Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
PLoS Pathog ; 20(7): e1012320, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39012849

RESUMEN

Apoptosis, a major form of programmed cell death, is an essential component of host defense against invading intracellular pathogens. Viruses encode inhibitors of apoptosis to evade host responses during infection, and to support their own replication and survival. Therefore, hosts and their viruses are entangled in a constant evolutionary arms race to control apoptosis. Until now, apoptosis in the context of the antiviral immune system has been almost exclusively studied in vertebrates. This limited phyletic sampling makes it impossible to determine whether a similar mechanism existed in the last common ancestor of animals. Here, we established assays to probe apoptosis in the sea anemone Nematostella vectensis, a model species of Cnidaria, a phylum that diverged approximately 600 million years ago from the rest of animals. We show that polyinosinic:polycytidylic acid (poly I:C), a synthetic long double-stranded RNA mimicking viral RNA and a primary ligand for the vertebrate RLR melanoma differentiation-associated protein 5 (MDA5), is sufficient to induce apoptosis in N. vectensis. Furthermore, at the transcriptomic level, apoptosis related genes are significantly enriched upon poly(I:C) exposure in N. vectensis as well as bilaterian invertebrates. Our phylogenetic analysis of caspase family genes in N. vectensis reveals conservation of all four caspase genes involved in apoptosis in mammals and revealed a cnidarian-specific caspase gene which was strongly upregulated. Altogether, our findings suggest that apoptosis in response to a viral challenge is a functionally conserved mechanism that can be traced back to the last common ancestor of Bilateria and Cnidaria.


Asunto(s)
Apoptosis , ARN Bicatenario , Anémonas de Mar , Animales , Anémonas de Mar/genética , ARN Bicatenario/metabolismo , ARN Bicatenario/genética , Filogenia , Poli I-C/farmacología , Cnidarios/genética , Evolución Biológica
2.
Neural Dev ; 19(1): 11, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909268

RESUMEN

The complex morphology of neurons requires precise control of their microtubule cytoskeleton. This is achieved by microtubule-associated proteins (MAPs) that regulate the assembly and stability of microtubules, and transport of molecules and vesicles along them. While many of these MAPs function in all cells, some are specifically or predominantly involved in regulating microtubules in neurons. Here we use the sea anemone Nematostella vectensis as a model organism to provide new insights into the early evolution of neural microtubule regulation. As a cnidarian, Nematostella belongs to an outgroup to all bilaterians and thus occupies an informative phylogenetic position for reconstructing the evolution of nervous system development. We identified an ortholog of the microtubule-binding protein doublecortin-like kinase (NvDclk1) as a gene that is predominantly expressed in neurons and cnidocytes (stinging cells), two classes of cells belonging to the neural lineage in cnidarians. A transgenic NvDclk1 reporter line revealed an elaborate network of neurite-like processes emerging from cnidocytes in the tentacles and the body column. A transgene expressing NvDclk1 under the control of the NvDclk1 promoter suggests that NvDclk1 localizes to microtubules and therefore likely functions as a microtubule-binding protein. Further, we generated a mutant for NvDclk1 using CRISPR/Cas9 and show that the mutants fail to generate mature cnidocytes. Our results support the hypothesis that the elaboration of programs for microtubule regulation occurred early in the evolution of nervous systems.


Asunto(s)
Quinasas Similares a Doblecortina , Neuronas , Anémonas de Mar , Animales , Anémonas de Mar/embriología , Anémonas de Mar/citología , Anémonas de Mar/genética , Neuronas/metabolismo , Neuronas/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Microtúbulos/metabolismo , Neurogénesis/fisiología , Animales Modificados Genéticamente , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética
3.
Mol Phylogenet Evol ; 198: 108118, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38849066

RESUMEN

Sea anemones (Order Actiniaria) are a diverse group of marine invertebrates ubiquitous across marine ecosystems. Despite their wide distribution and success, a knowledge gap persists in our understanding of their diversity within tropical systems, owed to sampling bias of larger and more charismatic species overshadowing cryptic lineages. This study aims to delineate the sea anemone diversity in Mo'orea (French Polynesia) with the use of a dataset from the Mo'orea Biocode's "BioBlitz" initiative, which prioritized the sampling of more cryptic and understudied taxa. Implementing a target enrichment approach, we integrate 71 newly sequenced samples into an expansive phylogenetic framework and contextualize Mo'orea's diversity within global distribution patterns of sea anemones. Our analysis corroborates the presence of several previously documented sea anemones in French Polynesia and identifies for the first time the occurrence of members of genera Andvakia and Aiptasiomorpha. This research unveils the diverse sea anemone ecosystem in Mo'orea, spotlighting the area's ecological significance and emphasizing the need for continued exploration. Our methodology, encompassing a broad BLAST search coupled with phylogenetic analysis, proved to be a practical and effective approach for overcoming the limitations posed by the lack of comprehensive sequence data for sea anemones. We discuss the merits and limitations of current molecular methodologies and stress the importance of further research into lesser-studied marine organisms like sea anemones. Our work sets a precedent for future phylogenetic studies stemming from BioBlitz endeavors.


Asunto(s)
Filogenia , Anémonas de Mar , Animales , Polinesia , Anémonas de Mar/genética , Anémonas de Mar/clasificación , Biodiversidad , Análisis de Secuencia de ADN
4.
Elife ; 122024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727714

RESUMEN

Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) - the most common receptors of bilaterian neuropeptides - but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.


Asunto(s)
Neuropéptidos , Filogenia , Receptores Acoplados a Proteínas G , Anémonas de Mar , Animales , Anémonas de Mar/genética , Neuropéptidos/metabolismo , Neuropéptidos/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Transducción de Señal
5.
PeerJ ; 12: e17349, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784394

RESUMEN

Background: Antibiotics are commonly used for controlling microbial growth in diseased organisms. However, antibiotic treatments during early developmental stages can have negative impacts on development and physiology that could offset the positive effects of reducing or eliminating pathogens. Similarly, antibiotics can shift the microbial community due to differential effectiveness on resistant and susceptible bacteria. Though antibiotic application does not typically result in mortality of marine invertebrates, little is known about the developmental and transcriptional effects. These sublethal effects could reduce the fitness of the host organism and lead to negative changes after removal of the antibiotics. Here, we quantify the impact of antibiotic treatment on development, gene expression, and the culturable bacterial community of a model cnidarian, Nematostella vectensis. Methods: Ampicillin, streptomycin, rifampicin, and neomycin were compared individually at two concentrations, 50 and 200 µg mL-1, and in combination at 50 µg mL-1 each, to assess their impact on N. vectensis. First, we determined the impact antibiotics have on larval development. Next Amplicon 16S rDNA gene sequencing was used to compare the culturable bacteria that persist after antibiotic treatment to determine how these treatments may differentially select against the native microbiome. Lastly, we determined how acute (3-day) and chronic (8-day) antibiotic treatments impact gene expression of adult anemones. Results: Under most exposures, the time of larval settlement extended as the concentration of antibiotics increased and had the longest delay of 3 days in the combination treatment. Culturable bacteria persisted through a majority of exposures where we identified 359 amplicon sequence variants (ASVs). The largest proportion of bacteria belonged to Gammaproteobacteria, and the most common ASVs were identified as Microbacterium and Vibrio. The acute antibiotic exposure resulted in differential expression of genes related to epigenetic mechanisms and neural processes, while constant application resulted in upregulation of chaperones and downregulation of mitochondrial genes when compared to controls. Gene Ontology analyses identified overall depletion of terms related to development and metabolism in both antibiotic treatments. Discussion: Antibiotics resulted in a significant increase to settlement time of N. vectensis larvae. Culturable bacterial species after antibiotic treatments were taxonomically diverse. Additionally, the transcriptional effects of antibiotics, and after their removal result in significant differences in gene expression that may impact the physiology of the anemone, which may include removal of bacterial signaling on anemone gene expression. Our research suggests that impacts of antibiotics beyond the reduction of bacteria may be important to consider when they are applied to aquatic invertebrates including reef building corals.


Asunto(s)
Antibacterianos , Larva , Anémonas de Mar , Animales , Antibacterianos/farmacología , Anémonas de Mar/genética , Anémonas de Mar/efectos de los fármacos , Larva/microbiología , Larva/efectos de los fármacos , Larva/genética , Ampicilina/farmacología , Neomicina/farmacología , Estreptomicina/farmacología , Rifampin/farmacología , Expresión Génica/efectos de los fármacos
6.
Elife ; 122024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743049

RESUMEN

The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian Nematostella vectensis, pacemaker gene transcript levels, including NvClk (the Clock ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a NvClk allele mutant (NvClkΔ), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD, NvClkΔ/Δ polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the NvClkΔ/Δ polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the Clock gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth's biosphere.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Animales , Ritmo Circadiano/genética , Relojes Circadianos/genética , Anémonas de Mar/genética , Anémonas de Mar/fisiología , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Fotoperiodo , Cnidarios/fisiología , Cnidarios/genética
7.
Mol Biol Evol ; 41(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38676945

RESUMEN

Gene duplication is a major force driving evolutionary innovation. A classic example is generating new animal toxins via duplication of physiological protein-encoding genes and recruitment into venom. While this process drives the innovation of many animal venoms, reverse recruitment of toxins into nonvenomous cells remains unresolved. Using comparative genomics, we find members of the Membrane Attack Complex and Perforin Family (MAC) have been recruited into venom-injecting cells (cnidocytes), in soft and stony corals and sea anemones, suggesting that the ancestral MAC was a cnidocyte expressed toxin. Further investigation into the model sea anemone Nematostella vectensis reveals that three members have undergone Nematostella-specific duplications leading to their reverse recruitment into endomesodermal cells. Furthermore, simultaneous knockdown of all three endomesodermally expressed MACs leads to mis-development, supporting that these paralogs have nonvenomous function. By resolving the evolutionary history and function of MACs in Nematostella, we provide the first proof for reverse recruitment from venom to organismal development.


Asunto(s)
Evolución Molecular , Perforina , Anémonas de Mar , Animales , Anémonas de Mar/genética , Perforina/metabolismo , Perforina/genética , Duplicación de Gen , Venenos de Cnidarios/genética , Venenos de Cnidarios/metabolismo , Filogenia , Familia de Multigenes
8.
Dev Biol ; 510: 50-65, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521499

RESUMEN

Bilaterian animals have evolved complex sensory organs comprised of distinct cell types that function coordinately to sense the environment. Each sensory unit has a defined architecture built from component cell types, including sensory cells, non-sensory support cells, and dedicated sensory neurons. Whether this characteristic cellular composition is present in the sensory organs of non-bilaterian animals is unknown. Here, we interrogate the cell type composition and gene regulatory networks controlling development of the larval apical sensory organ in the sea anemone Nematostella vectensis. Using single cell RNA sequencing and imaging approaches, we reveal two unique cell types in the Nematostella apical sensory organ, GABAergic sensory cells and a putative non-sensory support cell population. Further, we identify the paired-like (PRD) homeodomain gene prd146 as a specific sensory cell marker and show that Prd146+ sensory cells become post-mitotic after gastrulation. Genetic loss of function approaches show that Prd146 is essential for apical sensory organ development. Using a candidate gene knockdown approach, we place prd146 downstream of FGF signaling in the apical sensory organ gene regulatory network. Further, we demonstrate that an aboral FGF activity gradient coordinately regulates the specification of both sensory and support cells. Collectively, these experiments define the genetic basis for apical sensory organ development in a non-bilaterian animal and reveal an unanticipated degree of complexity in a prototypic sensory structure.


Asunto(s)
Anémonas de Mar , Animales , Anémonas de Mar/genética , Sistema Nervioso , Gastrulación/genética , Genes Homeobox
9.
Proc Natl Acad Sci U S A ; 121(11): e2317017121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38457522

RESUMEN

Fluorescent proteins (FPs) are ubiquitous tools in research, yet their endogenous functions in nature are poorly understood. In this work, we describe a combination of functions for FPs in a clade of intertidal sea anemones whose FPs control a genetic color polymorphism together with the ability to combat oxidative stress. Focusing on the underlying genetics of a fluorescent green "Neon" color morph, we show that allelic differences in a single FP gene generate its strong and vibrant color, by increasing both molecular brightness and FP gene expression level. Natural variation in FP sequences also produces differences in antioxidant capacity. We demonstrate that these FPs are strong antioxidants that can protect live cells against oxidative stress. Finally, based on structural modeling of the responsible amino acids, we propose a model for FP antioxidant function that is driven by molecular surface charge. Together, our findings shed light on the multifaceted functions that can co-occur within a single FP and provide a framework for studying the evolution of fluorescence as it balances spectral and physiological functions in nature.


Asunto(s)
Anémonas de Mar , Animales , Proteínas Luminiscentes/metabolismo , Anémonas de Mar/genética , Anémonas de Mar/metabolismo , Antioxidantes/metabolismo , Espectrometría de Fluorescencia , Estrés Oxidativo/genética , Proteínas Fluorescentes Verdes/metabolismo
10.
Sci Adv ; 10(11): eadk3870, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478603

RESUMEN

The ability of an animal to effectively capture prey and defend against predators is pivotal for survival. Venom is often a mixture of many components including toxin proteins that shape predator-prey interactions. Here, we used the sea anemone Nematostella vectensis to test the impact of toxin genotypes on predator-prey interactions. We developed a genetic manipulation technique to demonstrate that both transgenically deficient and a native Nematostella strain lacking a major neurotoxin (Nv1) have a reduced ability to defend themselves against grass shrimp, a native predator. In addition, secreted Nv1 can act indirectly in defense by attracting mummichog fish, which prey on grass shrimp. Here, we provide evidence at the molecular level of an animal-specific tritrophic interaction between a prey, its antagonist, and a predator. Last, this study reveals an evolutionary trade-off, as the reduction of Nv1 levels allows for faster growth and increased reproductive rates.


Asunto(s)
Anémonas de Mar , Ponzoñas , Animales , Reproducción , Evolución Biológica , Neurotoxinas/genética , Anémonas de Mar/genética , Conducta Predatoria/fisiología
11.
Methods Mol Biol ; 2784: 59-75, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502478

RESUMEN

The sea anemone Nematostella vectensis is a genetically tractable cnidarian species that has become a model organism for studying the evolution of developmental processes and genome regulation, resilience to fluctuations in environmental conditions, and the response to pollutants. Gene expression analyses are central to many of these studies, and in situ hybridization has been an important method for obtaining spatial information, in particular during embryonic development. Like other cnidarians, Nematostella embryos are of comparably low morphological complexity, but they possess many cell types that are dispersed throughout the tissue and originate from broad and overlapping areas. These features have made two-color fluorescence in situ hybridization an important method to determine potential co-expression of genes and to generate hypotheses for their functions in cell fate specification. We here share protocols for single and double fluorescence in situ hybridization in Nematostella and for the combination of fluorescence in situ hybridization and immunofluorescence.


Asunto(s)
Anémonas de Mar , Animales , Anémonas de Mar/genética , Hibridación Fluorescente in Situ , Diferenciación Celular/genética , Desarrollo Embrionario
12.
Anal Chem ; 96(10): 4120-4128, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38412037

RESUMEN

Efficient and accurate acquisition of cellular biomolecular information is crucial for exploring cell fate, achieving early diagnosis, and the effective treatment of various diseases. However, current DNA biosensors are mostly limited to single-target detection, with few complex logic circuits for comprehensive analysis of three or more targets. Herein, we designed a sea anemone-like DNA nanomachine based on DNA strand displacement composed of three logic gates (YES-AND-YES) and delivered into the cells using gold nano bipyramid carriers. The AND gate activation depends on the trigger chain released by upstream DNA strand displacement reactions, while the output signal relies on the downstream DNAzyme structure. Under the influence of diverse inputs (including enzymes, miRNA, and metal ions), the interconnected logic gates simultaneously perform logical analysis on multiple targets, generating a unique output signal in the YES/NO format. This sensor can successfully distinguish healthy cells from tumor cells and can be further used for the diagnosis of different tumor cells, providing a promising platform for accurate cell-type identification.


Asunto(s)
ADN Catalítico , Anémonas de Mar , Animales , Anémonas de Mar/genética , ADN/química , ADN Catalítico/química , Lógica , Oro , Computadores Moleculares
13.
Elife ; 132024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38323609

RESUMEN

BMP signaling has a conserved function in patterning the dorsal-ventral body axis in Bilateria and the directive axis in anthozoan cnidarians. So far, cnidarian studies have focused on the role of different BMP signaling network components in regulating pSMAD1/5 gradient formation. Much less is known about the target genes downstream of BMP signaling. To address this, we generated a genome-wide list of direct pSMAD1/5 target genes in the anthozoan Nematostella vectensis, several of which were conserved in Drosophila and Xenopus. Our ChIP-seq analysis revealed that many of the regulatory molecules with documented bilaterally symmetric expression in Nematostella are directly controlled by BMP signaling. We identified several so far uncharacterized BMP-dependent transcription factors and signaling molecules, whose bilaterally symmetric expression may be indicative of their involvement in secondary axis patterning. One of these molecules is zswim4-6, which encodes a novel nuclear protein that can modulate the pSMAD1/5 gradient and potentially promote BMP-dependent gene repression.


Asunto(s)
Anémonas de Mar , Animales , Anémonas de Mar/genética , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Genoma , Expresión Génica , Tipificación del Cuerpo/genética
14.
Toxins (Basel) ; 16(2)2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38393153

RESUMEN

Cnidarians (corals, sea anemones, and jellyfish) produce toxins that play central roles in key ecological processes, including predation, defense, and competition, being the oldest extant venomous animal lineage. Cnidaria small cysteine-rich proteins (SCRiPs) were the first family of neurotoxins detected in stony corals, one of the ocean's most crucial foundation species. Yet, their molecular evolution remains poorly understood. Moreover, the lack of a clear classification system has hindered the establishment of an accurate and phylogenetically informed nomenclature. In this study, we extensively surveyed 117 genomes and 103 transcriptomes of cnidarians to identify orthologous SCRiP gene sequences. We annotated a total of 168 novel putative SCRiPs from over 36 species of stony corals and 12 species of sea anemones. Phylogenetic reconstruction identified four distinct SCRiP subfamilies, according to strict discrimination criteria based on well-supported monophyly with a high percentage of nucleotide and amino acids' identity. Although there is a high prevalence of purifying selection for most SCRiP subfamilies, with few positively selected sites detected, a subset of Acroporidae sequences is influenced by diversifying positive selection, suggesting potential neofunctionalizations related to the fine-tuning of toxin potency. We propose a new nomenclature classification system relying on the phylogenetic distribution and evolution of SCRiPs across Anthozoa, which will further assist future proteomic and functional research efforts.


Asunto(s)
Antozoos , Cnidarios , Anémonas de Mar , Animales , Antozoos/genética , Anémonas de Mar/genética , Cnidarios/genética , Neurotoxinas/genética , Cisteína/genética , Filogenia , Proteómica
15.
Toxins (Basel) ; 16(2)2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38393163

RESUMEN

While the unique symbiotic relationship between anemonefishes and sea anemones is iconic, it is still not fully understood how anemonefishes can withstand and thrive within the venomous environment of their host sea anemone. In this study, we used a proteotranscriptomics approach to elucidate the proteinaceous toxin repertoire from the most common host sea anemone, Entacmaea quadricolor. Although 1251 different toxin or toxin-like RNA transcripts were expressed in E. quadricolor tentacles (0.05% of gene clusters, 1.8% of expression) and 5375 proteins were detected in milked venom, only 4% of proteins detected in venom were putative toxins (230), and they only represent on average 14% of the normalised protein expression in the milked venom samples. Thus, most proteins in milked venom do not appear to have a toxin function. This work raises the perils of defining a dominant venom phenotype based on transcriptomics data alone in sea anemones, as we found that the dominant venom phenotype differs between the transcriptome and proteome abundance data. E. quadricolor venom contains a mixture of toxin-like proteins of unknown and known function. A newly identified toxin protein family, Z3, rich in conserved cysteines of unknown function, was the most abundant at the RNA transcript and protein levels. The venom was also rich in toxins from the Protease S1, Kunitz-type and PLA2 toxin protein families and contains toxins from eight venom categories. Exploring the intricate venom toxin components in other host sea anemones will be crucial for improving our understanding of how anemonefish adapt to the venomous environment.


Asunto(s)
Anémonas de Mar , Toxinas Biológicas , Animales , Anémonas de Mar/genética , Ponzoñas/genética , Toxinas Biológicas/genética , Transcriptoma , ARN
16.
Sci Data ; 11(1): 102, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253640

RESUMEN

Deep-sea hydrothermal vents are usually considered as extreme environments with high pressure, high temperature, scarce food, and chemical toxicity, while many local inhabitants have evolved special adaptive mechanisms for residence in this representative ecosystem. In this study, we constructed a high-quality genome assembly for a novel deep-sea anemone species (Actinostola sp.) that was resident at a depth of 2,971 m in an Edmond vent along the central Indian Ocean ridge, with a total size of 424.3 Mb and a scaffold N50 of 383 kb. The assembled genome contained 265 Mb of repetitive sequences and 20,812 protein-coding genes. Taken together, our reference genome provides a valuable genetic resource for exploring the evolution and adaptive clues of this deep-sea anemone.


Asunto(s)
Genoma , Anémonas de Mar , Animales , Ecosistema , Respiraderos Hidrotermales , Anémonas de Mar/genética , Secuenciación Completa del Genoma
17.
Mol Biol Evol ; 41(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38152864

RESUMEN

Among non-bilaterian animals, a larval apical sensory organ with integrated neurons is only found in cnidarians. Within cnidarians, an apical organ with a ciliary tuft is mainly found in Actiniaria. Whether this apical tuft has evolved independently in Actiniaria or alternatively originated in the common ancestor of Cnidaria and Bilateria and was lost in specific groups is uncertain. To test this hypothesis, we generated transcriptomes of the apical domain during the planula stage of four species representing three key groups of cnidarians: Aurelia aurita (Scyphozoa), Nematostella vectensis (Actiniaria), and Acropora millepora and Acropora tenuis (Scleractinia). We showed that the canonical genes implicated in patterning the apical domain of N. vectensis are largely absent in A. aurita. In contrast, the apical domain of the scleractinian planula shares gene expression pattern with N. vectensis. By comparing the larval single-cell transcriptomes, we revealed the apical organ cell type of Scleractinia and confirmed its homology to Actiniaria. However, Fgfa2, a vital regulator of the regionalization of the N. vectensis apical organ, is absent in the scleractinian genome. Likewise, we found that FoxJ1 and 245 genes associated with cilia are exclusively expressed in the N. vectensis apical domain, which is in line with the presence of ciliary apical tuft in Actiniaria and its absence in Scleractinia and Scyphozoa. Our findings suggest that the common ancestor of cnidarians lacked a ciliary apical tuft, and it could have evolved independently in the Actiniaria.


Asunto(s)
Antozoos , Cnidarios , Anémonas de Mar , Animales , Cnidarios/genética , Redes Reguladoras de Genes , Larva/genética , Antozoos/genética , Anémonas de Mar/genética , Neuronas
18.
Nat Commun ; 14(1): 8270, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092765

RESUMEN

There is currently little information about the evolution of gene clusters, genome architectures and karyotypes in early branching animals. Slowly evolving anthozoan cnidarians can be particularly informative about the evolution of these genome features. Here we report chromosome-level genome assemblies of two related anthozoans, the sea anemones Nematostella vectensis and Scolanthus callimorphus. We find a robust set of 15 chromosomes with a clear one-to-one correspondence between the two species. Both genomes show chromosomal conservation, allowing us to reconstruct ancestral cnidarian and metazoan chromosomal blocks, consisting of at least 19 and 16 ancestral linkage groups, respectively. We show that, in contrast to Bilateria, the Hox and NK clusters of investigated cnidarians are largely disintegrated, despite the presence of staggered hox/gbx expression in Nematostella. This loss of microsynteny conservation may be facilitated by shorter distances between cis-regulatory sequences and their cognate transcriptional start sites. We find no clear evidence for topologically associated domains, suggesting fundamental differences in long-range gene regulation compared to vertebrates. These data suggest that large sets of ancestral metazoan genes have been retained in ancestral linkage groups of some extant lineages; yet, higher order gene regulation with associated 3D architecture may have evolved only after the cnidarian-bilaterian split.


Asunto(s)
Anémonas de Mar , Animales , Anémonas de Mar/genética , Filogenia , Sintenía/genética , Regulación de la Expresión Génica , Genoma/genética
19.
F1000Res ; 12: 204, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928172

RESUMEN

Anemonefishes are an iconic group of coral reef fish particularly known for their mutualistic relationship with sea anemones. This mutualism is especially intriguing as it likely prompted the rapid diversification of anemonefish. Understanding the genomic architecture underlying this process has indeed become one of the holy grails of evolutionary research in these fishes. Recently, anemonefishes have also been used as a model system to study the molecular basis of highly complex traits such as color patterning, social sex change, larval dispersal and life span. Extensive genomic resources including several high-quality reference genomes, a linkage map, and various genetic tools have indeed enabled the identification of genomic features controlling some of these fascinating attributes, but also provided insights into the molecular mechanisms underlying adaptive responses to changing environments. Here, we review the latest findings and new avenues of research that have led to this group of fish being regarded as a model for evolutionary genomics.


Asunto(s)
Perciformes , Anémonas de Mar , Animales , Perciformes/genética , Evolución Biológica , Genómica , Peces/genética , Anémonas de Mar/genética
20.
PeerJ ; 11: e16479, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034866

RESUMEN

Background: Diadumene lineata is one of the most widespread sea anemone species worldwide. Although this species has been reported a few times on the Argentine coast since 2004, its identification has traditionally been based on external morphological characteristics, and in most cases no voucher specimens are available to support previous records. Methods: In this study, we obtained DNA sequences of two mitochondrial markers (12S and 16S) and two nuclear markers (18S and 28S) from specimens of D. lineata collected in two locations on the Argentine coast separated by almost 800 km. Additionally, we conducted an analysis of the morphology, as well as the types and size ranges of cnidae, using specimens collected at three different locations along the Argentine coast. Furthermore, since introduced populations of D. lineata are presumably ephemeral and only reproduce asexually outside their native range, we examined the internal anatomy of representatives from the Argentine coast for gametogenic tissue as an indication of whether they might be capable of sexual reproduction. Results: DNA data support our morphological identification, including cnidae analyses, of the specimens as D. lineata. Furthermore, all specimens examined were determined to be sterile. Discussion: Genetic sequence comparisons, phylogenetic reconstruction, and cnidae data support the identification of individuals of D. lineata from Mar Chiquita and Garipe Beach, confirming the presence of the species on the Argentine coast using both morphological and molecular tools. The absence of fertile specimens suggests that each sampled population is likely reproducing only by asexual reproduction and possibly composed of clones. The presence of an additional category of longer p-mastigophores B2a in the actinopharynx and filaments, as well as holotrichs in the column, is also reported. Conclusions: For the first time, we have confirmed the presence of D. lineata in Argentina through molecular data. Additionally, our findings indicate that the analyzed specimens are sterile, suggesting that this species is not engaging in sexual reproduction in the studied localities. It is crucial to continue monitoring the populations of D. lineata along the Argentine coast to assess whether they establish sexual reproduction, expand their distribution range or disappear, or potentially cause any harm to local species or alterations in benthic communities.


Asunto(s)
Anémonas de Mar , Humanos , Animales , Anémonas de Mar/genética , Filogenia , Argentina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...