Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Chem Inf Model ; 62(3): 632-646, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35043627

RESUMEN

Uridine diphosphate (UDP)-apiose/UDP-xylose synthase (UAXS) is a member of the short-chain dehydrogenase/reductase superfamily (SDR), which catalyzes the ring contraction and closure of UDP-d-glucuronic acid (UDP-GlcA), affording UDP-apiose and UDP-xylose. UAXS is a special enzyme that integrates ring-opening, decarboxylation, rearrangement, and ring closure/contraction in a single active site. Recently, the ternary complex structure of UAXS was crystallized from Arabidopsis thaliana. In this work, to gain insights into the detailed formation mechanism of UDP-apiose and UDP-xylose, an enzyme-substrate reactant model has been constructed and quantum mechanical/molecular mechanical (QM/MM) calculations have been performed. Our calculation results reveal that the reaction starts from the C4-OH oxidation, which is accompanied by the conformational transformation of the sugar ring from chair type to boat type. The sugar ring-opening is prior to decarboxylation, and the deprotonation of the C2-OH group is the prerequisite for sugar ring-opening. Moreover, the keto-enol tautomerization of the decarboxylated intermediate is a necessary step for ring closure/contraction. Based on our calculation results, more UDP-apiose product was expected, which is in line with the experimental observation. Three titratable residues, Tyr185, Cys100, and Cys140, steer the reaction by proton transfer from or to UDP-GlcA, and Arg182, Glu141, and D337 constitute a proton conduit for sugar C2-OH deprotonation. Although Thr139 and Tyr105 are not directly involved in the enzymatic reaction, they are responsible for promoting the catalysis by forming hydrogen-bonding interactions with GlcA. Our calculations may provide useful information for understanding the catalysis of the SDR family.


Asunto(s)
Carboxiliasas , Xilosa , Carboxiliasas/química , Catálisis , Pentosas , Azúcares , Azúcares de Uridina Difosfato/química
2.
FEBS J ; 288(4): 1163-1178, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32645249

RESUMEN

UDP-glucuronic acid (UDP-GlcA) is a central precursor in sugar nucleotide biosynthesis and common substrate for C4-epimerases and decarboxylases releasing UDP-galacturonic acid (UDP-GalA) and UDP-pentose products, respectively. Despite the different reactions catalyzed, the enzymes are believed to share mechanistic analogy rooted in their joint membership to the short-chain dehydrogenase/reductase (SDR) protein superfamily: Oxidation at the substrate C4 by enzyme-bound NAD+ initiates the catalytic pathway. Here, we present mechanistic characterization of the C4-epimerization of UDP-GlcA, which in comparison with the corresponding decarboxylation has been largely unexplored. The UDP-GlcA 4-epimerase from Bacillus cereus functions as a homodimer and contains one NAD+ /subunit (kcat  = 0.25 ± 0.01 s-1 ). The epimerization of UDP-GlcA proceeds via hydride transfer from and to the substrate's C4 while retaining the enzyme-bound cofactor in its oxidized form (≥ 97%) at steady state and without trace of decarboxylation. The kcat for UDP-GlcA conversion shows a kinetic isotope effect of 2.0 (±0.1) derived from substrate deuteration at C4. The proposed enzymatic mechanism involves a transient UDP-4-keto-hexose-uronic acid intermediate whose formation is rate-limiting overall, and is governed by a conformational step before hydride abstraction from UDP-GlcA. Precise positioning of the substrate in a kinetically slow binding step may be important for the epimerase to establish stereo-electronic constraints in which decarboxylation of the labile ß-keto acid species is prevented effectively. Mutagenesis and pH studies implicate the conserved Tyr149 as the catalytic base for substrate oxidation and show its involvement in the substrate positioning step. Collectively, this study suggests that based on overall mechanistic analogy, stereo-electronic control may be a distinguishing feature of catalysis by SDR-type epimerases and decarboxylases active on UDP-GlcA.


Asunto(s)
Bacillus cereus/enzimología , Proteínas Bacterianas/metabolismo , Racemasas y Epimerasas/metabolismo , Proteínas Recombinantes/metabolismo , Azúcares de Uridina Difosfato/metabolismo , Proteínas Bacterianas/genética , Biocatálisis , Secuencia de Carbohidratos , Dominio Catalítico , Cromatografía Líquida de Alta Presión , Escherichia coli/genética , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Mutación , Racemasas y Epimerasas/genética , Proteínas Recombinantes/genética , Azúcares de Uridina Difosfato/química
3.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 11): 557-567, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33135674

RESUMEN

Bacterial nonhydrolyzing UDP-N-acetylglucosamine 2-epimerases catalyze the reversible interconversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylmannosamine (UDP-ManNAc). UDP-ManNAc is an important intermediate in the biosynthesis of certain cell-surface polysaccharides, including those in some pathogenic bacteria, such as Neisseria meningitidis and Streptococcus pneumoniae. Many of these epimerases are allosterically regulated by UDP-GlcNAc, which binds adjacent to the active site and is required to initiate UDP-ManNAc epimerization. Here, two crystal structures of UDP-N-acetylglucosamine 2-epimerase from Neisseria meningitidis serogroup A (NmSacA) are presented. One crystal structure is of the substrate-free enzyme, while the other structure contains UDP-GlcNAc substrate bound to the active site. Both structures form dimers as seen in similar epimerases, and substrate binding to the active site induces a large conformational change in which two Rossmann-like domains clamp down on the substrate. Unlike other epimerases, NmSacA does not require UDP-GlcNAc to instigate the epimerization of UDP-ManNAc, although UDP-GlcNAc was found to enhance the rate of epimerization. In spite of the conservation of residues involved in binding the allosteric UDP-GlcNAc observed in similar UDP-GlcNAc 2-epimerases, the structures presented here do not contain UDP-GlcNAc bound in the allosteric site. These structural results provide additional insight into the mechanism and regulation of this critical enzyme and improve the structural understanding of the ability of NmSacA to epimerize modified substrates.


Asunto(s)
Neisseria meningitidis Serogrupo A/enzimología , Sitio Alostérico , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Hidrólisis , Modelos Moleculares , Conformación Proteica , Sodio/química , Sodio/metabolismo , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/metabolismo , Azúcares de Uridina Difosfato/química , Azúcares de Uridina Difosfato/metabolismo
4.
Protein Sci ; 29(11): 2164-2174, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32797646

RESUMEN

For the field of virology, perhaps one of the most paradigm-shifting events so far in the 21st century was the identification of the giant double-stranded DNA virus that infects amoebae. Remarkably, this virus, known as Mimivirus, has a genome that encodes for nearly 1,000 proteins, some of which are involved in the biosynthesis of unusual sugars. Indeed, the virus is coated by a layer of glycosylated fibers that contain d-glucose, N-acetyl-d-glucosamine, l-rhamnose, and 4-amino-4,6-dideoxy-d-glucose. Here we describe a combined structural and enzymological investigation of the protein encoded by the open-reading frame L780, which corresponds to an l-rhamnose synthase. The structure of the L780/NADP+ /UDP-l-rhamnose ternary complex was determined to 1.45 Å resolution and refined to an overall R-factor of 19.9%. Each subunit of the dimeric protein adopts a bilobal-shaped appearance with the N-terminal domain harboring the dinucleotide-binding site and the C-terminal domain positioning the UDP-sugar into the active site. The overall molecular architecture of L780 places it into the short-chain dehydrogenase/reductase superfamily. Kinetic analyses indicate that the enzyme can function on either UDP- and dTDP-sugars but displays a higher catalytic efficiency with the UDP-linked substrate. Site-directed mutagenesis experiments suggest that both Cys 108 and Lys 175 play key roles in catalysis. This structure represents the first model of a viral UDP-l-rhamnose synthase and provides new details into these fascinating enzymes.


Asunto(s)
Acanthamoeba/virología , Carbohidrato Epimerasas/química , Mimiviridae/enzimología , Azúcares de Uridina Difosfato/química , Proteínas Virales/química , Cristalografía por Rayos X , Mimiviridae/genética , Dominios Proteicos
5.
J Biol Chem ; 295(35): 12461-12473, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32661196

RESUMEN

UDP-glucuronic acid is converted to UDP-galacturonic acid en route to a variety of sugar-containing metabolites. This reaction is performed by a NAD+-dependent epimerase belonging to the short-chain dehydrogenase/reductase family. We present several high-resolution crystal structures of the UDP-glucuronic acid epimerase from Bacillus cereus The geometry of the substrate-NAD+ interactions is finely arranged to promote hydride transfer. The exquisite complementarity between glucuronic acid and its binding site is highlighted by the observation that the unligated cavity is occupied by a cluster of ordered waters whose positions overlap the polar groups of the sugar substrate. Co-crystallization experiments led to a structure where substrate- and product-bound enzymes coexist within the same crystal. This equilibrium structure reveals the basis for a "swing and flip" rotation of the pro-chiral 4-keto-hexose-uronic acid intermediate that results from glucuronic acid oxidation, placing the C4' atom in position for receiving a hydride ion on the opposite side of the sugar ring. The product-bound active site is almost identical to that of the substrate-bound structure and satisfies all hydrogen-bonding requirements of the ligand. The structure of the apoenzyme together with the kinetic isotope effect and mutagenesis experiments further outlines a few flexible loops that exist in discrete conformations, imparting structural malleability required for ligand rotation while avoiding leakage of the catalytic intermediate and/or side reactions. These data highlight the double nature of the enzymatic mechanism: the active site features a high degree of precision in substrate recognition combined with the flexibility required for intermediate rotation.


Asunto(s)
Bacillus cereus/enzimología , Proteínas Bacterianas/química , Carbohidrato Epimerasas/química , Cristalografía por Rayos X , Ligandos , NAD/química , Oxidación-Reducción , Rotación , Azúcares de Uridina Difosfato/química
6.
Glycobiology ; 29(12): 839-846, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31679023

RESUMEN

l-arabinofuranose is a ubiquitous component of the cell wall and various natural products in plants, where it is synthesized from cytosolic UDP-arabinopyranose (UDP-Arap). The biosynthetic machinery long remained enigmatic in terms of responsible enzymes and subcellular localization. With the discovery of UDP-Arap mutase in plant cytosol, the demonstration of its role in cell-wall arabinose incorporation and the identification of UDP-arabinofuranose transporters in the Golgi membrane, it is clear that the cytosolic UDP-Arap mutases are the key enzymes converting UDP-Arap to UDP-arabinofuranose for cell wall and natural product biosynthesis. This has recently been confirmed by several genotype/phenotype studies. In contrast to the solid evidence pertaining to UDP-Arap mutase function in vivo, the molecular features, including enzymatic mechanism and oligomeric state, remain unknown. However, these enzymes belong to the small family of proteins originally identified as reversibly glycosylated polypeptides (RGPs), which has been studied for >20 years. Here, we review the UDP-Arap mutase and RGP literature together, to summarize and systemize reported molecular characteristics and relations to other proteins.


Asunto(s)
Transferasas Intramoleculares/química , Transferasas Intramoleculares/metabolismo , Oryza/enzimología , Azúcares de Uridina Difosfato/química , Azúcares de Uridina Difosfato/metabolismo , Productos Biológicos/química , Productos Biológicos/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Oryza/citología
7.
Molecules ; 24(17)2019 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443364

RESUMEN

Isorhamnetin-3-O-rhamnoside was synthesized by a highly efficient three-enzyme (rhamnosyltransferase, glycine max sucrose synthase and uridine diphosphate (UDP)-rhamnose synthase) cascade using a UDP-rhamnose regeneration system. The rhamnosyltransferase gene (78D1) from Arabidopsis thaliana was cloned, expressed, and characterized in Escherichia coli. The optimal activity was at pH 7.0 and 45 °C. The enzyme was stable over the pH range of 6.5 to 8.5 and had a 1.5-h half-life at 45 °C. The Vmax and Km for isorhamnetin were 0.646 U/mg and 181 µM, respectively. The optimal pH and temperature for synergistic catalysis were 7.5 and 25 °C, and the optimal concentration of substrates were assayed, respectively. The highest titer of isorhamnetin-3-O-rhamnoside production reached 231 mg/L with a corresponding molar conversion of 100%. Isorhamnetin-3-O-rhamnoside was purified and the cytotoxicity against HepG2, MCF-7, and A549 cells were evaluated. Therefore, an efficient method for isorhamnetin-3-O-rhamnoside production described herein could be widely used for the rhamnosylation of flavonoids.


Asunto(s)
Carbohidrato Epimerasas/química , Técnicas de Química Sintética , Flavonoles/síntesis química , Glucosiltransferasas/química , Hexosiltransferasas/química , Azúcares de Uridina Difosfato/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Catálisis , Línea Celular Tumoral , Flavonoles/farmacología , Humanos
8.
Carbohydr Res ; 477: 20-25, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30933787

RESUMEN

UDP-apiose, a donor substrate of apiosyltransferases, is labile because of its intramolecular self-cyclization ability, resulting in the formation of apiofuranosyl-1,2-cyclic phosphate. Therefore, stabilization of UDP-apiose is indispensable for its availability and identifying and characterizing the apiosyltransferases involved in the biosynthesis of apiosylated sugar chains and glycosides. Here, we established a method for stabilizing UDP-apiose using bulky cations as counter ions. Bulky cations such as triethylamine effectively suppressed the degradation of UDP-apiose in solution. The half-life of UDP-apiose was increased to 48.1 ±â€¯2.4 h at pH 6.0 and 25 °C using triethylamine as a counter cation. UDP-apiose coordinated with a counter cation enabled long-term storage under freezing conditions. UDP-apiose was utilized as a donor substrate for apigenin 7-O-ß-D-glucoside apiosyltransferase to produce the apiosylated glycoside apiin. This apiosyltransferase assay will be useful for identifying genes encoding apiosyltransferases.


Asunto(s)
Pruebas de Enzimas/métodos , Pentosiltransferasa/metabolismo , Azúcares de Uridina Difosfato/síntesis química , Azúcares de Uridina Difosfato/metabolismo , Conformación de Carbohidratos , Pentosiltransferasa/genética , Azúcares de Uridina Difosfato/química
9.
Biotechnol J ; 14(4)2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30367549

RESUMEN

The availability of nucleotide sugars is considered as bottleneck for Leloir-glycosyltransferases mediated glycan synthesis. A breakthrough for the synthesis of nucleotide sugars is the development of salvage pathway like enzyme cascades with high product yields from affordable monosaccharide substrates. In this regard, the authors aim at high enzyme productivities of these cascades by a repetitive batch approach. The authors report here for the first time that the exceptional high enzyme cascade stability facilitates the synthesis of Uridine-5'-diphospho-α-d-galactose (UDP-Gal), Uridine-5'-diphospho-N-acetylglucosamine (UDP-GlcNAc), and Uridine-5'-diphospho-N-acetylgalactosamine (UDP-GalNAc) in a multi-gram scale by repetitive batch mode. The authors obtained 12.8 g UDP-Gal through a high mass based total turnover number (TTNmass ) of 494 [gproduct /genzyme ] and space-time-yield (STY) of 10.7 [g/L*h]. Synthesis of UDP-GlcNAc in repetitive batch mode gave 11.9 g product with a TTNmass of 522 [gproduct /genzyme ] and a STY of 9.9 [g/L*h]. Furthermore, the scale-up to a 200 mL scale using a pressure operated concentrator was demonstrated for a UDP-GalNAc producing enzyme cascade resulting in an exceptional high STY of 19.4 [g/L*h] and 23.3 g product. In conclusion, the authors demonstrate that repetitive batch mode is a versatile strategy for the multi-gram scale synthesis of nucleotide sugars by stable enzyme cascades.


Asunto(s)
Polisacáridos/química , Uridina Difosfato Galactosa/biosíntesis , Uridina Difosfato N-Acetilglucosamina/biosíntesis , Azúcares de Uridina Difosfato/biosíntesis , Glicosiltransferasas/química , Nucleótidos/biosíntesis , Nucleótidos/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Uridina Difosfato Galactosa/química , Uridina Difosfato N-Acetilglucosamina/química , Azúcares de Uridina Difosfato/química
10.
PLoS One ; 13(11): e0207521, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30458018

RESUMEN

SLC35B4 belongs to the solute carrier 35 (SLC35) family whose best-characterized members display a nucleotide sugar transporting activity. Using an experimental model of HepG2 cells and indirect immunofluorescent staining, we verified that SLC35B4 was localized to the endoplasmic reticulum (ER). We demonstrated that dilysine motif, especially lysine at position 329, is crucial for the ER localization of this protein in human cells and therefore one should use protein C-tagging with caution. To verify the importance of the protein in glycoconjugates synthesis, we generated SLC35B4-deficient HepG2 cell line using CRISPR-Cas9 approach. Our data showed that knock-out of the SLC35B4 gene does not affect major UDP-Xyl- and UDP-GlcNAc-dependent glycosylation pathways.


Asunto(s)
Secuencias de Aminoácidos/genética , Retículo Endoplásmico/química , Aparato de Golgi/química , Proteínas de Transporte de Nucleótidos/química , Secuencia de Aminoácidos/genética , Sistemas CRISPR-Cas/genética , Dipéptidos/química , Dipéptidos/genética , Retículo Endoplásmico/genética , Glucosamina/análogos & derivados , Glucosamina/química , Glicosilación , Aparato de Golgi/genética , Células Hep G2 , Humanos , Lisina/química , Lisina/genética , Proteínas de Transporte de Nucleótidos/antagonistas & inhibidores , Proteínas de Transporte de Nucleótidos/genética , Transducción de Señal , Azúcares de Uridina Difosfato/química
11.
Methods Enzymol ; 597: 145-186, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28935101

RESUMEN

This method describes the chemoenzymatic synthesis of several nucleotide sugars, which are essential substrates in the biosynthesis of prokaryotic N- and O-linked glycoproteins. Protein glycosylation is now known to be widespread in prokaryotes and proceeds via sequential action of several enzymes, utilizing both common and modified prokaryote-specific sugar nucleotides. The latter, which include UDP-hexoses such as UDP-diNAc-bacillosamine (UDP-diNAcBac), UDP-diNAcAlt, and UDP-2,3-diNAcManA, are also important components of other bacterial and archaeal glycoconjugates. The ready availability of these "high-value" intermediates will enable courses of study into inhibitor screening, glycoconjugate biosynthesis pathway discovery, and unnatural carbohydrate incorporation toward metabolic engineering.


Asunto(s)
Carbohidratos/biosíntesis , Glicoconjugados/genética , Ingeniería Metabólica/métodos , Azúcares de Uridina Difosfato/biosíntesis , Archaea/química , Archaea/genética , Bacterias/química , Bacterias/genética , Carbohidratos/química , Carbohidratos/genética , Glicoconjugados/biosíntesis , Glicoconjugados/química , Glicoproteínas/química , Glicoproteínas/genética , Glicosilación , Nucleótidos/biosíntesis , Nucleótidos/química , Nucleótidos/genética , Azúcares de Uridina Difosfato/química , Azúcares de Uridina Difosfato/genética
12.
Sci Rep ; 7(1): 4139, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28646159

RESUMEN

In Bacillus subtilis, Listeria monocytogenes and in two Mycobacteria, it was previously shown that yvcK is a gene required for normal cell shape, for optimal carbon source utilization and for virulence of pathogenic bacteria. Here we report that the B. subtilis protein YvcK binds to Uridine diphosphate-sugars like Uridine diphosphate-Glucose (UDP-Glc) and Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) in vitro. Using the crystal structure of Bacillus halodurans YvcK, we identified residues involved in this interaction. We tested the effect of point mutations affecting the ability of YvcK to bind UDP-sugars on B. subtilis physiology and on cell size. Indeed, it was shown that UDP-Glc serves as a metabolic signal to regulate B. subtilis cell size. Interestingly, we observed that, whereas a yvcK deletion results in the formation of unusually large cells, inactivation of YvcK UDP-sugar binding site does not affect cell length. However, these point mutations result in an increased sensitivity to bacitracin, an antibiotic which targets peptidoglycan synthesis. We thus propose that UDP-GlcNAc, a precursor of peptidoglycan, could be a good physiological ligand candidate of YvcK.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Azúcares de Uridina Difosfato/metabolismo , Secuencia de Aminoácidos , Bacitracina/química , Bacitracina/farmacología , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/química , Sitios de Unión , Carbono/metabolismo , Eliminación de Gen , Gluconatos , Modelos Moleculares , Conformación Molecular , Mutación Puntual , Unión Proteica , Azúcares de Uridina Difosfato/química
13.
J Biol Chem ; 292(27): 11499-11507, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28490633

RESUMEN

The enzyme UDP-glucose:glycoprotein glucosyltransferase (UGGT) mediates quality control of glycoproteins in the endoplasmic reticulum by attaching glucose to N-linked glycan of misfolded proteins. As a sensor, UGGT ensures that misfolded proteins are recognized by the lectin chaperones and do not leave the secretory pathway. The structure of UGGT and the mechanism of its selectivity for misfolded proteins have been unknown for 25 years. Here, we used negative-stain electron microscopy and small-angle X-ray scattering to determine the structure of UGGT from Drosophila melanogaster at 18-Å resolution. Three-dimensional reconstructions revealed a cage-like structure with a large central cavity. Particle classification revealed flexibility that precluded determination of a high-resolution structure. Introduction of biotinylation sites into a fungal UGGT expressed in Escherichia coli allowed identification of the catalytic and first thioredoxin-like domains. We also used hydrogen-deuterium exchange mass spectrometry to map the binding site of an accessory protein, Sep15, to the first thioredoxin-like domain. The UGGT structural features identified suggest that the central cavity contains the catalytic site and is lined with hydrophobic surfaces. This enhances the binding of misfolded substrates with exposed hydrophobic residues and excludes folded proteins with hydrophilic surfaces. In conclusion, we have determined the UGGT structure, which enabled us to develop a plausible functional model of the mechanism for UGGT's selectivity for misfolded glycoproteins.


Asunto(s)
Glucosiltransferasas/química , Pliegue de Proteína , Azúcares de Uridina Difosfato/química , Animales , Medición de Intercambio de Deuterio , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Dominios Proteicos , Selenoproteínas/química , Selenoproteínas/genética , Selenoproteínas/metabolismo , Azúcares de Uridina Difosfato/genética , Azúcares de Uridina Difosfato/metabolismo
14.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 4): 241-245, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28368284

RESUMEN

The role of seemingly non-enzymatic proteins in complexes interconverting UDP-arabinopyranose and UDP-arabinofuranose (UDP-arabinosemutases; UAMs) in the plant cytosol remains unknown. To shed light on their function, crystallographic and functional studies of the seemingly non-enzymatic UAM2 protein from Oryza sativa (OsUAM2) were undertaken. Here, X-ray diffraction data are reported, as well as analysis of the oligomeric state in the crystal and in solution. OsUAM2 crystallizes readily but forms highly radiation-sensitive crystals with limited diffraction power, requiring careful low-dose vector data acquisition. Using size-exclusion chromatography, it is shown that the protein is monomeric in solution. Finally, limited proteolysis was employed to demonstrate DTT-enhanced proteolytic digestion, indicating the existence of at least one intramolecular disulfide bridge or, alternatively, a requirement for a structural metal ion.


Asunto(s)
Transferasas Intramoleculares/química , Oryza/química , Proteínas de Plantas/química , Azúcares de Uridina Difosfato/química , Secuencia de Aminoácidos , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Ditiotreitol/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Oryza/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Subtilisina/química , Azúcares de Uridina Difosfato/metabolismo , Difracción de Rayos X
15.
Biochim Biophys Acta Proteins Proteom ; 1865(5): 510-519, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28192204

RESUMEN

UDP-arabinopyranose mutase (UAM) is a plant enzyme which interconverts UDP-arabinopyranose (UDP-Arap; a six-membered sugar) to UDP-arabinofuranose (UDP-Araf; a five-membered sugar). Plant mutases belong to a small gene family called Reversibly Glycosylated Proteins (RGPs). So far, UAM has been identified in Oryza sativa (Rice), Arabidopsis thaliana and Hordeum vulgare (Barley). The enzyme requires divalent metal ions for catalytic activity. Here, the divalent metal ion dependency of UAMs from O. sativa (rice) and A. thaliana have been studied using HPLC-based kinetic assays. It was determined that UAM from these species had the highest relative activity in a range of 40-80µM Mn2+. Excess Mn2+ ion concentration decreased the enzyme activity. This trend was observed when other divalent metal ions were used to test activity. To gain a perspective of the role played by the metal ion in activity, an ab initio structural model was generated based on the UAM amino acid sequence and a potential metal binding region was identified. Based on our results, we propose that the probable role of the metal in UAM is stabilizing the diphosphate of the substrate, UDP-Arap.


Asunto(s)
Arabidopsis/enzimología , Transferasas Intramoleculares/química , Oryza/enzimología , Azúcares de Uridina Difosfato/química , Sitios de Unión , Catálisis , Pared Celular/enzimología , Regulación de la Expresión Génica de las Plantas , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Iones/química , Cinética , Metales/química , Unión Proteica , Azúcares de Uridina Difosfato/metabolismo
16.
J Org Chem ; 82(4): 2243-2248, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28128958

RESUMEN

Unnatural uridine diphosphate (UDP)-sugar donors, UDP-4-deoxy-4-fluoro-N-acetylglucosamine (4FGlcNAc) and UDP-4-deoxy-4-fluoro-N-acetylgalactosamine (4FGalNAc), were prepared using both chemical and chemoenzymatic syntheses relying on N-acetylglucosamine-1-phosphate uridylyltransferase (GlmU). The resulting unnatural UDP-sugar donors were then tested as substrates in glycosaminoglycan synthesis catalyzed by various synthases. UDP-4FGlcNAc was transferred onto an acceptor by Pastuerella multocida heparosan synthase 1 and subsequently served as a chain terminator.


Asunto(s)
Glicosaminoglicanos/biosíntesis , Nucleotidiltransferasas/metabolismo , Biocatálisis , Conformación de Carbohidratos , Glicosaminoglicanos/química , Nucleotidiltransferasas/química , Azúcares de Uridina Difosfato/biosíntesis , Azúcares de Uridina Difosfato/química
17.
Plant Cell Rep ; 35(11): 2403-2421, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27591771

RESUMEN

KEY MESSAGE: The present study first identified the involvement of OcUAXS2 and OcUXS1-3 in anticancer polysaccharides biosynthesis in O. caudatum. UDP-xylose synthase (UXS) and UDP-D-apiose/UDP-D-xylose synthase (UAXS), both capable of converting UDP-D-glucuronic acid to UDP-D-xylose, are believed to transfer xylosyl residue to anticancer polysaccharides biosynthesis in Ornithogalum caudatum Ait. However, the cDNA isolation and functional characterization of genes encoding the two enzymes from O. caudatum has never been documented. Previously, the transcriptome sequencing of O. caudatum was performed in our laboratory. In this study, a total of six and two unigenes encoding UXS and UAXS were first retrieved based on RNA-Seq data. The eight putative genes were then successfully isolated from transcriptome of O. caudatum by reverse transcription polymerase chain reaction (RT-PCR). Phylogenetic analysis revealed the six putative UXS isoforms can be classified into three types, one soluble and two distinct putative membrane-bound. Moreover, the two UAXS isoenzymes were predicted to be soluble forms. Subsequently, these candidate cDNAs were characterized to be bona fide genes by functional expression in Escherichia coli individually. Although UXS and UAXS catalyzed the same reaction, their biochemical properties varied significantly. It is worth noting that a ratio switch of UDP-D-xylose/UDP-D-apiose for UAXS was established, which is assumed to be helpful for its biotechnological application. Furthermore, a series of mutants were generated to test the function of NAD+ binding motif GxxGxxG. Most importantly, the present study determined the involvement of OcUAXS2 and OcUXS1-3 in xylose-containing polysaccharides biosynthesis in O. caudatum. These data provide a comprehensive knowledge for UXS and UAXS families in plants.


Asunto(s)
Carboxiliasas/genética , Genes de Plantas , Familia de Multigenes , Ornithogalum/enzimología , Ornithogalum/genética , Transcriptoma/genética , Azúcares de Uridina Difosfato/metabolismo , Uridina Difosfato Xilosa/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Compuestos de Amonio/farmacología , Biocatálisis/efectos de los fármacos , Tampones (Química) , Calcio/farmacología , Carboxiliasas/química , Carboxiliasas/metabolismo , Cromatografía Líquida de Alta Presión , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Ornithogalum/efectos de los fármacos , Espectroscopía de Protones por Resonancia Magnética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Temperatura , Transcriptoma/efectos de los fármacos , Azúcares de Uridina Difosfato/química , Uridina Difosfato Xilosa/química
18.
Glycobiology ; 26(10): 1059-1071, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27233805

RESUMEN

P-selectin glycoprotein ligand-1 (PSGL-1, CD162) is a cell-surface glycoprotein that is expressed, either constitutively or inducibly, on all myeloid and lymphoid cell lineages. PSGL-1 is implicated in cell-cell interactions between platelets, leukocytes and endothelial cells, and a key mediator of inflammatory cell recruitment and transmigration into tissues. Here, we have investigated the effects of the ß-1,4-galactosyltransferase inhibitor 5-(5-formylthien-2-yl) UDP-Gal (5-FT UDP-Gal, compound 1: ) and two close derivatives on the cell surface levels of PSGL-1 on human peripheral blood mononuclear cells (hPBMCs). PSGL-1 levels were studied both under basal conditions, and upon stimulation of hPBMCs with interleukin-1ß (IL-1ß). Between 1 and 24 hours after IL-1ß stimulation, we observed initial PSGL-1 shedding, followed by an increase in PSGL-1 levels on the cell surface, with a maximal window between IL-1ß-induced and basal levels after 72 h. All three inhibitors reduce PSGL-1 levels on IL-1ß-stimulated cells in a concentration-dependent manner, but show no such effect in resting cells. Compound 1: also affects the cell surface levels of adhesion molecule CD11b in IL-1ß-stimulated hPBMCs, but not of glycoproteins CD14 and CCR2. This activity profile may be linked to the inhibition of global Sialyl Lewis presentation on hPBMCs by compound 1: , which we have also observed. Although this mechanistic explanation remains hypothetical at present, our results show, for the first time, that small molecules can discriminate between IL-1ß-induced and basal levels of cell surface PSGL-1. These findings open new avenues for intervention with PSGL-1 presentation on the cell surface of primed hPBMCs and may have implications for anti-inflammatory drug development.


Asunto(s)
Interleucina-1beta/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Glicoproteínas de Membrana/antagonistas & inhibidores , Azúcares de Uridina Difosfato/farmacología , Conformación de Carbohidratos , Relación Dosis-Respuesta a Droga , Humanos , Leucocitos Mononucleares/metabolismo , Glicoproteínas de Membrana/metabolismo , Relación Estructura-Actividad , Azúcares de Uridina Difosfato/química
19.
Protein Sci ; 25(8): 1555-62, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27171345

RESUMEN

ArnA from Escherichia coli is a key enzyme involved in the formation of 4-amino-4-deoxy-l-arabinose. The addition of this sugar to the lipid A moiety of the lipopolysaccharide of pathogenic Gram-negative bacteria allows these organisms to evade the cationic antimicrobial peptides of the host immune system. Indeed, it is thought that such modifications may be responsible for the repeated infections of cystic fibrosis patients with Pseudomonas aeruginosa. ArnA is a bifunctional enzyme with the N- and C-terminal domains catalyzing formylation and oxidative decarboxylation reactions, respectively. The catalytically competent cofactor for the formylation reaction is N(10) -formyltetrahydrofolate. Here we describe the structure of the isolated N-terminal domain of ArnA in complex with its UDP-sugar substrate and N(5) -formyltetrahydrofolate. The model presented herein may prove valuable in the development of new antimicrobial therapeutics.


Asunto(s)
Amino Azúcares/química , Carboxiliasas/química , Coenzimas/química , Escherichia coli/química , Formiltetrahidrofolatos/química , Azúcares de Uridina Difosfato/química , Amino Azúcares/metabolismo , Carboxiliasas/genética , Carboxiliasas/metabolismo , Clonación Molecular , Coenzimas/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Formiltetrahidrofolatos/metabolismo , Expresión Génica , Modelos Moleculares , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Azúcares de Uridina Difosfato/metabolismo
20.
Arch Biochem Biophys ; 597: 21-9, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27036853

RESUMEN

The storage polymer glycogen normally contains small amounts of covalently attached phosphate as phosphomonoesters at C2, C3 and C6 atoms of glucose residues. In the absence of the laforin phosphatase, as in the rare childhood epilepsy Lafora disease, the phosphorylation level is elevated and is associated with abnormal glycogen structure that contributes to the pathology. Laforin therefore likely functions in vivo as a glycogen phosphatase. The mechanism of glycogen phosphorylation is less well-understood. We have reported that glycogen synthase incorporates phosphate into glycogen via a rare side reaction in which glucose-phosphate rather than glucose is transferred to a growing polyglucose chain (Tagliabracci et al. (2011) Cell Metab13, 274-282). We proposed a mechanism to account for phosphorylation at C2 and possibly at C3. Our results have since been challenged (Nitschke et al. (2013) Cell Metab17, 756-767). Here we extend the evidence supporting our conclusion, validating the assay used for the detection of glycogen phosphorylation, measurement of the transfer of (32)P from [ß-(32)P]UDP-glucose to glycogen by glycogen synthase. The (32)P associated with the glycogen fraction was stable to ethanol precipitation, SDS-PAGE and gel filtration on Sephadex G50. The (32)P-signal was not affected by inclusion of excess unlabeled UDP before analysis or by treatment with a UDPase, arguing against the signal being due to contaminating [ß-(32)P]UDP generated in the reaction. Furthermore, [(32)P]UDP did not bind non-covalently to glycogen. The (32)P associated with glycogen was released by laforin treatment, suggesting that it was present as a phosphomonoester. The conclusion is that glycogen synthase can mediate the introduction of phosphate into glycogen, thereby providing a possible mechanism for C2, and perhaps C3, phosphorylation.


Asunto(s)
Glucógeno Sintasa/química , Glucógeno/química , Fosfatos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Glucógeno/biosíntesis , Glucógeno Sintasa/metabolismo , Humanos , Fosfatos/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/química , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Azúcares de Uridina Difosfato/química , Azúcares de Uridina Difosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA