Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(21): 12467-12485, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34761260

RESUMEN

The tRNA modification m1G37, introduced by the tRNA methyltransferase TrmD, is thought to be essential for growth in bacteria because it suppresses translational frameshift errors at proline codons. However, because bacteria can tolerate high levels of mistranslation, it is unclear why loss of m1G37 is not tolerated. Here, we addressed this question through experimental evolution of trmD mutant strains of Escherichia coli. Surprisingly, trmD mutant strains were viable even if the m1G37 modification was completely abolished, and showed rapid recovery of growth rate, mainly via duplication or mutation of the proline-tRNA ligase gene proS. Growth assays and in vitro aminoacylation assays showed that G37-unmodified tRNAPro is aminoacylated less efficiently than m1G37-modified tRNAPro, and that growth of trmD mutant strains can be largely restored by single mutations in proS that restore aminoacylation of G37-unmodified tRNAPro. These results show that inefficient aminoacylation of tRNAPro is the main reason for growth defects observed in trmD mutant strains and that proS may act as a gatekeeper of translational accuracy, preventing the use of error-prone unmodified tRNAPro in translation. Our work shows the utility of experimental evolution for uncovering the hidden functions of essential genes and has implications for the development of antibiotics targeting TrmD.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Mutación , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Prolina/genética , ARNt Metiltransferasas/genética , Adaptación Fisiológica/genética , Aminoacilación , Evolución Molecular Dirigida/métodos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Operón/genética , Plásmidos/genética , Plásmidos/metabolismo , ARN de Transferencia de Prolina/metabolismo , ARNt Metiltransferasas/deficiencia , ARNt Metiltransferasas/metabolismo
2.
Mol Genet Metab ; 132(2): 146-153, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33485800

RESUMEN

TRMU is a nuclear gene crucial for mitochondrial DNA translation by encoding tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase, which thiolates mitochondrial tRNA. Biallelic pathogenic variants in TRMU are associated with transient infantile liver failure. Other less common presentations such as Leigh syndrome, myopathy, and cardiomyopathy have been reported. Recent studies suggested that provision of exogenous L-cysteine or N-acetylcysteine may ameliorate the effects of disease-causing variants and improve the natural history of the disease. Here, we report six infants with biallelic TRMU variants, including four previously unpublished patients, all treated with exogenous cysteine. We highlight the first report of an affected patient undergoing orthotopic liver transplantation, the long-term effects of cysteine supplementation, and the ability of the initial presentation to mimic multiple inborn errors of metabolism. We propose that TRMU deficiency should be suspected in all children presenting with persistent lactic acidosis and hypoglycemia, and that combined N-acetylcysteine and L-cysteine supplementation should be considered prior to molecular diagnosis, as this is a low-risk approach that may increase survival and mitigate the severity of the disease course.


Asunto(s)
Enfermedad de Leigh/terapia , Fallo Hepático/terapia , Proteínas Mitocondriales/genética , Biosíntesis de Proteínas , ARNt Metiltransferasas/genética , Acetilcisteína/administración & dosificación , Acetilcisteína/metabolismo , Acidosis/genética , Acidosis/metabolismo , Cisteína/administración & dosificación , Cisteína/metabolismo , ADN Mitocondrial/genética , Femenino , Humanos , Lactante , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/patología , Fallo Hepático/genética , Fallo Hepático/metabolismo , Fallo Hepático/patología , Trasplante de Hígado/métodos , Masculino , Mitocondrias/enzimología , Proteínas Mitocondriales/deficiencia , ARN de Transferencia/genética , ARNt Metiltransferasas/deficiencia
3.
Nucleic Acids Res ; 49(2): 1006-1022, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33330931

RESUMEN

The highly abundant N6-methyladenosine (m6A) RNA modification affects most aspects of mRNA function, yet the precise function of the rarer 5-methylcytidine (m5C) remains largely unknown. Here, we map m5C in the human transcriptome using methylation-dependent individual-nucleotide resolution cross-linking and immunoprecipitation (miCLIP) combined with RNA bisulfite sequencing. We identify NSUN6 as a methyltransferase with strong substrate specificity towards mRNA. NSUN6 primarily targeted three prime untranslated regions (3'UTR) at the consensus sequence motif CTCCA, located in loops of hairpin structures. Knockout and rescue experiments revealed enhanced mRNA and translation levels when NSUN6-targeted mRNAs were methylated. Ribosome profiling further demonstrated that NSUN6-specific methylation correlated with translation termination. While NSUN6 was dispensable for mouse embryonic development, it was down-regulated in human tumours and high expression of NSUN6 indicated better patient outcome of certain cancer types. In summary, our study identifies NSUN6 as a methyltransferase targeting mRNA, potentially as part of a quality control mechanism involved in translation termination fidelity.


Asunto(s)
Citidina/análogos & derivados , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARNt Metiltransferasas/metabolismo , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Línea Celular Tumoral , Uso de Codones , Secuencia de Consenso , Citidina/metabolismo , Células Madre Embrionarias , Técnicas de Inactivación de Genes , Genes Reporteros , Células HEK293 , Humanos , Inmunoprecipitación , Metilación , Ratones , Ratones Noqueados , Mutagénesis Sitio-Dirigida , ARN Mensajero/genética , Transcriptoma , ARNt Metiltransferasas/deficiencia
4.
Proc Natl Acad Sci U S A ; 117(34): 20785-20793, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32778592

RESUMEN

Transfer RNA (tRNA) activity is tightly regulated to provide a physiological protein translation, and tRNA chemical modifications control its function in a complex with ribosomes and messenger RNAs (mRNAs). In this regard, the correct hypermodification of position G37 of phenylalanine-tRNA, adjacent to the anticodon, is critical to prevent ribosome frameshifting events. Here we report that the tRNA-yW Synthesizing Protein 2 (TYW2) undergoes promoter hypermethylation-associated transcriptional silencing in human cancer, particularly in colorectal tumors. The epigenetic loss of TYW2 induces guanosine hypomodification in phenylalanine-tRNA, an increase in -1 ribosome frameshift events, and down-regulation of transcripts by mRNA decay, such as of the key cancer gene ROBO1. Importantly, TYW2 epigenetic inactivation is linked to poor overall survival in patients with early-stage colorectal cancer, a finding that could be related to the observed acquisition of enhanced migration properties and epithelial-to-mesenchymal features in the colon cancer cells that harbor TYW2 DNA methylation-associated loss. These findings provide an illustrative example of how epigenetic changes can modify the epitranscriptome and further support a role for tRNA modifications in cancer biology.


Asunto(s)
Neoplasias del Colon/genética , Sistema de Lectura Ribosómico , ARN de Transferencia/genética , Ribosomas/genética , ARNt Metiltransferasas/deficiencia , Adulto , Anciano , Anticodón/genética , Anticodón/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/enzimología , Neoplasias del Colon/metabolismo , Islas de CpG , Epigénesis Genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Conformación de Ácido Nucleico , Fenilalanina/genética , Fenilalanina/metabolismo , Regiones Promotoras Genéticas , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
5.
Diabetes Obes Metab ; 20 Suppl 2: 20-27, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30230180

RESUMEN

Efficient and accurate protein translation is essential to producing insulin in pancreatic ß-cells. Transfer RNA (tRNA) is known as the key component of the protein translational machinery. Interestingly, tRNA contains a wide variety of chemical modifications, which are posttranscriptionally catalysed by tRNA modifying enzymes. Recent advances in genome-sequencing technology have unveiled a number of genetic variations that are associated with the development of type 2 diabetes (T2D). Some of these mutations are located in the genes of tRNA modifying enzymes. Using cellular and animal models, it has been showed that dysregulation of tRNA modification impairs protein translation in pancreatic ß-cells and leads to aberrant insulin production. In this review, we discuss the recent findings in the molecular functions of tRNA modifications and their involvement in the development of T2D.


Asunto(s)
Células Secretoras de Insulina/fisiología , ARN de Transferencia/fisiología , Empalme Alternativo/genética , Animales , Glucemia/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/fisiología , Metilación de ADN/fisiología , Diabetes Mellitus Tipo 2/genética , Humanos , Insulina/biosíntesis , Secreción de Insulina/fisiología , Ratones Noqueados , Oxidación-Reducción , Fenotipo , Polimorfismo de Nucleótido Simple/fisiología , Transducción de Señal/fisiología , ARNt Metiltransferasas/deficiencia , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/fisiología
6.
Nucleic Acids Res ; 46(16): 8483-8499, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30010922

RESUMEN

Protein synthesis is a complex and highly coordinated process requiring many different protein factors as well as various types of nucleic acids. All translation machinery components require multiple maturation events to be functional. These include post-transcriptional and post-translational modification steps and methylations are the most frequent among these events. In eukaryotes, Trm112, a small protein (COG2835) conserved in all three domains of life, interacts and activates four methyltransferases (Bud23, Trm9, Trm11 and Mtq2) that target different components of the translation machinery (rRNA, tRNAs, release factors). To clarify the function of Trm112 in archaea, we have characterized functionally and structurally its interaction network using Haloferax volcanii as model system. This led us to unravel that methyltransferases are also privileged Trm112 partners in archaea and that this Trm112 network is much more complex than anticipated from eukaryotic studies. Interestingly, among the identified enzymes, some are functionally orthologous to eukaryotic Trm112 partners, emphasizing again the similarity between eukaryotic and archaeal translation machineries. Other partners display some similarities with bacterial methyltransferases, suggesting that Trm112 is a general partner for methyltransferases in all living organisms.


Asunto(s)
Proteínas Arqueales/fisiología , Proteínas Bacterianas/fisiología , Haloferax volcanii/enzimología , Procesamiento Postranscripcional del ARN , ARNt Metiltransferasas/fisiología , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Conjuntos de Datos como Asunto , Activación Enzimática , Células Eucariotas/enzimología , Evolución Molecular , Holoenzimas/fisiología , Inmunoprecipitación , Espectrometría de Masas , Metilación , Modelos Moleculares , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Proteómica , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad de la Especie , ARNt Metiltransferasas/deficiencia , ARNt Metiltransferasas/genética
7.
Cell Rep ; 19(8): 1512-1521, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28538172

RESUMEN

Genome-wide association studies (GWASs) have identified many disease-associated variant alleles, but understanding whether and how different genes/loci interact requires a platform for probing how the variant alleles act mechanistically. Isogenic mutant human embryonic stem cells (hESCs) provide an unlimited resource to derive and study human disease-relevant cells. Here, we focused on CDKAL1, linked by GWASs to diabetes. Through transcript profiling, we find that expression of the metallothionein (MT) gene family, also linked by GWASs to diabetes, is significantly downregulated in CDKAL1-/- cells that have been differentiated to insulin-expressing pancreatic beta-like cells. Forced MT1E expression rescues both hypersensitivity of CDKAL1 mutant cells to glycolipotoxicity and pancreatic beta-cell dysfunction in vitro and in vivo. MT1E functions at least in part through relief of ER stress. This study establishes an isogenic hESC-based platform to study the interaction of GWAS-identified diabetes gene variants and illuminate the molecular network impacting disease progression.


Asunto(s)
Diabetes Mellitus/genética , Predisposición Genética a la Enfermedad , Células Madre Embrionarias Humanas/metabolismo , Metalotioneína/genética , ARNt Metiltransferasas/genética , Diabetes Mellitus/patología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Glucosa/toxicidad , Células Madre Embrionarias Humanas/efectos de los fármacos , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Lípidos/toxicidad , Chaperonas Moleculares/metabolismo , Especies Reactivas de Oxígeno/metabolismo , ARNt Metiltransferasas/deficiencia , ARNt Metiltransferasas/metabolismo
8.
PLoS Genet ; 9(10): e1003888, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204302

RESUMEN

We describe a new syndrome of young onset diabetes, short stature and microcephaly with intellectual disability in a large consanguineous family with three affected children. Linkage analysis and whole exome sequencing were used to identify the causal nonsense mutation, which changed an arginine codon into a stop at position 127 of the tRNA methyltransferase homolog gene TRMT10A (also called RG9MTD2). TRMT10A mRNA and protein were absent in lymphoblasts from the affected siblings. TRMT10A is ubiquitously expressed but enriched in brain and pancreatic islets, consistent with the tissues affected in this syndrome. In situ hybridization studies showed that TRMT10A is expressed in human embryonic and fetal brain. TRMT10A is the mammalian ortholog of S. cerevisiae TRM10, previously shown to catalyze the methylation of guanine 9 (m(1)G9) in several tRNAs. Consistent with this putative function, in silico topology prediction indicated that TRMT10A has predominant nuclear localization, which we experimentally confirmed by immunofluorescence and confocal microscopy. TRMT10A localizes to the nucleolus of ß- and non-ß-cells, where tRNA modifications occur. TRMT10A silencing induces rat and human ß-cell apoptosis. Taken together, we propose that TRMT10A deficiency negatively affects ß-cell mass and the pool of neurons in the developing brain. This is the first study describing the impact of TRMT10A deficiency in mammals, highlighting a role in the pathogenesis of microcephaly and early onset diabetes. In light of the recent report that the type 2 diabetes candidate gene CDKAL1 is a tRNA methylthiotransferase, the findings in this family suggest broader relevance of tRNA methyltransferases in the pathogenesis of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Discapacidad Intelectual/genética , Metiltransferasas/genética , Microcefalia/genética , ARNt Metiltransferasas/genética , Adulto , Edad de Inicio , Animales , Apoptosis/genética , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Ligamiento Genético , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/patología , Masculino , Microcefalia/complicaciones , Microcefalia/patología , Mutación , Linaje , Ratas , Proteínas de Saccharomyces cerevisiae/genética , ARNt Metiltransferasas/deficiencia
9.
J Virol ; 87(10): 5812-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23487465

RESUMEN

Viruses that replicate in the cytoplasm cannot access the host nuclear capping machinery. These viruses have evolved viral methyltransferase(s) to methylate N-7 and 2'-O cap of their RNA; alternatively, they "snatch" host mRNA cap to form the 5' end of viral RNA. The function of 2'-O methylation of viral RNA cap is to mimic cellular mRNA and to evade host innate immune restriction. A cytoplasmic virus defective in 2'-O methylation is replicative, but its viral RNA lacks 2'-O methylation and is recognized and eliminated by the host immune response. Such a mutant virus could be rationally designed as a live attenuated vaccine. Here, we use Japanese encephalitis virus (JEV), an important mosquito-borne flavivirus, to prove this novel vaccine concept. We show that JEV methyltransferase is responsible for both N-7 and 2'-O cap methylations as well as evasion of host innate immune response. Recombinant virus completely defective in 2'-O methylation was stable in cell culture after being passaged for >30 days. The mutant virus was attenuated in mice, elicited robust humoral and cellular immune responses, and retained the engineered mutation in vivo. A single dose of immunization induced full protection against lethal challenge with JEV strains in mice. Mechanistically, the attenuation phenotype was attributed to the enhanced sensitivity of the mutant virus to the antiviral effects of interferon and IFIT proteins. Collectively, the results demonstrate the feasibility of using 2'-O methylation-defective virus as a vaccine approach; this vaccine approach should be applicable to other flaviviruses and nonflaviviruses that encode their own viral 2'-O methyltransferases.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/enzimología , Virus de la Encefalitis Japonesa (Especie)/genética , Encefalitis Japonesa/prevención & control , Vacunas contra la Encefalitis Japonesa/genética , Vacunas contra la Encefalitis Japonesa/inmunología , ARN Viral/metabolismo , ARNt Metiltransferasas/deficiencia , Animales , Anticuerpos Antivirales/sangre , Modelos Animales de Enfermedad , Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Encefalitis Japonesa/patología , Encefalitis Japonesa/virología , Femenino , Vacunas contra la Encefalitis Japonesa/administración & dosificación , Leucocitos Mononucleares/inmunología , Metilación , Ratones , Ratones Endogámicos BALB C , Análisis de Supervivencia , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología
10.
RNA Biol ; 9(7): 990-1001, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22832247

RESUMEN

Correct codon-anticodon pairing promotes translational fidelity, with these interactions greatly facilitated by modified nucleosides found in tRNA. We hypothesized that wobble uridine modifications catalyzed by tRNA methyltransferase 9 (Trm9) are essential for translational fidelity. In support, we have used phenotypic, reporter and protein-based assays to demonstrate increased translational infidelity in trm9Δ Saccharomyces cerevisiae cells. Codon reengineering studies suggest that Trm9-catalyzed tRNA modifications promote fidelity during the translation of specific genes, those rich in arginine and glutamic acid codons from mixed boxes. Using quantitative tRNA modification analysis, we determined that trm9Δ cells are only deficient in 2 of 23 tRNA modifications, with those 2, 5-methoxycarbonylmethyluridine (mcm ( 5) U) and 5-methoxycarbonylmethyl-2-thiouridine (mcm ( 5) s ( 2) U), classified as key determinants of translational fidelity. We also show that in the absence of mcm ( 5) U and mcm ( 5) s ( 2) U, the resulting translational infidelity promotes protein errors and activation of unfolded protein and heat shock responses. These data support a model in which Trm9-catalyzed tRNA modifications promote fidelity during the translation of specific transcripts, with decreased wobble base modification leading to translational infidelity, protein errors and activation of protein stress response pathways.


Asunto(s)
Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/enzimología , ARNt Metiltransferasas/deficiencia , Emparejamiento Base , Secuencia de Bases , Codón , Técnicas de Inactivación de Genes , Gentamicinas/farmacología , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Respuesta de Proteína Desplegada , ARNt Metiltransferasas/genética
11.
Hum Mol Genet ; 20(23): 4634-43, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21890497

RESUMEN

MTU1 (TRMU) is a mitochondrial enzyme responsible for the 2-thiolation of the wobble U in tRNA(Lys), tRNA(Glu) and tRNA(Gln), a post-transcriptional modification believed to be important for accurate and efficient synthesis of the 13 respiratory chain subunits encoded by mtDNA. Mutations in MTU1 are associated with acute infantile liver failure, and this has been ascribed to a transient lack of cysteine, the sulfur donor for the thiouridylation reaction, resulting in a mitochondrial translation defect during early development. A mutation in tRNA(Lys) that causes myoclonic epilepsy with ragged-red fibers (MERRF) is also reported to prevent modification of the wobble U. Here we show that mitochondrial translation is unaffected in fibroblasts from an MTU1 patient, in which MTU1 is undetectable by immunoblotting, despite the severe reduction in the 2-thiolation of mitochondrial tRNA(Lys), tRNA(Glu) and tRNA(Gln). The only respiratory chain abnormality that we could observe in these cells was an accumulation of a Complex II assembly intermediate, which, however, did not affect the level of the fully assembled enzyme. The identical phenotype was observed by siRNA-mediated knockdown of MTU1 in HEK 293 cells. Further, the mitochondrial translation deficiencies present in myoblasts from mitochondrial encephalomyopathy, lactic acidosis and stroke-like episode and MERRF patients, which are associated with defects in post-transcriptional modification of mitochondrial tRNAs, did not worsen following knockdown of MTU1 in these cells. This study demonstrates that MTU1 is not required for mitochondrial translation at normal steady-state levels of tRNAs, and that it may possess an as yet uncharacterized function in another sulfur-trafficking pathway.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , ARNt Metiltransferasas/metabolismo , Electroforesis en Gel de Poliacrilamida , Fibroblastos/enzimología , Fibroblastos/patología , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Síndrome MELAS/enzimología , Síndrome MELAS/patología , Síndrome MERRF/enzimología , Síndrome MERRF/patología , Proteínas Mitocondriales/deficiencia , Mutación/genética , Mioblastos/enzimología , Mioblastos/patología , Fosforilación Oxidativa , ARN de Transferencia/metabolismo , Tiouridina/metabolismo , ARNt Metiltransferasas/deficiencia
12.
Biochim Biophys Acta ; 782(2): 156-63, 1984 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-6722163

RESUMEN

A transplantable rat tumor, mammary adenocarcinoma 13762, accumulates tRNA which can be methylated in vitro by mammalian tRNA (adenine-1) methyltransferase. This unusual ability of the tumor RNA to serve as substrate for a homologous tRNA methylating enzyme is correlated with unusually low levels of the A 58-specific adenine-1 methyltransferase. The nature of the methyl-accepting RNA has been examined by separating tumor tRNA on two-dimensional polyacrylamide gels. Comparisons of ethidium bromide-stained gels of tumor vs. liver tRNA show no significant quantitative differences and no accumulation of novel tRNAs or precursor tRNAs in adenocarcinoma RNA. Two-dimensional separations of tumor RNA after in vitro [14C]methylation using purified adenine-1 methyltransferase indicate that about 25% of the tRNA species are strongly methyl-accepting RNAs. Identification of six of the tRNAs separated on two-dimensional gels has been carried out by hybridization of cloned tRNA genes to Northern blots. Three of these, tRNALys3 , tRNAGln and tRNAMeti , are among the adenocarcinoma methyl-accepting RNAs. The other three RNAs, all of which are leucine-specific tRNAs, show no methyl-accepting properties. Our results suggest that low levels of a tRNA methyltransferase in the adenocarcinoma cause selected species of tRNA to escape the normal A58 methylation, resulting in the appearance of several mature tRNAs which are deficient in 1-methyladenine. The methyl-accepting tRNAs from the tumor appear as ethidium bromide-stained spots of similar intensity to those seen for RNA from rat liver; therefore, methyladenine deficiency does not seem to impair processing of these tRNAs.


Asunto(s)
Adenocarcinoma/enzimología , Neoplasias Mamarias Experimentales/enzimología , ARNt Metiltransferasas/deficiencia , Animales , Línea Celular , Electroforesis en Gel de Poliacrilamida/métodos , Femenino , Hígado/análisis , Metilación , Ratas , Ratas Endogámicas F344 , Tritio , ARNt Metiltransferasas/metabolismo
13.
Cancer Res ; 40(8 Pt 1): 2701-5, 1980 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-6155997

RESUMEN

The administration of 5-azacytidine to mice leads to a specific, rapid, time-dependent, and dose-dependent decrease of transfer RNA (tRNA) cytosine-5-methyltransferase activity of mouse liver and the synthesis of tRNA specifically lacking 5-methylcytidine. The mechanism of this enzyme deficiency was investigated. The pretreatment of mice with RNA synthesis inhibitors such as actinomycin D and D-galactosamine prevented the enzyme deficiency induced by 5-azacytidine administration. These results suggested that RNA synthesis was a prerequisite for the induction by 5-azacytidine of the enzyme inhibition in vivo. Indeed, a slowly sedimenting RNA (4 to 7S) from the livers of mice treated with 5-azacytidine, when present in an in vitro tRNA methyltransferase assay, decreased specifically the activity of tRNA cytosine-5-methyltransferase. The pretreatment of mice with actinomycin D or D-galactosamine prior to the administration of 5-azacytidine effectively prevented the formation of such inhibitory RNA in vivo as determined by an in vitro tRNA methyltransferase assay. These results indicate that the administration of 5-azacytidine to mice leads to the rapid synthesis of a low-molecular-weight RNA fraction which is capable of specifically inactivating tRNA cytosine-5-methyltransferase activity in vivo and in vitro.


Asunto(s)
Azacitidina/farmacología , ARNt Metiltransferasas/antagonistas & inhibidores , Animales , Dactinomicina/farmacología , Ratones , Peso Molecular , ARN/fisiología , ARNt Metiltransferasas/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...