Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 578
Filtrar
1.
J Appl Toxicol ; 44(8): 1153-1165, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38594832

RESUMEN

L-tryptophan, an essential amino acid for physiological processes, metabolism, development, and growth of organisms, is widely utilized in animal nutrition and human health as a feed additive and nutritional supplement, respectively. Despite its known benefits, safety concerns have arisen due to an eosinophilia-myalgia syndrome (EMS) outbreak linked to L-tryptophan consumed by humans. Extensive research has established that the EMS outbreak was caused by an L-tryptophan product that contained certain impurities. Therefore, safety validations are imperative to endorse the use of L-tryptophan as a supplement or a feed additive. This study was conducted in tertiary hybrid [(Landrace × Yorkshire) × Duroc] pigs to assess general toxicity and potential risks for EMS-related symptoms associated with L-tryptophan used as a feed additive. Our investigation elucidated the relationship between L-tryptophan and EMS in swine. No mortalities or clinical signs were observed in any animals during the administration period, and the test substance did not induce toxic effects. Hematological analysis and histopathological examination revealed no changes in EMS-related parameters, such as eosinophil counts, lung lesions, skin lesions, or muscle atrophy. Furthermore, no test substance-related changes occurred in other general toxicological parameters. Through analyzing the tissues and organs of swine, most of the L-tryptophan impurities that may cause EMS were not retained. Based on these findings, we concluded that incorporating L-tryptophan and its impurities into the diet does not induce EMS in swine. Consequently, L-tryptophan may be used as a feed additive throughout all growth stages of swine without safety concerns.


Asunto(s)
Alimentación Animal , Suplementos Dietéticos , Triptófano , Animales , Triptófano/toxicidad , Triptófano/análisis , Porcinos , Alimentación Animal/análisis , Alimentación Animal/toxicidad , Suplementos Dietéticos/toxicidad , Masculino , Femenino , Contaminación de Medicamentos
2.
J Appl Toxicol ; 44(2): 184-200, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37646433

RESUMEN

L-tryptophan has been utilized as a feed additive in animal nutrition to improve growth performance, as well as a dietary supplement to alleviate various emotional symptoms in humans. Despite its benefits, concerns regarding its safety arose following the outbreak of eosinophilia-myalgia syndrome (EMS) among individuals who consumed L-tryptophan. The causative material of EMS was determined to be not L-tryptophan itself, but rather L-tryptophan impurities resulting from a specific manufacturing process. To investigate the effect of L-tryptophan and its impurities on humans who consume meat products derived from animals that were fed L-tryptophan and its impurities, an animal study involving broiler chickens was conducted. The animals in test groups were fed diet containing 0.065%-0.073% of L-tryptophan for 27 days. This study aimed to observe the occurrence of toxicological or EMS-related symptoms and analyze the residues of L-tryptophan impurities in meat products. The results indicated that there was no evidence of adverse effects associated with the test substance in the investigated parameters. Furthermore, most of the consumed EMS-causing L-tryptophan impurities did not remain in the meat of broiler chickens. Thus, this study demonstrated the safety of L-tryptophan and some of its impurities as a feed additive.


Asunto(s)
Síndrome de Eosinofilia-Mialgia , Triptófano , Humanos , Animales , Triptófano/toxicidad , Pollos , Dieta/veterinaria , Suplementos Dietéticos/efectos adversos , Alimentación Animal/toxicidad , Alimentación Animal/análisis
3.
Environ Toxicol Pharmacol ; 105: 104349, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38135201

RESUMEN

The objectives of this study were to evaluate the exposure to a diet naturally contaminated with mycotoxins on lactation performance, animal health, and the ability to sequester agents (SA) to reduce the human exposure to AFM1. Sixty healthy lactating Holstein cows were randomly assigned to two groups: naturally contaminated diet without and with the addition of a SA (20 g/cow/d AntitoxCooPil® -60% zeolite-40% cell wall-). Each cow was monitored throughout lactation. The concentration of aflatoxin B1 (AFB1) in feed and M1 (AFM1) in milk, health status, and productive and reproductive parameters were measured. AFB1 concentration in feed was very low (2.31 µg/kgDM). The addition of SA reduced the milk AFM1 concentrations (0.016 vs. 0.008 µg/kg) and transfer rates (2.19 vs. 0.77%). No differences were observed in health status, production and reproduction performance. The inclusion of SA in the diet of dairy cows reduce the risk in the most susceptible population.


Asunto(s)
Aflatoxina M1 , Contaminación de Alimentos , Lactancia , Leche , Secuestrantes , Animales , Bovinos , Femenino , Aflatoxina B1/toxicidad , Aflatoxina B1/análisis , Aflatoxina M1/análisis , Aflatoxina M1/antagonistas & inhibidores , Alimentación Animal/análisis , Alimentación Animal/toxicidad , Dieta/veterinaria , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Leche/química , Secuestrantes/administración & dosificación , Distribución Aleatoria
4.
Toxins (Basel) ; 15(5)2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37235377

RESUMEN

Fescue toxicosis is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue (E+). Summer grazing of E+ leads to decreased productivity, associated impaired thermoregulation, and altered behavior. The goal of this study was to determine the role of E+ grazing-climate interaction on animal behavior and thermoregulation during late fall. Eighteen Angus steers were placed on nontoxic (NT), toxic (E+) and endophyte-free (E-) fescue pastures for 28 days. Physiological parameters, such as rectal temperature (RT), respiration rate (RR), ear and ankle surface temperature (ET, AT), and body weights, were measured. Skin surface temperature (SST) and animal activity were recorded continuously with temperature and behavioral activity sensors, respectively. Environmental conditions were collected using paddocks-placed data loggers. Across the trial, steers on E+ gained about 60% less weight than the other two groups. E+ steers also had higher RT than E- and NT, and lower SST than NT post-pasture placement. Importantly, animals grazing E+ spent more time lying, less time standing, and took more steps. These data suggest that late fall E+ grazing impairs core and surface temperature regulation and increases non-productive lying time, which may be partly responsible for the observed decreased weight gains.


Asunto(s)
Alcaloides de Claviceps , Festuca , Lolium , Animales , Endófitos , Alcaloides de Claviceps/toxicidad , Conducta Animal , Alimentación Animal/toxicidad , Alimentación Animal/análisis
5.
Food Chem Toxicol ; 172: 113557, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36526092

RESUMEN

Unintentional use of mold-infested plant-based feed ingredients are sources of mycotoxins in fish feeds. The presence of the emerging mycotoxins ENNB and BEA in Norwegian commercial fish feeds and plant-based feed ingredients has raised concerns regarding the health effects on farmed Atlantic salmon (Salmon salar). Atlantic salmon pre-smolts were exposed to non-lethal doses of BEA and ENNB (ctrl, 50 and 500 µg/kg feed for 12 h), after which total RNA sequencing of the intestine and liver was carried out to evaluate gut health and identify possible hepatological changes after acute dietary exposure. ENNB and BEA did not trigger acute toxicity, however ENNB caused the onset of pathways linked to acute intestinal inflammation and BEA exposures caused the onset of hepatic hematological disruption. The prevalence and concentration of ENNB found in today's commercial feed could affect the fish health if consumed over a longer time-period.


Asunto(s)
Micotoxinas , Salmo salar , Animales , Intestinos , Micotoxinas/toxicidad , Alimentación Animal/toxicidad , Alimentación Animal/análisis
6.
Food Chem Toxicol ; 169: 113392, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36044934

RESUMEN

This review summarizes the updated knowledge on the toxicity of T-2 on poultry, followed by potential strategies for detoxification of T-2 in poultry diet. The toxic effects of T-2 on poultry include cytotoxicity, genotoxicity, metabolism modulation, immunotoxicity, hepatotoxicity, gastrointestinal toxicity, skeletal toxicity, nephrotoxicity, reproductive toxicity, neurotoxicity, etc. Cytotoxicity is the primary toxicity of T-2, characterized by inhibiting protein and nucleic acid synthesis, altering the cell cycle, inducing oxidative stress, apoptosis and necrosis, which lead to damages of immune organs, liver, digestive tract, bone, kidney, etc., resulting in pathological changes and impaired physiological functions of these organs. Glutathione redox system, superoxide dismutase, catalase and autophagy are protective mechanisms against oxidative stress and apoptosis, and can compensate the pathological changes and physiological functions impaired by T-2 to some degree. T-2 detoxifying agents for poultry feeds include adsorbing agents (e.g., aluminosilicate-based clays and microbial cell wall), biotransforming agents (e.g., Eubacterium sp. BBSH 797 strain), and indirect detoxifying agents (e.g., plant-derived antioxidants). These T-2 detoxifying agents could alleviate different pathological changes to different degrees, and multi-component T-2 detoxifying agents can likely provide more comprehensive protection against the toxicity of T-2.


Asunto(s)
Alimentación Animal , Contaminación de Alimentos , Aves de Corral , Toxina T-2 , Animales , Antioxidantes/metabolismo , Catalasa/metabolismo , Arcilla , Glutatión/metabolismo , Ácidos Nucleicos/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Toxina T-2/metabolismo , Toxina T-2/toxicidad , Biotransformación , Alimentación Animal/toxicidad , Contaminación de Alimentos/prevención & control
7.
Toxins (Basel) ; 14(2)2022 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-35202180

RESUMEN

Feeding experiments with juvenile grass carp (Ctenopharyngodon idella) fed with genetically modified maize MON 810 or DAS-59122 dried leaf biomass were carried out with 1-, 3- and 6-month exposures. Dosages of 3-7 µg/fish/day Cry1Ab or 18-55 µg/fish/day Cry34Ab1 toxin did not cause mortality. No difference occurred in body or abdominal sac weights. No differences appeared in levels of inorganic phosphate, calcium, fructosamine, bile acids, triglycerides, cholesterol, and alanine and aspartame aminotransferases. DAS-59122 did not alter blood parameters tested after 3 months of feeding. MON 810 slightly decreased serum albumin levels compared to the control, only in one group. Tapeworm (Bothriocephalus acheilognathi) infection changed the levels of inorganic phosphate and calcium. Cry34Ab1 toxin appeared in blood (12.6 ± 1.9 ng/mL), but not in the muscle. It was detected in B. acheilognathi. Cry1Ab was hardly detectable in certain samples near the limit of detection. Degradation of Cry toxins was extremely quick in the fish gastrointestinal tract. After 6 months of feeding, only mild indications in certain serum parameters were observed: MON 810 slightly increased the level of apoptotic cells in the blood and reduced the number of thrombocytes in one group; DAS-59122 mildly increased the number of granulocytes compared to the near-isogenic line.


Asunto(s)
Alimentación Animal/microbiología , Alimentación Animal/toxicidad , Toxinas de Bacillus thuringiensis/toxicidad , Carpas/anatomía & histología , Carpas/crecimiento & desarrollo , Carpas/inmunología , Zea mays/genética , Animales , Variación Genética , Genotipo , Herbivoria , Plantas Modificadas Genéticamente/genética , Zea mays/microbiología
8.
Sci Rep ; 11(1): 23372, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862385

RESUMEN

The gut microbiota may modulate the disposition and toxicity of environmental contaminants within a host but, conversely, contaminants may also impact gut bacteria. Such contaminant-gut microbial connections, which could lead to alteration of host health, remain poorly known and are rarely studied in free-ranging wildlife. The polar bear (Ursus maritimus) is a long-lived, wide-ranging apex predator that feeds on a variety of high trophic position seal and cetacean species and, as such, is exposed to among the highest levels of biomagnifying contaminants of all Arctic species. Here, we investigate associations between mercury (THg; a key Arctic contaminant), diet, and the diversity and composition of the gut microbiota of polar bears inhabiting the southern Beaufort Sea, while accounting for host sex, age class and body condition. Bacterial diversity was negatively associated with seal consumption and mercury, a pattern seen for both Shannon and Inverse Simpson alpha diversity indices (adjusted R2 = 0.35, F1,18 = 8.00, P = 0.013 and adjusted R2 = 0.26, F1,18 = 6.04, P = 0.027, respectively). No association was found with sex, age class or body condition of polar bears. Bacteria known to either be involved in THg methylation or considered to be highly contaminant resistant, including Lactobacillales, Bacillales and Aeromonadales, were significantly more abundant in individuals that had higher THg concentrations. Conversely, individuals with higher THg concentrations showed a significantly lower abundance of Bacteroidales, a bacterial order that typically plays an important role in supporting host immune function by stimulating intraepithelial lymphocytes within the epithelial barrier. These associations between diet-acquired mercury and microbiota illustrate a potentially overlooked outcome of mercury accumulation in polar bears.


Asunto(s)
Alimentación Animal/toxicidad , Bacterias/clasificación , Microbioma Gastrointestinal/efectos de los fármacos , Mercurio/toxicidad , Análisis de Secuencia de ADN/métodos , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , Caniformia , ADN Bacteriano/genética , ADN Ribosómico/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Filogenia , ARN Ribosómico 16S/genética , Ursidae
9.
Toxins (Basel) ; 13(12)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34941719

RESUMEN

This study was conducted to compare the potential ameliorative effects between probiotic Bacillus subtilis and biodegradable Bacillus subtilis on zearalenone (ZEN) toxicosis in gilts. Thirty-six Landrace×Yorkshire gilts (average BW = 64 kg) were randomly divided into four groups: (1) Normal control diet group (NC) fed the basal diet containing few ZEN (17.5 µg/kg); (2) ZEN contaminated group (ZC) fed the contaminated diet containing an exceeded limit dose of ZEN (about 300 µg/kg); (3) Probiotic agent group (PB) fed the ZC diet with added 5 × 109 CFU/kg of probiotic Bacillus subtilis ANSB010; (4) Biodegradable agent group (DA) fed the ZC diet with added 5 × 109 CFU/kg of biodegradable Bacillus subtilis ANSB01G. Results showed that Bacillus subtilis ANSB010 and ANSB01G isolated from broiler intestinal chyme had similar inhibitory activities against common pathogenic bacteria. In addition, the feed conversion ratio and the vulva size in DA group were significantly lower than ZC group (p < 0.05). The levels of IgG, IgM, IL-2 and TNFα in the ZC group were significantly higher than PB and DA groups (p < 0.05). The levels of estradiol and prolactin in the ZC group was significantly higher than those of the NC and DA groups (p < 0.05). Additionally, the residual ZEN in the feces of the ZC and PB groups were higher than those of the NC and DA groups (p < 0.05). In summary, the ZEN-contaminated diet had a damaging impact on growth performance, plasma immune function and hormone secretion of gilts. Although probiotic and biodegradable Bacillus subtilis have similar antimicrobial capacities, only biodegradable Bacillus subtilis could eliminate these negative effects through its biodegradable property to ZEN.


Asunto(s)
Alimentación Animal/toxicidad , Bacillus subtilis , Toxinas Bacterianas/farmacología , Toxinas Bacterianas/uso terapéutico , Probióticos/uso terapéutico , Sustancias Protectoras/uso terapéutico , Zearalenona/toxicidad , Animales , Femenino , Probióticos/farmacología , Porcinos
10.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34769475

RESUMEN

Nano-sized zinc oxide (nano-ZnO) affects lipid deposition, but its absorption patterns and mechanisms affecting lipid metabolism are still unclear. This study was undertaken to investigate the molecular mechanism of nano-ZnO absorption and its effects on lipid metabolism in the intestinal tissues of a widely distributed freshwater teleost yellow catfish Pelteobagrus fulvidraco. We found that 100 mg/kg dietary nano-ZnO (H-Zn group) significantly increased intestinal Zn contents. The zip6 and zip10 mRNA expression levels were higher in the H-Zn group than those in the control (0 mg/kg nano-ZnO), and zip4 mRNA abundances were higher in the control than those in the L-Zn (50 mg/kg nano-ZnO) and H-Zn groups. Eps15, dynamin1, dynamin2, caveolin1, and caveolin2 mRNA expression levels tended to reduce with dietary nano-ZnO addition. Dietary nano-ZnO increased triglyceride (TG) content and the activities of the lipogenic enzymes glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), and isocitrate dehydrogenase (ICDH), upregulated the mRNA abundances of lipogenic genes 6pgd, fatty acid synthase (fas), and sterol regulatory element binding protein 1 (srebp1), and reduced the mRNA expression of farnesoid X receptor (fxr) and small heterodimer partner (shp). The SHP protein level in the H-Zn group was lower than that in the control and the L-Zn group markedly. Our in vitro study indicated that the intestinal epithelial cells (IECs) absorbed nano-ZnO via endocytosis, and nano-Zn-induced TG deposition and lipogenesis were partially attributable to the endocytosis of nano-ZnO in IECs. Mechanistically, nano-ZnO-induced TG deposition was closely related to the metal responsive transcription factor 1 (MTF-1)-SHP pathway. Thus, for the first time, we found that the lipogenesis effects of nano-ZnO probably depended on the key gene shp, which is potentially regulated by MTF1 and/or FXR. This novel signaling pathway of MTF-1 through SHP may be relevant to explain the toxic effects and lipotoxicity ascribed to dietary nano-ZnO addition.


Asunto(s)
Endocitosis/fisiología , Mucosa Intestinal , Lípidos/toxicidad , Lipogénesis/efectos de los fármacos , Óxido de Zinc/farmacocinética , Alimentación Animal/toxicidad , Animales , Bagres , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Dieta , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Intestinos/metabolismo , Intestinos/patología , Lípidos/farmacocinética , Redes y Vías Metabólicas/genética , Nanopartículas del Metal/toxicidad , Regulación hacia Arriba/efectos de los fármacos , Zinc/metabolismo , Zinc/farmacocinética , Óxido de Zinc/química , Óxido de Zinc/toxicidad
11.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34769489

RESUMEN

Ochratoxin A (OTA) is toxic to animals and threatens food safety through residues in animal tissues. A novel degrading strain Bacillus subtilis ANSB168 was isolated and further investigated. We cloned d-alanyl-d-alanine carboxypeptidase DacA and DacB from ANSB168 and over-expressed them in Escherichia coli Rosetta (DE3). Then, we characterized the OTA degradation mechanism of DacA and DacB, which was degrading OTA into OTα. A total of 45 laying hens were divided into three equal groups. The control group was fed basal feed, and other groups were administered with OTA (250 µg/kg of feed). A freeze-dried culture powder of ANSB168 (3 × 107 CFU/g, 2 kg/T of feed) was added to one of the OTA-fed groups for 28 days from day one of the experiment. We found that OTA significantly damaged the kidney and liver, inducing inflammation and activating the humoral immune system, causing oxidative stress in the layers. The ANSB168 bioproduct was able to alleviate OTA-induced kidney and liver damage, relieving OTA-induced inflammation and oxidative stress. Overall, DacA and DacB derived from ANSB168 degraded OTA into OTα, while the ANSB168 bioproduct was able to alleviate damages induced by OTA in laying hens.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/farmacología , Contaminación de Alimentos/prevención & control , Inflamación/prevención & control , Ocratoxinas/toxicidad , Estrés Oxidativo/efectos de los fármacos , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Alimentación Animal/análisis , Alimentación Animal/toxicidad , Animales , Bloqueadores de los Canales de Calcio/toxicidad , Pollos , Modelos Animales de Enfermedad , Femenino , Contaminación de Alimentos/análisis , Inflamación/inducido químicamente , Inflamación/enzimología , Inflamación/patología
12.
Sci Rep ; 11(1): 21007, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34697366

RESUMEN

Nowadays, there is a growing concern about contamination of toxic metals (TM) in pet food due to the great potential for health risks of these elements. TM concentrations in commercial pet foods (n = 100) as well as in ingredients used in their composition (n = 100) were analyzed and compared to the Food and Drug Administration (FDA) maximum tolerable level (MTL), and the TM concentrations found in the different sources of carbohydrate, protein, and fat were compared. The TM concentrations were determined by inductively coupled plasma with optical emission spectrometry (ICP-OES). Concentrations above the MTL for aluminum, mercury, lead, uranium, and vanadium were observed in both dog and cat foods, and the percentage of dog foods that exceeded the MTL of these TM were: 31.9%; 100%; 80.55%; 95.83%; and 75%, respectively, and in cat foods: 10.71%; 100%; 32.14%; 85.71%; 28.57%, respectively. The MTL values of these TMs and the mean values in dog foods (mg/kg dry matter basis) (MTL [mean ± standard deviation]) were: aluminum: 200 (269.17 ± 393.74); mercury: 0.27 (2.51 ± 1.31); lead: 10 (12.55 ± 4.30); uranium: 10 (76.82 ± 28.09); vanadium: 1 (1.35 ± 0.69), while in cat foods were: aluminum: 200 (135.51 ± 143.95); mercury: 0.27 (3.47 ± 4.31); lead: 10 (9.13 ± 5.42); uranium: 10 (49.83 ± 29.18); vanadium: 1 (0.81 ± 0.77). Dry foods presented higher concentrations of most TM (P < 0.05) than wet foods (P < 0.05). Among the carbohydrate sources, there were the highest levels of all TM except cobalt, mercury, and nickel in wheat bran (P < 0.05), while among the protein sources, in general, animal by-products had higher TM concentrations than plant-based ingredients. Pork fat had higher concentrations of arsenic, mercury, and antimony than fish oil and poultry fat. It was concluded that the pet foods evaluated in this study presented high concentrations of the following TM: aluminum, mercury, lead, uranium, and vanadium.


Asunto(s)
Alimentación Animal/análisis , Ingredientes Alimentarios/análisis , Metales Pesados/análisis , Alimentación Animal/toxicidad , Animales , Gatos , Perros , Análisis de los Alimentos , Ingredientes Alimentarios/toxicidad , Intoxicación por Metales Pesados/veterinaria
13.
Sci Rep ; 11(1): 19290, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588614

RESUMEN

Glyphosate is the active substance in glyphosate-based herbicides, e.g. Roundup. Its widespread application on feed crops leaves residues in the feed. Glyphosate has antimicrobial and mineral chelating properties and we investigated whether there is an association between feed residues of glyphosate on the one side and broiler breeder egg laying percent and egg hatchability on the other side. Twenty-six feed samples from five conventional flocks producing hatching eggs were analysed for glyphosate. Data on laying percent and egg hatchability from periods following each feed sampling were then associated with feed residues of glyphosate. The average glyphosate residue level was 0.09 mg/kg, maximum was 0.19 and minimum was 0.004 mg/kg. Average laying percent over observation days was 65% (SD = 5.4%) and average hatchability was 79% (SD = 5.8%). We found a negative association between feed glyphosate residue level and hatchability (P = 0.03) when adjusted for breeder age, storage time of eggs on farm before delivery and storage time at hatchery before incubation start. No association was found with laying percent (P = 0.59) adjusted for breeder age. The range of glyphosate concentrations in feed was narrow and should be kept in mind when interpreting both significant and non-significant associations with glyphosate residue concentrations. In nine of 24 analysed conventional eggs the concentration of glyphosate in yolk was above the detection limit however below the quantification limit indicating that traces of glyphosate are common in conventional eggs.


Asunto(s)
Alimentación Animal/toxicidad , Huevos/análisis , Glicina/análogos & derivados , Herbicidas/toxicidad , Oviposición/efectos de los fármacos , Alimentación Animal/análisis , Alimentación Animal/normas , Animales , Pollos , Huevos/normas , Femenino , Glicina/análisis , Glicina/normas , Glicina/toxicidad , Herbicidas/análisis , Herbicidas/normas , Límite de Detección , Glifosato
14.
Food Chem Toxicol ; 153: 112310, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34062222

RESUMEN

To study reproductive toxicity of gene modified wheat generated by introducing DREB3 (drought response element binding protein 3) gene, Wistar rats of were allocated into 3 groups and fed with DREB3 gene modified wheat mixture diet (GM group), non-gene modified wheat mixture diet (Non-GM group) and AIN-93 diet (Control group) from parental generation (F0) to the second offspring (F2). GM wheat and Non-GM wheat, Jimai22, were both formulated into diets at a ratio of 69.55% according to AIN93 diet for rodent animals. Compared with non-GM group, no biologically related differences were observed in GM group rats with respect to reproductive performance such as fertility rate, gestation rate, mean duration, hormone level, reproductive organ pathology and developmental parameters such as body weight, body length, food consumption, neuropathy, behavior, immunotoxicity, hematology and serum chemistry. In conclusion, no adverse effect were found relevant to GM wheat in the two generation reproduction toxicity study, indicating the GM wheat is a safe alternative for its counterpart wheat regarding to reproduction toxicity.


Asunto(s)
Alimentación Animal/toxicidad , Alimentos Modificados Genéticamente/toxicidad , Plantas Modificadas Genéticamente/química , Reproducción/efectos de los fármacos , Triticum/química , Animales , Conducta Animal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Proteínas de Unión al ADN/genética , Femenino , Masculino , Tamaño de los Órganos/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Ratas Wistar , Proteínas de Soja/genética , Glycine max/genética , Factores de Transcripción/genética , Triticum/genética
15.
Toxins (Basel) ; 13(2)2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671260

RESUMEN

The objective of this study was to evaluate the efficacy of mycotoxin binders in reducing the adverse effects of co-occurring dietary aflatoxin B1 (AFB1), deoxynivalenol (DON) and ochratoxin A (OTA) on laying hens. Three hundred and sixty 26-week-old Roman laying hens were randomly allocated into four experimental groups with 10 replicates of nine birds each. The four groups received either a basal diet (BD; Control), a BD supplemented with 0.15 mg/kg AFB1 + 1.5 mg/kg DON + 0.12 mg/kg OTA (Toxins), a BD + Toxins with Toxo-HP binder (Toxins + HP), or a BD + Toxins with TOXO XL binder (Toxins + XL) for 12 weeks. Compared to the control, dietary supplementation of mycotoxins decreased (P < 0.10) total feed intake, total egg weight, and egg-laying rate, but increased feed/egg ratio by 2.5-6.1% and mortality during various experimental periods. These alterations induced by mycotoxins were alleviated by supplementation with both TOXO HP and XL binders (P < 0.10). Furthermore, dietary mycotoxins reduced (P < 0.05) eggshell strength by 12.3% and caused an accumulation of 249 µg/kg of DON in eggs at week 12, while dietary supplementation with TOXO HP or XL mitigated DON-induced changes on eggshell strength and prevented accumulation of DON in eggs (P < 0.05). Moreover, dietary mycotoxins increased relative liver weight, but decreased spleen and proventriculus relative weights by 11.6-22.4% (P < 0.05). Mycotoxin exposure also increased alanine aminotransferase activity and reduced immunoglobulin (Ig) A, IgM, and IgG concentrations in serum by 9.2-26.1% (P < 0.05). Additionally, mycotoxin exposure induced histopathological damage and reduced villus height, villus height/crypt depth, and crypt depth in duodenum, jejunum and (or) ileum (P < 0.05). Notably, most of these histological changes were mitigated by supplementation with both TOXO HP and XL (P < 0.05). In conclusion, the present study demonstrated that the mycotoxin binders TOXO HP and XL can help to mitigate the combined effects of AFB1, DON, and OTA on laying hen performance, egg quality, and health.


Asunto(s)
Aflatoxina B1/análisis , Alimentación Animal/análisis , Bentonita/administración & dosificación , Pared Celular , Pollos/crecimiento & desarrollo , Suplementos Dietéticos , Huevos , Ocratoxinas/análisis , Tricotecenos/análisis , Levaduras , Aflatoxina B1/toxicidad , Alimentación Animal/microbiología , Alimentación Animal/toxicidad , Crianza de Animales Domésticos , Animales , Pollos/microbiología , Femenino , Microbiología de Alimentos , Ocratoxinas/toxicidad , Tricotecenos/toxicidad
16.
Toxins (Basel) ; 13(2)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672250

RESUMEN

This review aimed to investigate the occurrence of mycotoxins, their toxic effects, and the detoxifying agents discussed in scientific publications that are related to pig production. Mycotoxins that are of major interest are aflatoxins and Fusarium toxins, such as deoxynivalenol and fumonisins, because of their elevated frequency at a global scale and high occurrence in corn, which is the main feedstuff in pig diets. The toxic effects of aflatoxins, deoxynivalenol, and fumonisins include immune modulation, disruption of intestinal barrier function, and cytotoxicity leading to cell death, which all result in impaired pig performance. Feed additives, such as mycotoxin-detoxifying agents, that are currently available often combine organic and inorganic sources to enhance their adsorbability, immune stimulation, or ability to render mycotoxins less toxic. In summary, mycotoxins present challenges to pig production globally because of their increasing occurrences in recent years and their toxic effects impairing the health and growth of pigs. Effective mycotoxin-detoxifying agents must be used to boost pig health and performance and to improve the sustainable use of crops.


Asunto(s)
Alimentación Animal/análisis , Suplementos Dietéticos , Sus scrofa/crecimiento & desarrollo , Tricotecenos/análisis , Adsorción , Aflatoxinas/análisis , Alimentación Animal/microbiología , Alimentación Animal/toxicidad , Crianza de Animales Domésticos , Animales , Cadena Alimentaria , Microbiología de Alimentos , Fumonisinas/análisis , Valor Nutritivo , Sus scrofa/metabolismo , Tricotecenos/toxicidad
17.
Microbes Infect ; 23(4-5): 104793, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33571673

RESUMEN

Co-occurrence of bacterial infections with type 2 diabetes (T2D) is a global problem. Melioidosis caused by Burkholderia pseudomallei is 10 times more likely to occur in patients with T2D, than in normoglycemic individuals. Using an experimental model of T2D, we observed that greater susceptibility in T2D was due to differences in proportions of infiltrating leucocytes and reduced levels of MCP-1, IFN-γ and IL-12 at sites of infection within 24 h post-infection. However, by 72 h the levels of inflammatory cytokines and bacteria were markedly higher in visceral tissue and blood in T2D mice. In T2D, dysregulated early immune responses are responsible for the greater predisposition to B. pseudomallei infection.


Asunto(s)
Alimentación Animal/toxicidad , Burkholderia pseudomallei/inmunología , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/inmunología , Melioidosis/inmunología , Animales , Diabetes Mellitus Experimental , Modelos Animales de Enfermedad , Índice Glucémico , Ratones
18.
Reprod Domest Anim ; 56(5): 775-782, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33606307

RESUMEN

The aim of the present study was to evaluate the effects of zearalenone (ZEA) on the reproductive system morphometry, oestrogen (E2) levels and oocyte quality of beef heifers. Twenty non-pregnant purebred Nellore (Bos indicus) heifers [age, ≥18 months; initial body weight, 348 ± 30 kg (mean ± standard deviation)] were used. The animals were randomly divided into experimental group and a control group of 10 animals each. Group experimental was administered 300 ppb ZEA per os for 98 days, and the control group was administered placebo per os for 98 days. The administration of ZEA was carried out daily by adding mycotoxin to the diet. All heifers were evaluated weekly via rectal ultrasound examinations (12 weeks). Diameters of the right and left uterine horns, right and left ovaries, largest antral follicle and corpus luteum were measured. Vulva size was also measured. Blood samples were collected to estimate E2 levels. At the end of 12 weeks, the heifers were slaughtered, and the ovaries were sent to the laboratory for in vitro embryo production. A completely randomized design was adopted, and repeated measures analysis of variance (p < .05) was performed (except for oocyte quality). Vulva size (p = .0985); diameters of uterine horns (p = .0522), ovaries (p = .6955), antral follicles (p = .6355) and corpus luteum (p = .3808); and E2 levels (p = .3379) were not affected by the treatments. ZEA-contaminated diet significantly reduced (p = .05) the proportion of viable oocytes (49.4%, n = 207) compared with the control diet (59.9%, n = 222); however, the blastocyst rate did not differ between the groups (p = .9418). The results indicate that contamination of beef heifer's diet with 300 ppb ZEA affected neither morphometric parameters nor plasma oestrogen levels; however, ZEA contamination was detrimental to oocyte quality.


Asunto(s)
Genitales Femeninos/efectos de los fármacos , Oocitos/efectos de los fármacos , Zearalenona/toxicidad , Alimentación Animal/toxicidad , Animales , Bovinos , Técnicas de Cultivo de Embriones/veterinaria , Estrógenos/sangre , Femenino , Contaminación de Alimentos , Genitales Femeninos/diagnóstico por imagen , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Distribución Aleatoria , Recolección de Tejidos y Órganos/veterinaria
19.
J Environ Sci Health B ; 56(4): 307-312, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33560907

RESUMEN

Sugarcane yeast and brewer's yeast from ethanol production are widely used as ingredients of animal feed formulations in Brazil. To avoid the contamination of the must in ethanol production refineries, the use of antibiotics is one of the main preventive treatments. Thus, there is a risk of antibiotic residues carry over from yeast to animal feed. This unintentional addition of antibiotics can produce non-compliant feed products, due to regulatory aspects and their toxicity for animals. The results of an exploratory program to assess the occurrence of over 60 antibiotics and other pharmaceuticals in 27 sugarcane yeast and brewer's yeast samples were described. Monensin was present in seven samples with concentrations ranging from 0.47 to 263.5 mg kg-1. Other antibiotics quantitated were virginiamycin (2.25 mg kg-1) and amprolium (0.25 mg kg-1). Monensin in sugarcane yeast may represent a risk for further feeds production, especially for those products intended for sensible species such as equines and rabbits, for which monensin has toxic effects.


Asunto(s)
Alimentación Animal/análisis , Antibacterianos/análisis , Etanol/metabolismo , Levaduras/química , Alimentación Animal/toxicidad , Brasil , Industria de Alimentos , Monensina/análisis , Saccharomyces cerevisiae/química , Virginiamicina/análisis
20.
Toxins (Basel) ; 13(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466409

RESUMEN

Mycotoxins are secondary metabolites produced by several species of fungi, including the Fusarium, Aspergillus, and Penicillium species. Currently, more than 300 structurally diverse mycotoxins are known, including a group called minor mycotoxins, namely enniatins, beauvericin, and fusaproliferin. Beauvericin and enniatins possess a variety of biological activities. Their antimicrobial, antibiotic, or ionoforic activities have been proven and according to various bioassays, they are believed to be toxic. They are mainly found in cereal grains and their products, but they have also been detected in forage feedstuff. Mycotoxins in feedstuffs of livestock animals are of dual concern. First one relates to the safety of animal-derived food. Based on the available data, the carry-over of minor mycotoxins from feed to edible animal tissues is possible. The second concern relates to detrimental effects of mycotoxins on animal health and performance. This review aims to summarize current knowledge on the relation of minor mycotoxins to livestock animals.


Asunto(s)
Depsipéptidos/toxicidad , Contaminación de Alimentos/análisis , Micotoxinas , Alimentación Animal/toxicidad , Animales , Grano Comestible/toxicidad , Ganado , Terpenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...