 is able to produce Ψ55 in these tRNAs. In summary, the tRNA Ψ55 synthase activities of TRUB1 and PUS10 are not redundant but rather are compartmentalized and act on different sets of tRNAs. The significance of this compartmentalization needs further study.


Asunto(s)
Núcleo Celular/genética , Citoplasma/genética , Hidroliasas/genética , Mitocondrias/genética , Seudouridina/metabolismo , ARN de Transferencia de Alanina/genética , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Triptófano/genética , Animales , Sitios de Unión , Compartimento Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Expresión Génica , Células HEK293 , Humanos , Hidroliasas/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocondrias/metabolismo , Células PC-3 , Unión Proteica , ARN de Transferencia de Alanina/metabolismo , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Triptófano/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera
11.
Nat Commun ; 11(1): 6430, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33353937

RESUMEN

The trp operon of Chlamydia trachomatis is organized differently from other model bacteria. It contains trpR, an intergenic region (IGR), and the biosynthetic trpB and trpA open-reading frames. TrpR is a tryptophan-dependent repressor that regulates the major promoter (PtrpR), while the IGR harbors an alternative promoter (PtrpBA) and an operator sequence for the iron-dependent repressor YtgR to regulate trpBA expression. Here, we report that YtgR repression at PtrpBA is also dependent on tryptophan by regulating YtgR levels through a rare triple-tryptophan motif (WWW) in the YtgCR precursor. Inhibiting translation during tryptophan limitation at the WWW motif subsequently promotes Rho-independent transcription termination of ytgR, thereby de-repressing PtrpBA. Thus, YtgR represents an alternative strategy to attenuate trpBA expression, expanding the repertoire for trp operon attenuation beyond TrpL- and TRAP-mediated mechanisms described in other bacteria. Furthermore, repurposing the iron-dependent repressor YtgR underscores the fundamental importance of maintaining tryptophan-dependent attenuation of the trpRBA operon.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydia trachomatis/genética , Hierro/metabolismo , Operón/genética , Triptófano/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Chlamydia trachomatis/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Indoles/farmacología , Modelos Biológicos , Regiones Promotoras Genéticas , Biosíntesis de Proteínas/efectos de los fármacos , Dominios Proteicos , ARN de Transferencia de Triptófano/metabolismo , Transcripción Genética/efectos de los fármacos , Proteínas de Unión al GTP rho/metabolismo
12.
Can J Cardiol ; 36(10): 1690.e1-1690.e3, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32360196

RESUMEN

Mitochondrial diseases are rare metabolic disorders that can cause hypertrophic cardiomyopathy. Herein we describe the case of a 3-year-old girl diagnosed with mitochondrial disease (mutation m.5559A>G in the mitochondrial-tRNATrp gene). Echocardiography showed left ventricular hypertrophy with an enlarged septum (9 mm, z score = 3.26). Antioxidant supplementation associated with a high-fat ketogenic diet was introduced and, as expected, improved neurologic status. In addition, heart parameters improved with normalisation of interventricular septum thickness at 6 years of age (6 mm, z score = 1.05). In this case report, we suggest that a ketogenic diet may improve hypertrophic cardiomyopathy in the context of mitochondrial disease.


Asunto(s)
Cardiomiopatía Hipertrófica , Dieta Cetogénica/métodos , Ecocardiografía/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Enfermedades Mitocondriales , ARN de Transferencia de Triptófano/genética , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Cardiomiopatía Hipertrófica/dietoterapia , Cardiomiopatía Hipertrófica/etiología , Preescolar , Femenino , Humanos , Enfermedades Mitocondriales/dietoterapia , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/fisiopatología , Monitoreo Fisiológico/métodos , Mutación , ARN Mitocondrial/genética , Análisis de Secuencia de ARN/métodos , Resultado del Tratamiento
13.
J Bacteriol ; 201(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31405913

RESUMEN

tRNA m2G10/m22G10 methyltransferase (archaeal Trm11) methylates the 2-amino group in guanosine at position 10 in tRNA and forms N2,N2-dimethylguanosine (m22G10) via N2-methylguanosine (m2G10). We determined the complete sequence of tRNATrp, one of the substrate tRNAs for archaeal Trm11 from Thermococcus kodakarensis, a hyperthermophilic archaeon. Liquid chromatography/mass spectrometry following enzymatic digestion of tRNATrp identified 15 types of modified nucleoside at 21 positions. Several modifications were found at novel positions in tRNA, including 2'-O-methylcytidine at position 6, 2-thiocytidine at position 17, 2'-O-methyluridine at position 20, 5,2'-O-dimethylcytidine at position 32, and 2'-O-methylguanosine at position 42. Furthermore, methylwyosine was found at position 37 in this tRNATrp, although 1-methylguanosine is generally found at this location in tRNATrp from other archaea. We constructed trm11 (Δtrm11) and some gene disruptant strains and compared their tRNATrp with that of the wild-type strain, which confirmed the absence of m22G10 and other corresponding modifications, respectively. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this methylation is mediated by Trm14, which was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival at high temperatures. The m22G10 modification might have effects on stabilization of tRNA and/or correct folding of tRNA at the high temperatures. Collectively, these results provide new clues to the function of modifications and the substrate specificities of modification enzymes in archaeal tRNA, enabling us to propose a strategy for tRNA stabilization of this archaeon at high temperatures.IMPORTANCEThermococcus kodakarensis is a hyperthermophilic archaeon that can grow at 60 to 100°C. The sequence of tRNATrp from this archaeon was determined by liquid chromatography/mass spectrometry. Fifteen types of modified nucleoside were observed at 21 positions, including 5 modifications at novel positions; in addition, methylwyosine at position 37 was newly observed in an archaeal tRNATrp The construction of trm11 (Δtrm11) and other gene disruptant strains confirmed the enzymes responsible for modifications in this tRNA. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this position is methylated by Trm14, which was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival at high temperatures.


Asunto(s)
Metiltransferasas/genética , ARN de Transferencia de Triptófano/genética , Thermococcus/genética , Proteínas Arqueales/genética , Guanosina/análogos & derivados , Guanosina/genética , Humanos , Temperatura , Uridina/análogos & derivados , Uridina/genética
14.
Biochem Biophys Res Commun ; 500(2): 158-162, 2018 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-29625105

RESUMEN

We sequenced the mitochondrial genome from a 40-year-old woman with myoclonus epilepsy, retinitis pigmentosa, leukoencephalopathy and cerebral calcifications. Histological and biochemical features of mitochondrial respiratory chain dysfunction were present. Direct sequencing showed a novel heteroplasmic mutation at nucleotide 5513 in the MT-TW gene that encodes tRNATrp. Restriction Fragment Length Polymorphism analysis confirmed that about 80% of muscle mtDNA harboured the mutation while it was present in minor percentages in mtDNA from other tissues. The mutation is predicted to disrupt a highly conserved base pair within the aminoacyl acceptor stem of the tRNA. This is the 17° mutation in MT-TW gene and expands the known causes of late-onset mitochondrial diseases.


Asunto(s)
Epilepsias Mioclónicas/genética , Predisposición Genética a la Enfermedad , Leucoencefalopatías/genética , Mutación/genética , ARN de Transferencia de Triptófano/genética , Retinitis Pigmentosa/genética , Calcificación Vascular/genética , Adulto , Secuencia de Bases , Epilepsias Mioclónicas/sangre , Epilepsias Mioclónicas/diagnóstico por imagen , Femenino , Humanos , Leucoencefalopatías/sangre , Leucoencefalopatías/diagnóstico por imagen , Retinitis Pigmentosa/sangre , Retinitis Pigmentosa/diagnóstico por imagen , Análisis de Secuencia de ADN , Tomografía Computarizada por Rayos X
15.
Biochem Biophys Res Commun ; 479(4): 800-807, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27687549

RESUMEN

Essential hypertension (EH) is a common complex disorder with high heritability. Maternal inherited pattern was observed in some families with EH, which was known as maternally inherited essential hypertension (MIEH). Mitochondrial DNA (mtDNA) mutations were identified to account for some MIEH in previous studies. In the present study, we characterized clinical manifestations and the complete mitochondrial genome of a Chinese family with MIEH. Through analyzing the whole mtDNA genome of the proband, we identified a mutation m.5512A > G in the MT-TW gene that changed a highly conserved nucleotide and could potentially affect the function of tRNATrp. Furthermore, significantly exercise intolerance, left ventricular remodeling and increased arterial stiffness were observed in carriers with mutation m.5512A > G, which further supported the potentially pathogenic effect of m.5512A > G in MIEH.


Asunto(s)
ADN Mitocondrial/genética , Hipertensión/genética , Herencia Materna , Mutación Puntual , ARN de Transferencia de Triptófano/genética , Adulto , Anciano , Pueblo Asiatico/genética , Secuencia de Bases , China , Análisis Mutacional de ADN , Hipertensión Esencial , Prueba de Esfuerzo , Femenino , Genoma Mitocondrial , Heterocigoto , Humanos , Hipertensión/fisiopatología , Masculino , Persona de Mediana Edad , Conformación de Ácido Nucleico , ARN de Transferencia de Triptófano/química , Rigidez Vascular/genética , Remodelación Ventricular/genética
16.
Mitochondrion ; 31: 40-44, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27693765

RESUMEN

We describe here two novel mitochondrial mutations associated with a complex mitochondrial encephalopathy. An A to G transition at position 7495 (MT-TS1 (MT-tRNSer(UCN))) was identified at 83% heteroplasmy in the muscle of a four year old female with ptosis, hypotonia, seizures, and dilated cardiomyopathy (Case 1). A homoplasmic C to T transition at position 5577 (MT-TW (MT-tRNATrp)) was found in a twenty-four year old woman with exercise intolerance, mild muscle weakness, hearing loss, seizures, and cognitive decline (Case 2). The phenotypic information provided here will assist in phenotype-genotype correlations should additional patients be reported in the future. The mutations can be added to the database of mitochondrial DNA variations in conserved regions which result in clinically diverse phenotypes with the shared markers of mitochondrial disease.


Asunto(s)
Insuficiencia Cardíaca/genética , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/patología , Mutación , ARN de Transferencia de Serina/genética , ARN de Transferencia de Triptófano/genética , Convulsiones/genética , Femenino , Insuficiencia Cardíaca/etiología , Humanos , Encefalomiopatías Mitocondriales/diagnóstico , Convulsiones/etiología , Adulto Joven
17.
Mitochondrion ; 25: 113-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26524491

RESUMEN

Leigh syndrome (LS) is a progressive mitochondrial neurodegenerative disorder, whose symptoms most commonly include psychomotor delay with regression, lactic acidosis and a failure to thrive. Here we describe three siblings with LS, but with additional manifestations including hypertrophic cardiomyopathy, hepatosplenomegaly, cholestatic hepatitis, and seizures. All three affected siblings were found to be homoplasmic for an m. 5559A>G mutation in the T stem of the mitochondrial DNA-encoded MT-TW by next generation sequencing. The m.5559A>G mutation causes a reduction in the steady state levels of tRNA(Trp) and this decrease likely affects the stability of other mitochondrial RNAs in the patient fibroblasts. We observe accumulation of an unprocessed transcript containing tRNA(Trp), decreased de novo protein synthesis and consequently lowered steady state levels of mitochondrial DNA-encoded proteins that compromise mitochondrial respiration. Our results show that the m.5559A>G mutation at homoplasmic levels causes LS in association with severe multi-organ disease (LS-plus) as a consequence of dysfunctional mitochondrial RNA metabolism.


Asunto(s)
Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Mitocondrias/genética , Mitocondrias/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Triptófano/genética , ARN de Transferencia de Triptófano/metabolismo , Células Cultivadas , Niño , Preescolar , Salud de la Familia , Femenino , Fibroblastos/fisiología , Humanos , Lactante , Recién Nacido , Masculino , Mutación Puntual , Hermanos
18.
Acta Neuropathol Commun ; 3: 52, 2015 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-26297375

RESUMEN

INTRODUCTION: Numerous pathogenic mutations responsible for mitochondrial diseases have been identified in mitochondrial DNA (mtDNA)-encoded tRNA genes. In most cases, however, the detailed molecular pathomechanisms and cellular pathophysiology of these mtDNA mutations -how such genetic defects determine the variation and the severity of clinical symptoms in affected individuals- remain unclear. To investigate the molecular pathomechanisms and to realize in vitro recapitulation of mitochondrial diseases, intracellular mutant mtDNA proportions must always be considered. RESULTS: We found a disease-causative mutation, m.5541C>T heteroplasmy in MT-TW gene, in a patient exhibiting mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) with multiple organ involvement. We identified the intrinsic molecular pathomechanisms of m.5541C>T. This mutation firstly disturbed the translation machinery of mitochondrial tRNA(Trp) and induced mitochondrial respiratory dysfunction, followed by severely injured mitochondrial homeostasis. We also demonstrated cell-type-specific disease phenotypes using patient-derived induced pluripotent stem cells (iPSCs) carrying ~100 % mutant m.5541C>T. Significant loss of terminally differentiated iPSC-derived neurons, but not their stem/progenitor cells, was detected most likely due to serious mitochondrial dysfunction triggered by m.5541C>T; in contrast, m.5541C>T did not apparently affect skeletal muscle development. CONCLUSIONS: Our iPSC-based disease models would be widely available for understanding the "definite" genotype-phenotype relationship of affected tissues and organs in various mitochondrial diseases caused by heteroplasmic mtDNA mutations, as well as for further drug discovery applications.


Asunto(s)
Síndrome MELAS/genética , Síndrome MELAS/patología , Mutación/genética , ARN de Transferencia de Triptófano/genética , Adenosina Trifosfato/metabolismo , Encéfalo/patología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Niño , Citrato (si)-Sintasa/metabolismo , Análisis Mutacional de ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/fisiología , Masculino , Potenciales de la Membrana/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mioblastos/metabolismo , Neuronas/fisiología , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
19.
J Virol ; 88(14): 7852-61, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24789780

RESUMEN

Host cell tRNAs are recruited for use as primers to initiate reverse transcription in retroviruses. Human immunodeficiency virus type 1 (HIV-1) uses tRNA(Lys3) as the replication primer, whereas Rous sarcoma virus (RSV) uses tRNA(Trp). The nucleic acid (NA) chaperone function of the nucleocapsid (NC) domain of HIV-1 Gag is responsible for annealing tRNA(Lys3) to the genomic RNA (gRNA) primer binding site (PBS). Compared to HIV-1, little is known about the chaperone activity of RSV Gag. In this work, using purified RSV Gag containing an N-terminal His tag and a deletion of the majority of the protease domain (H6.Gag.3h), gel shift assays were used to monitor the annealing of tRNA(Trp) to a PBS-containing RSV RNA. Here, we show that similar to HIV-1 Gag lacking the p6 domain (GagΔp6), RSV H6.Gag.3h is a more efficient chaperone on a molar basis than NC; however, in contrast to the HIV-1 system, both RSV H6.Gag.3h and NC have comparable annealing rates at protein saturation. The NC domain of RSV H6.Gag.3h is required for annealing, whereas deletion of the matrix (MA) domain, which stimulates the rate of HIV-1 GagΔp6 annealing, has little effect on RSV H6.Gag.3h chaperone function. Competition assays confirmed that RSV MA binds inositol phosphates (IPs), but in contrast to HIV-1 GagΔp6, IPs do not stimulate RSV H6.Gag.3h chaperone activity unless the MA domain is replaced with HIV-1 MA. We conclude that differences in the MA domains are primarily responsible for mechanistic differences in RSV and HIV-1 Gag NA chaperone function. Importance: Mounting evidence suggests that the Gag polyprotein is responsible for annealing primer tRNAs to the PBS to initiate reverse transcription in retroviruses, but only HIV-1 Gag chaperone activity has been demonstrated in vitro. Understanding RSV Gag's NA chaperone function will allow us to determine whether there is a common mechanism among retroviruses. This report shows for the first time that full-length RSV Gag lacking the protease domain is a highly efficient NA chaperone in vitro, and NC is required for this activity. In contrast to results obtained for HIV-1 Gag, due to the weak nucleic acid binding affinity of the RSV MA domain, inositol phosphates do not regulate RSV Gag-facilitated tRNA annealing despite the fact that they bind to MA. These studies provide insight into the viral regulation of tRNA primer annealing, which is a potential target for antiretroviral therapy.


Asunto(s)
Productos del Gen gag/metabolismo , VIH-1/fisiología , Chaperonas Moleculares/metabolismo , Fosfoproteínas/metabolismo , ARN de Transferencia de Triptófano/metabolismo , ARN Viral/metabolismo , Virus del Sarcoma de Rous/fisiología , Proteínas de la Matriz Viral/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Antígenos VIH/metabolismo , Humanos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
20.
Nucleic Acids Res ; 42(9): 5426-35, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24753428

RESUMEN

Over the past several years, structural studies have led to the unexpected discovery of iron-sulfur clusters in enzymes that are involved in DNA replication/repair and protein biosynthesis. Although these clusters are generally well-studied cofactors, their significance in the new contexts often remains elusive. One fascinating example is a tryptophanyl-tRNA synthetase from the thermophilic bacterium Thermotoga maritima, TmTrpRS, that has recently been structurally characterized. It represents an unprecedented connection among a primordial iron-sulfur cofactor, RNA and protein biosynthesis. Here, a possible role of the [Fe4S4] cluster in tRNA anticodon-loop recognition is investigated by means of density functional theory and comparison with the structure of a human tryptophanyl-tRNA synthetase/tRNA complex. It turns out that a cluster-coordinating cysteine residue, R224, and polar main chain atoms form a characteristic structural motif for recognizing a putative 5' cytosine or 5' 2-thiocytosine moiety in the anticodon loop of the tRNA molecule. This motif provides not only affinity but also specificity by creating a structural and energetical penalty for the binding of other bases, such as uracil.


Asunto(s)
Proteínas Hierro-Azufre/química , ARN de Transferencia de Triptófano/química , Triptófano-ARNt Ligasa/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Anticodón/química , Proteínas Bacterianas/química , Emparejamiento Base , Dominio Catalítico , Codón/química , Simulación por Computador , Secuencia Conservada , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Termodinámica , Thermotoga maritima/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...