Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.880
Filtrar
2.
Neurobiol Dis ; 199: 106562, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38876322

RESUMEN

Ataxia Telangiectasia (AT) is a rare disorder caused by mutations in the ATM gene and results in progressive neurodegeneration for reasons that remain poorly understood. In addition to its central role in nuclear DNA repair, ATM operates outside the nucleus to regulate metabolism, redox homeostasis and mitochondrial function. However, a systematic investigation into how and when loss of ATM affects these parameters in relevant human neuronal models of AT was lacking. We therefore used cortical neurons and brain organoids from AT-patient iPSC and gene corrected isogenic controls to reveal levels of mitochondrial dysfunction, oxidative stress, and senescence that vary with developmental maturity. Transcriptome analyses identified disruptions in regulatory networks related to mitochondrial function and maintenance, including alterations in the PARP/SIRT signalling axis and dysregulation of key mitophagy and mitochondrial fission-fusion processes. We further show that antioxidants reduce ROS and restore neurite branching in AT neuronal cultures, and ameliorate impaired neuronal activity in AT brain organoids. We conclude that progressive mitochondrial dysfunction and aberrant ROS production are important contributors to neurodegeneration in AT and are strongly linked to ATM's role in mitochondrial homeostasis regulation.


Asunto(s)
Ataxia Telangiectasia , Encéfalo , Células Madre Pluripotentes Inducidas , Mitocondrias , Neuronas , Organoides , Estrés Oxidativo , Estrés Oxidativo/fisiología , Humanos , Organoides/metabolismo , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patología , Ataxia Telangiectasia/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas/metabolismo , Neuronas/patología , Encéfalo/metabolismo , Encéfalo/patología , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Especies Reactivas de Oxígeno/metabolismo
3.
Clin Immunol ; 263: 110233, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697554

RESUMEN

Ataxia-telangiectasia (A-T) is a rare disorder caused by genetic defects of A-T mutated (ATM) kinase, a key regulator of stress response, and characterized by neurodegeneration, immunodeficiency, and high incidence of cancer. Here we investigated NK cells in a mouse model of A-T (Atm-/-) showing that they are strongly impaired at killing tumor cells due to a block of early signaling events. On the other hand, in Atm-/- littermates with thymic lymphoma NK cell cytotoxicity is enhanced as compared with ATM-proficient mice, possibly via tumor-produced TNF-α. Results also suggest that expansion of exhausted NKG2D+ NK cells in Atm-/- mice is driven by low-level expression of stress-inducible NKG2D ligands, whereas development of thymoma expressing the high-affinity MULT1 ligand is associated with NKG2D down-regulation on NK cells. These results expand our understanding of immunodeficiency in A-T and encourage exploring NK cell biology in A-T patients in the attempt to identify cancer predictive biomarkers and novel therapeutic targets.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Células Asesinas Naturales , Subfamilia K de Receptores Similares a Lectina de Células NK , Animales , Células Asesinas Naturales/inmunología , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Ratones , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/inmunología , Ratones Noqueados , Ratones Endogámicos C57BL , Timoma/inmunología , Timoma/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Citotoxicidad Inmunológica , Neoplasias del Timo/inmunología , Neoplasias del Timo/genética , Transducción de Señal , Proteínas de la Membrana , Antígenos de Histocompatibilidad Clase I
4.
Pediatr Neurol ; 156: 85-90, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733859

RESUMEN

BACKGROUND: Ataxia telangiectasia (AT) is a genetic multisystemic disorder affecting the nervous system. Data on neurocognitive functioning in AT are limited and focused on patients at various stages of disease. Because of the genetic nature of the disorder, parents of patients may also display subtle neurological problems. This study aimed to evaluate neurocognitive functioning in patients with AT and their unaffected parents. METHODS: The study included 26 patients with AT and 41 parents among which 13 patients and 18 parents were evaluated with neurocognitive tests. Clinical and radiological data were reviewed retrospectively. Data were analyzed with descriptive statistics. RESULTS: The median ages of patients and parents were 12.5 years (interquartile range [IQR] = 9.5) and 38.0 years (IQR = 12.0), respectively. Median intelligence quotients were 62.0 (IQR = 21.3) and 82.5 (IQR = 16.8), respectively, for patients and parents. Rates of intellectual disability for patients and parents were 100.0% and 83.3%, respectively. Areas of impairment in patients in decreasing order of frequency were motor skills, visual perception/memory, visual-manual coordination, spontaneous/focused and sustained attention (100.0% for each), social judgment, as well as vocabulary and arithmetic skills (75.0% for each). Areas of impairment in unaffected parents in decreasing order of frequency were visual-manual coordination (77.8%), working memory (76.5%), and visual perception and motor skills (66.7% for each). CONCLUSION: Intellectual disabilities, visual-spatial disabilities, and reduced visual-motor coordination seem to be similar in patients with AT and their parents. These results should be replicated with larger samples from multiple centers and may form putative cognitive endophenotypes for the disorder.


Asunto(s)
Ataxia Telangiectasia , Padres , Humanos , Ataxia Telangiectasia/fisiopatología , Ataxia Telangiectasia/complicaciones , Ataxia Telangiectasia/genética , Masculino , Femenino , Niño , Adulto , Adolescente , Estudios Retrospectivos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Pruebas Neuropsicológicas , Persona de Mediana Edad , Discapacidad Intelectual/fisiopatología , Adulto Joven
5.
Blood Cancer Discov ; 5(4): 267-275, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38747501

RESUMEN

Somatic variants in DNA damage response genes such as ATM are widespread in hematologic malignancies. ATM protein is essential for double-strand DNA break repair. Germline ATM deficiencies underlie ataxia-telangiectasia (A-T), a disease manifested by radiosensitivity, immunodeficiency, and predisposition to lymphoid malignancies. Patients with A-T diagnosed with malignancies have poor tolerance to chemotherapy or radiation. In this study, we investigated chimeric antigen receptor (CAR) T cells using primary T cells from patients with A-T (ATM-/-), heterozygote donors (ATM+/-), and healthy donors. ATM-/- T cells proliferate and can be successfully transduced with CARs, though functional impairment of ATM-/- CAR T-cells was observed. Retroviral transduction of the CAR in ATM-/- T cells resulted in high rates of chromosomal lesions at CAR insertion sites, as confirmed by next-generation long-read sequencing. This work suggests that ATM is essential to preserve genome integrity of CAR T-cells during retroviral manufacturing, and its lack poses a risk of chromosomal translocations and potential leukemogenicity. Significance: CAR T-cells are clinically approved genetically modified cells, but the control of genome integrity remains largely uncharacterized. This study demonstrates that ATM deficiency marginally impairs CAR T-cell function and results in high rates of chromosomal aberrations after retroviral transduction, which may be of concern in patients with DNA repair deficiencies.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Receptores Quiméricos de Antígenos , Retroviridae , Linfocitos T , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Humanos , Linfocitos T/inmunología , Retroviridae/genética , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/inmunología , Transducción Genética , Daño del ADN , Inmunoterapia Adoptiva/métodos
6.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 232-241, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38686720

RESUMEN

DNA is susceptible to various factors in vitro and in vivo and experience different forms of damage,among which double-strand break(DSB)is a deleterious form.To maintain the stability of genetic information,organisms have developed multiple mechanisms to repair DNA damage.Among these mechanisms,homologous recombination(HR)is praised for the high accuracy.The MRE11-RAD50-NBS1(MRN)complex plays an important role in HR and is conserved across different species.The knowledge on the MRN complex mainly came from the previous studies in Saccharomyces cerevisiae and Caenorhabditis elegans,while studies in the last decades have revealed the role of mammalian MRN complex in DNA repair of higher animals.In this review,we first introduces the MRN complex regarding the composition,structure,and roles in HR.In addition,we discuss the human diseases such as ataxia-telangiectasia-like disorder,Nijmegen breakage syndrome,and Nijmegen breakage syndrome-like disorder that are caused by dysfunctions in the MRN complex.Furthermore,we summarize the mouse models established to study the clinical phenotypes of the above diseases.


Asunto(s)
Ácido Anhídrido Hidrolasas , Proteínas de Ciclo Celular , Enzimas Reparadoras del ADN , Proteínas de Unión al ADN , Proteína Homóloga de MRE11 , Proteínas Nucleares , Humanos , Ácido Anhídrido Hidrolasas/metabolismo , Ácido Anhídrido Hidrolasas/genética , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Animales , Reparación del ADN , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Síndrome de Nijmegen/metabolismo , Síndrome de Nijmegen/genética
7.
Curr Med Sci ; 44(2): 261-272, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561595

RESUMEN

DNA damage occurs across tumorigenesis and tumor development. Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orchestrate the tumor immune microenvironment (TIME) and dominate tumor progression. Accumulating evidence documents that multiple signaling pathways, including cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) and ataxia telangiectasia-mutated protein/ataxia telangiectasia and Rad3-related protein (ATM/ATR), are activated downstream of DNA damage and they are associated with the secretion of diverse cytokines. These cytokines possess multifaced functions in the anti-tumor immune response. Thus, it is necessary to deeply interpret the complex TIME reshaped by damaged DNA and tumor-derived cytokines, critical for the development of effective tumor therapies. This manuscript comprehensively reviews the relationship between the DNA damage response and related cytokines in tumors and depicts the dual immunoregulatory roles of these cytokines. We also summarize clinical trials targeting signaling pathways and cytokines associated with DNA damage and provide future perspectives on emerging technologies.


Asunto(s)
Ataxia Telangiectasia , Citocinas , Humanos , Citocinas/genética , Ataxia Telangiectasia/genética , Daño del ADN , ADN/metabolismo , Transducción de Señal
8.
BMJ Case Rep ; 17(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453233

RESUMEN

Ataxia telangiectasia (A-T) (OMIM 208900) is an autosomal recessive multisystem disorder characterised by progressive cerebellar ataxia, telangiectasias, immunodeficiency and a predisposition to malignancy. 'Variant' A-T has later onset of neurological symptoms and slower progression compared with the 'classic' form. A woman presented with short stature in late childhood. Karyotype revealed rearrangements involving chromosomes 7 and 14. A chromosomal breakage disorder gene panel demonstrated compound heterozygote mutations in her ATM gene including one mutation c.7271T>G with residual ATM function, confirming the diagnosis of variant A-T. Since diagnosis, she has developed progressive cerebellar ataxia and telangiectasias. Long-standing restrictive and aversive feeding behaviours presented challenges for her management and necessitated gastrostomy.


Asunto(s)
Ataxia Telangiectasia , Ataxia Cerebelosa , Degeneraciones Espinocerebelosas , Femenino , Humanos , Ataxia Telangiectasia/complicaciones , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Mutación , Adolescente
9.
Cell Rep ; 43(3): 113896, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38442018

RESUMEN

The ataxia telangiectasia mutated (ATM) protein kinase is a master regulator of the DNA damage response and also an important sensor of oxidative stress. Analysis of gene expression in ataxia-telangiectasia (A-T) patient brain tissue shows that large-scale transcriptional changes occur in patient cerebellum that correlate with the expression level and guanine-cytosine (GC) content of transcribed genes. In human neuron-like cells in culture, we map locations of poly(ADP-ribose) and RNA-DNA hybrid accumulation genome-wide with ATM inhibition and find that these marks also coincide with high transcription levels, active transcription histone marks, and high GC content. Antioxidant treatment reverses the accumulation of R-loops in transcribed regions, consistent with the central role of reactive oxygen species in promoting these lesions. Based on these results, we postulate that transcription-associated lesions accumulate in ATM-deficient cells and that the single-strand breaks and PARylation at these sites ultimately generate changes in transcription that compromise cerebellum function and lead to neurodegeneration over time in A-T patients.


Asunto(s)
Ataxia Telangiectasia , Poli Adenosina Difosfato Ribosa , Humanos , ARN , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN , Ataxia Telangiectasia/genética , Reparación del ADN , Daño del ADN , Proteínas de Ciclo Celular/metabolismo
10.
DNA Repair (Amst) ; 135: 103647, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377644

RESUMEN

Loss of the ATM protein kinase in humans results in Ataxia-telangiectasia, a disorder characterized by childhood-onset neurodegeneration of the cerebellum as well as cancer predisposition and immunodeficiency. Although many aspects of ATM function are well-understood, the mechanistic basis of the progressive cerebellar ataxia that occurs in patients is not. Here we review recent progress related to the role of ATM in neurons and the cerebellum that comes from many sources: animal models, post-mortem brain tissue samples, and human neurons in culture. These observations have revealed new insights into the consequences of ATM loss on DNA damage, gene expression, and immune signaling in the brain. Many results point to the importance of reactive oxygen species as well as single-strand DNA breaks in the progression of molecular events leading to neuronal dysfunction. In addition, innate immunity signaling pathways appear to play a critical role in ATM functions in microglia, responding to various forms of nucleic acid sensors and regulating survival of neurons and other cell types. Overall, the results lead to an updated view of transcriptional stress and DNA damage resulting from ATM loss that results in changes in gene expression as well as neuroinflammation that contribute to the cerebellar neurodegeneration observed in patients.


Asunto(s)
Ataxia Telangiectasia , Animales , Humanos , Niño , Ataxia Telangiectasia/genética , Cerebelo , Encéfalo , Daño del ADN , ADN de Cadena Simple
11.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338943

RESUMEN

An apical component of the cell cycle checkpoint and DNA damage repair response is the ataxia-telangiectasia mutated (ATM) Ser/Thr protein kinase. A variant of ATM, Ser49Cys (rs1800054; minor allele frequency = 0.011), has been associated with an elevated risk of melanoma development; however, the functional consequence of this variant is not defined. ATM-dependent signalling in response to DNA damage has been assessed in a panel of patient-derived lymphoblastoid lines and primary human melanocytic cell strains heterozygous for the ATM Ser49Cys variant allele. The ATM Ser49Cys allele appears functional for acute p53-dependent signalling in response to DNA damage. Expression of the variant allele did reduce the efficacy of oncogene expression in inducing senescence. These findings demonstrate that the ATM 146C>G Ser49Cys allele has little discernible effect on the acute response to DNA damage but has reduced function observed in the chronic response to oncogene over-expression. Analysis of melanoma, naevus and skin colour genomics and GWAS analyses have demonstrated no association of this variant with any of these outcomes. The modest loss of function detected suggest that the variant may act as a modifier of other variants of ATM/p53-dependent signalling.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Melanoma , Humanos , Ataxia Telangiectasia/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Melanoma/genética , Oncogenes , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
12.
Orphanet J Rare Dis ; 19(1): 67, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38360726

RESUMEN

INTRODUCTION: Ataxia telangiectasia (A-T) is an autosomal recessive neurodegenerative disease with widespread systemic manifestations and marked variability in clinical phenotypes. In this study, we sought to determine whether transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) defines subsets of individuals with A-T beyond mild and classic phenotypes, enabling identification of novel features for disease classification and treatment response to therapy. METHODS: Participants with classic A-T (n = 77), mild A-T (n = 13), and unaffected controls (n = 15) were recruited from two outpatient clinics. PBMCs were isolated and bulk RNAseq was performed. Plasma was also isolated in a subset of individuals. Affected individuals were designated mild or classic based on ATM mutations and clinical and laboratory features. RESULTS: People with classic A-T were more likely to be younger and IgA deficient and to have higher alpha-fetoprotein levels and lower % forced vital capacity compared to individuals with mild A-T. In classic A-T, the expression of genes required for V(D)J recombination was lower, and the expression of genes required for inflammatory activity was higher. We assigned inflammatory scores to study participants and found that inflammatory scores were highly variable among people with classic A-T and that higher scores were associated with lower ATM mRNA levels. Using a cell type deconvolution approach, we inferred that CD4 + T cells and CD8 + T cells were lower in number in people with classic A-T. Finally, we showed that individuals with classic A-T exhibit higher SERPINE1 (PAI-1) mRNA and plasma protein levels, irrespective of age, and higher FLT4 (VEGFR3) and IL6ST (GP130) plasma protein levels compared with mild A-T and controls. CONCLUSION: Using a transcriptomic approach, we identified novel features and developed an inflammatory score to identify subsets of individuals with different inflammatory phenotypes in A-T. Findings from this study could be used to help direct treatment and to track treatment response to therapy.


Asunto(s)
Ataxia Telangiectasia , Enfermedades Neurodegenerativas , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Leucocitos Mononucleares/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fenotipo , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , ARN Mensajero/metabolismo
13.
J Allergy Clin Immunol ; 153(5): 1392-1405, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38280573

RESUMEN

BACKGROUND: Ataxia telangiectasia (AT) is characterized by cerebellar ataxia, telangiectasia, immunodeficiency, and increased cancer susceptibility and is caused by mutations in the ataxia telangiectasia mutated (ATM) gene. The immunodeficiency comprises predominantly immunoglobulin deficiency, mainly IgA and IgG2, with a variable severity. So far, the exact mechanisms underlying the immunoglobulin deficiency, especially the variable severity, remain unelucidated. OBJECTIVE: We characterized the clinical impact of immunoglobulin deficiencies in AT and elucidated their mechanisms in AT. METHODS: We analyzed long-term immunoglobulin levels, immunophenotyping, and survival time in our cohort (n = 87, median age 16 years; maximum 64 years). Somatic hypermutation and class-switch junctions in B cells were analyzed by next-generation sequencing. Furthermore, an in vitro class-switching induction assay was performed, followed by RNA sequencing, to assess the effect of ATM inhibition. RESULTS: Only the hyper-IgM AT phenotype significantly worsened survival time, while IgA or IgG2 deficiencies did not. The immunoglobulin levels showed predominantly decreased IgG2 and IgA. Moreover, flow cytometric analysis demonstrated reduced naive B and T lymphocytes and a deficiency of class-switched IgG2 and IgA memory B cells. Somatic hypermutation frequencies were lowered in IgA- and IgG2-deficient patients, indicating hampered germinal center reaction. In addition, the microhomology of switch junctions was elongated, suggesting alternative end joining during class-switch DNA repair. The in vitro class switching and proliferation were negatively affected by ATM inhibition. RNA sequencing analysis showed that ATM inhibitor influenced expression of germinal center reaction genes. CONCLUSION: Immunoglobulin deficiency in AT is caused by disturbed development of class-switched memory B cells. ATM deficiency affects both germinal center reaction and choice of DNA-repair pathway in class switching.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Ataxia Telangiectasia , Linfocitos B , Cambio de Clase de Inmunoglobulina , Humanos , Ataxia Telangiectasia/inmunología , Ataxia Telangiectasia/genética , Adulto , Adolescente , Masculino , Femenino , Persona de Mediana Edad , Niño , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Proteínas de la Ataxia Telangiectasia Mutada/genética , Linfocitos B/inmunología , Adulto Joven , Anciano , Hipermutación Somática de Inmunoglobulina , Preescolar , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre
14.
Cerebellum ; 23(2): 455-458, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37036622

RESUMEN

Ataxia-Telangiectasia (A-T) is an autosomal recessive neurodegenerative disease associated with cerebellar ataxia and extrapyramidal features. A-T has a complex and diverse phenotype with varying rates of disease progression. The development of robust natural history studies and therapeutic trials relies on the accurate recording of phenotype using relevant and validated severity of illness indexes. We compared the commonly used Scale for the Assessment and Rating of Ataxia (SARA) and the disease-specific A-T Neurological Examination Scale Toolkit (A-T NEST), in our adult A-T cohort. We found a strong correlation between A-T NEST and the established SARA score, validating the use of A-T NEST and SARA in capturing the natural history of A-T patients.


Asunto(s)
Ataxia Telangiectasia , Ataxia Cerebelosa , Enfermedades Neurodegenerativas , Adulto , Humanos , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Índice de Severidad de la Enfermedad , Progresión de la Enfermedad
15.
Cerebellum ; 23(2): 502-511, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37120494

RESUMEN

Cerebellar neurodegeneration is a classical feature of ataxia telangiectasia (A-T), an autosomal recessive condition caused by loss-of-function mutation of the ATM gene, a gene with multiple regulatory functions. The increased vulnerability of cerebellar neurones to degeneration compared to cerebral neuronal populations in individuals with ataxia telangiectasia implies a specific importance of intact ATM function in the cerebellum. We hypothesised that there would be elevated transcription of ATM in the cerebellar cortex relative to ATM expression in other grey matter regions during neurodevelopment in individuals without A-T. Using ATM transcription data from the BrainSpan Atlas of the Developing Human Brain, we demonstrate a rapid increase in cerebellar ATM expression relative to expression in other brain regions during gestation and remaining elevated during early childhood, a period corresponding to the emergence of cerebellar neurodegeneration in ataxia telangiectasia patients. We then used gene ontology analysis to identify the biological processes represented in the genes correlated with cerebellar ATM expression. This analysis demonstrated that multiple processes are associated with expression of ATM in the cerebellum, including cellular respiration, mitochondrial function, histone methylation, and cell-cycle regulation, alongside its canonical role in DNA double-strand break repair. Thus, the enhanced expression of ATM in the cerebellum during early development may be related to the specific energetic demands of the cerebellum and its role as a regulator of these processes.


Asunto(s)
Ataxia Telangiectasia , Preescolar , Humanos , Ataxia Telangiectasia/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Cerebelo/metabolismo , Encéfalo/metabolismo , Corteza Cerebelosa/metabolismo
16.
Cell Rep ; 43(1): 113622, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38159274

RESUMEN

While ATM loss of function has long been identified as the genetic cause of ataxia-telangiectasia (A-T), how it leads to selective and progressive degeneration of cerebellar Purkinje and granule neurons remains unclear. ATM expression is enriched in microglia throughout cerebellar development and adulthood. Here, we find evidence of microglial inflammation in the cerebellum of patients with A-T using single-nucleus RNA sequencing. Pseudotime analysis revealed that activation of A-T microglia preceded upregulation of apoptosis-related genes in granule and Purkinje neurons and that microglia exhibited increased neurotoxic cytokine signaling to granule and Purkinje neurons in A-T. To confirm these findings experimentally, we performed transcriptomic profiling of A-T induced pluripotent stem cell (iPSC)-derived microglia, which revealed cell-intrinsic microglial activation of cytokine production and innate immune response pathways compared to controls. Furthermore, A-T microglia co-culture with either control or A-T iPSC-derived neurons was sufficient to induce cytotoxicity. Taken together, these studies reveal that cell-intrinsic microglial activation may promote neurodegeneration in A-T.


Asunto(s)
Ataxia Telangiectasia , Humanos , Ataxia Telangiectasia/genética , Microglía/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neuronas/metabolismo , Citocinas/metabolismo
17.
Redox Biol ; 69: 102988, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096740

RESUMEN

Ataxia Telangiectasia (A-T) is an inherited autosomal recessive disorder characterized by cerebellar neurodegeneration, radiosensitivity, immunodeficiency and a high incidence of lymphomas. A-T is caused by mutations in the ATM gene. While loss of ATM function in DNA repair explains some aspects of A-T pathophysiology such as radiosensitivity and cancer predisposition, other A-T features such as neurodegeneration imply additional roles for ATM outside the nucleus. Emerging evidence suggests that ATM participates in cellular response to oxidative stress, failure of which contributes to the neurodegeneration associated with A-T. Here, we use fibroblasts derived from A-T patients to investigate whether DEAD Box 1 (DDX1), an RNA binding/unwinding protein that functions downstream of ATM in DNA double strand break repair, also plays a role in ATM-dependent cellular response to oxidative stress. Focusing on DDX1 target RNAs that are associated with neurological disorders and oxidative stress response, we show that ATM is required for increased binding of DDX1 to its target RNAs in the presence of arsenite-induced oxidative stress. Our results indicate that DDX1 functions downstream of ATM by protecting specific mRNAs in the cytoplasm of arsenite-treated cells. In keeping with a role for ATM and DDX1 in oxidative stress, levels of reactive oxygen species (ROS) are increased in ATM-deficient as well as DDX1-depleted cells. We propose that reduced levels of cytoplasmic DDX1 RNA targets sensitizes ATM-deficient cells to oxidative stress resulting in increased cell death. This sensitization would be especially detrimental to long-lived highly metabolically active cells such as neurons providing a possible explanation for the neurodegenerative defects associated with A-T.


Asunto(s)
Arsenitos , Ataxia Telangiectasia , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Estrés Oxidativo/fisiología , Fibroblastos/metabolismo , ARN , Proteínas de Ciclo Celular/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo
18.
Sci Rep ; 13(1): 19386, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938627

RESUMEN

Ataxia telangiectasia is a monogenetic disorder caused by mutations in the ATM gene. Its encoded protein kinase ATM plays a fundamental role in DNA repair of double strand breaks (DSBs). Impaired function of this kinase leads to a multisystemic disorder including immunodeficiency, progressive cerebellar degeneration, radiation sensitivity, dilated blood vessels, premature aging and a predisposition to cancer. Since allogenic hematopoietic stem cell (HSC) transplantation improved disease outcome, gene therapy based on autologous HSCs is an alternative promising concept. However, due to the large cDNA of ATM (9.2 kb), efficient packaging of retroviral particles and sufficient transduction of HSCs remains challenging.We generated lentiviral, gammaretroviral and foamy viral vectors with a GFP.F2A.Atm fusion or a GFP transgene and systematically compared transduction efficiencies. Vector titers dropped with increasing transgene size, but despite their described limited packaging capacity, we were able to produce lentiviral and gammaretroviral particles. The reduction in titers could not be explained by impaired packaging of the viral genomes, but the main differences occurred after transduction. Finally, after transduction of Atm-deficient (ATM-KO) murine fibroblasts with the lentiviral vector expressing Atm, we could show the expression of ATM protein which phosphorylated its downstream substrates (pKap1 and p-p53).


Asunto(s)
Ataxia Telangiectasia , Animales , Ratones , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/terapia , Genoma Viral , Transgenes , Genotipo , Terapia Genética
19.
Stem Cell Res ; 73: 103247, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37976651

RESUMEN

Ataxia-Telangiectasia (A-T) is an autosomal recessive multi-system disorder caused by mutations in the ataxia-telangiectasia mutated (ATM) gene, resulting, among other symptoms, in neurological dysfunction. ATM is known to be a master controller of signal transduction for DNA damage response, with additional functions that are poorly understood. CRISPR/Cas9 technology was used to introduce biallelic mutations at selected sites of the ATM gene in human induced pluripotent stem cells (hiPSCs). This panel of hiPSCs with nonsense and missense mutations in ATM can help understand the molecular basis of A-T.


Asunto(s)
Ataxia Telangiectasia , Células Madre Pluripotentes Inducidas , Humanos , Ataxia Telangiectasia/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Edición Génica , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Proteínas de Ciclo Celular/genética
20.
Am J Hum Genet ; 110(11): 1976-1982, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37802069

RESUMEN

Certain classes of genetic variation still escape detection in clinical sequencing analysis. One such class is retroelement insertion, which has been reported as a cause of Mendelian diseases and may offer unique therapeutic implications. Here, we conducted retroelement profiling on whole-genome sequencing data from a cohort of 237 individuals with ataxia telangiectasia (A-T). We found 15 individuals carrying retroelement insertions in ATM, all but one of which integrated in noncoding regions. Systematic functional characterization via RNA sequencing, RT-PCR, and/or minigene splicing assays showed that 12 out of 14 intronic insertions led or contributed to ATM loss of function by exon skipping or activating cryptic splice sites. We also present proof-of-concept antisense oligonucleotides that suppress cryptic exonization caused by a deep intronic retroelement insertion. These results provide an initial systematic estimate of the contribution of retroelements to the genetic architecture of recessive Mendelian disorders as ∼2.1%-5.5%. Our study highlights the importance of retroelement insertions as causal variants and therapeutic targets in genetic diseases.


Asunto(s)
Ataxia Telangiectasia , Humanos , Ataxia Telangiectasia/genética , Retroelementos/genética , Mutación , Empalme del ARN/genética , Sitios de Empalme de ARN , Intrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...