Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.507
Filtrar
1.
PLoS One ; 19(5): e0302786, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722973

RESUMEN

A role for exportin 4 (XPO4) in the pathogenesis of liver fibrosis was recently identified. We sought to determine changes in hepatic XPO4 promoter methylation levels during liver fibrosis. The quantitative real-time RT-PCR technique was used to quantify the mRNA level of XPO4. Additionally, pyrosequencing was utilized to assess the promoter methylation status of XPO4. The methylation rate of the XPO4 promoter was significantly increased with fibrosis in human and mouse models, while XPO4 mRNA expression negatively correlated with methylation of its promoter. DNA methyltransferases (DNMTs) levels (enzymes that drive DNA methylation) were upregulated in patients with liver fibrosis compared to healthy controls and in hepatic stellate cells upon transforming growth factor beta (TGFß) stimulation. The DNA methylation inhibitor 5-Aza or specific siRNAs for these DNMTs led to restoration of XPO4 expression. The process of DNA methylation plays a crucial role in the repression of XPO4 transcription in the context of liver fibrosis development.


Asunto(s)
Metilación de ADN , Carioferinas , Cirrosis Hepática , Regiones Promotoras Genéticas , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Animales , Ratones , Masculino , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratones Endogámicos C57BL
2.
J Virol ; 98(5): e0029924, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38557225

RESUMEN

Autographa californica multiple nucleopolyhedrovirus (AcMNPV) Ac93 is highly conserved in all sequenced baculovirus genomes, and it plays important roles in both the nuclear egress of nucleocapsids and the formation of intranuclear microvesicles. In this study, we characterized a cellular CRM1-dependent nuclear export signal (NES) of AcMNPV Ac93. Bioinformatic analysis revealed that AcMNPV Ac93 may contain an NES at amino acids 115-125. Green fluorescent protein (GFP) fused to the NES (GFP:NES) of AcMNPV Ac93 is localized to the cytoplasm of transfected cells. Multiple point mutation analysis demonstrated that NES is important for the nuclear export of GFP:NES. Bimolecular fluorescence complementation experiments and co-immunoprecipitation assays confirmed that Ac93 interacts with Spodoptera frugiperda CRM1 (SfCRM1). However, AcMNPV Ac34 inhibits cellular CRM1-dependent nuclear export of GFP:NES. To determine whether the NES in AcMNPV Ac93 is important for the formation of intranuclear microvesicles, an ac93-null AcMNPV bacmid was constructed; the wild-type and NES-mutated Ac93 were reinserted into the ac93-null AcMNPV bacmid. Immunofluorescence analysis showed that Ac93 and SfCRM1 were predominantly colocalized at intranuclear microvesicles in infected cells, while the construct containing point mutations at residues 123 and 125 of Ac93 resulted in a defect in budded virus production and the abolishment of intranuclear microvesicles. Together, these data demonstrate that Ac93 contains a functional NES, which is required for the production of progeny viruses and the formation of intranuclear microvesicles.IMPORTANCEAutographa californica multiple nucleopolyhedrovirus (AcMNPV) Ac93 is important for the formation of intranuclear microvesicles. However, how the baculovirus manipulates Ac93 for the formation of intranuclear microvesicles is unclear. In this study, we identified a nuclear export signal (NES) at amino acids 115-125 of AcMNPV Ac93. Our results showed that the NES is required for the interaction between Ac93 and Spodoptera frugiperda CRM1 (SfCRM1). However, AcMNPV Ac34 inhibits the nuclear export of green fluorescent protein fused to the NES. Our analysis revealed that Ac93 and SfCRM1 were predominantly colocalized at intranuclear microvesicles in AcMNPV-infected cells. Together, our results indicate that Ac93 participates in the formation of intranuclear microvesicles via the Ac93 NES-mediated CRM1 pathway.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular , Proteína Exportina 1 , Carioferinas , Señales de Exportación Nuclear , Nucleopoliedrovirus , Receptores Citoplasmáticos y Nucleares , Spodoptera , Nucleopoliedrovirus/metabolismo , Nucleopoliedrovirus/fisiología , Nucleopoliedrovirus/genética , Carioferinas/metabolismo , Animales , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Células Sf9 , Spodoptera/virología , Núcleo Celular/metabolismo , Núcleo Celular/virología , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética
3.
Sci Rep ; 14(1): 9305, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653804

RESUMEN

Dysregulated nuclear-cytoplasmic trafficking has been shown to play a role in oncogenesis in several types of solid tumors and hematological malignancies. Exportin 1 (XPO1) is responsible for the nuclear export of several proteins and RNA species, mainly tumor suppressors. KPT-330, a small molecule inhibitor of XPO1, is approved for treating relapsed multiple myeloma and diffuse large B-cell lymphoma. Cutaneous T-cell lymphoma (CTCL) is an extranodal non-Hodgkin lymphoma with an adverse prognosis and limited treatment options in advanced stages. The effect of therapeutically targeting XPO1 with KPT-330 in CTCL has not been established. We report that XPO1 expression is upregulated in CTCL cells. KPT-330 reduces cell proliferation, induces G1 cell cycle arrest and apoptosis. RNA-sequencing was used to explore the underlying mechanisms. Genes associated with the cell cycle and the p53 pathway were significantly enriched with KPT-330 treatment. KPT-330 suppressed XPO1 expression, upregulated p53, p21WAF1/Cip1, and p27Kip1 and their nuclear localization, and downregulated anti-apoptotic protein (Survivin). The in vivo efficacy of KPT-330 was investigated using a bioluminescent xenograft mouse model of CTCL. KPT-330 blocked tumor growth and prolonged survival (p < 0.0002) compared to controls. These findings support investigating the use of KPT-330 and next-generation XPO1 inhibitors in CTCL.


Asunto(s)
Apoptosis , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Proteína Exportina 1 , Carioferinas , Linfoma Cutáneo de Células T , Receptores Citoplasmáticos y Nucleares , Triazoles , Proteína p53 Supresora de Tumor , Humanos , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Linfoma Cutáneo de Células T/tratamiento farmacológico , Linfoma Cutáneo de Células T/patología , Linfoma Cutáneo de Células T/metabolismo , Linfoma Cutáneo de Células T/genética , Apoptosis/efectos de los fármacos , Animales , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Carioferinas/metabolismo , Carioferinas/antagonistas & inhibidores , Ratones , Línea Celular Tumoral , Triazoles/farmacología , Proliferación Celular/efectos de los fármacos , Hidrazinas/farmacología , Hidrazinas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Transducción de Señal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
4.
Nat Commun ; 15(1): 2859, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570500

RESUMEN

Cold-induced injuries severely limit opportunities and outcomes of hypothermic therapies and organ preservation, calling for better understanding of cold adaptation. Here, by surveying cold-altered chromatin accessibility and integrated CUT&Tag/RNA-seq analyses in human stem cells, we reveal forkhead box O1 (FOXO1) as a key transcription factor for autonomous cold adaptation. Accordingly, we find a nonconventional, temperature-sensitive FOXO1 transport mechanism involving the nuclear pore complex protein RANBP2, SUMO-modification of transporter proteins Importin-7 and Exportin-1, and a SUMO-interacting motif on FOXO1. Our conclusions are supported by cold survival experiments with human cell models and zebrafish larvae. Promoting FOXO1 nuclear entry by the Exportin-1 inhibitor KPT-330 enhances cold tolerance in pre-diabetic obese mice, and greatly prolongs the shelf-life of human and mouse pancreatic tissues and islets. Transplantation of mouse islets cold-stored for 14 days reestablishes normoglycemia in diabetic mice. Our findings uncover a regulatory network and potential therapeutic targets to boost spontaneous cold adaptation.


Asunto(s)
Diabetes Mellitus Experimental , Factores de Transcripción Forkhead , Ratones , Humanos , Animales , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Transporte Activo de Núcleo Celular , Pez Cebra/metabolismo , Carioferinas/metabolismo
5.
Commun Biol ; 7(1): 426, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589567

RESUMEN

Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.


Asunto(s)
Hidrazinas , Neoplasias Renales , Triazoles , Tumor de Wilms , Humanos , Proteína Exportina 1 , Transporte Activo de Núcleo Celular , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Línea Celular Tumoral , Apoptosis , Recurrencia Local de Neoplasia , Doxorrubicina/farmacología , Tumor de Wilms/tratamiento farmacológico , Tumor de Wilms/genética , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Ciclo Celular/metabolismo
6.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 241-247, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650127

RESUMEN

Oral squamous cell carcinoma (OSCC) is a common malignant tumor. Importin7 (IPO7) is responsible for nucleoplasmic transport of RNAs and proteins, and it has been confirmed to be involved in the development of human cancers. This study aimed to explore the function and mechanism of IPO7 in OSCC. IPO7 expression in tissues and cells was determined by RT-qPCR. Cell proliferative, migratory, and invasive capabilities were detected through transwell assay and colony formation assay. Mice xenograft models were established for evaluating tumor growth. Autophagy was estimated by the LC3 levels in cells through western blot and immunofluorescence (IF). Western blot was utilized to detect the key proteins in PERK/EIF2AK3/ATF4 pathway for assessing the endoplasmic reticulum stress (ERS). The interaction of IPO7 and homeobox A10 (HOXA10) was tested by GST pull-down assay and Co-IP assay. ChIP assay and luciferase reporter assay were utilized to determine the combination of HOXA10 and EIF2AK3. We proved that IPO7 was upregulated in OSCC tissues and cells, and its depletion reduced cell proliferation, migration, invasion and tumor growth. Furthermore, LC3 expression in cells was found to be reduced by IPO7 knockdown. IPO7 promoted OSCC tumor metastasis by activating autophagy. Additionally, we discovered that IPO7 could regulate ERS by activating the PERK/ATF4 pathway. EIF2AK3 upregulation can promote cell autophagy. Furthermore, IPO7 was proven to promote nuclear translocation of HOXA10 in cells. EIF2AK3 promoter can bind to HOXA10. Rescue assay confirmed that HOXA10 upregulation can reverse the effect of IPO7 silencing on OSCC progression. IPO7 can enhance proliferation, migration, invasion, and autophagy by nuclear translocation of HOXA10 and the activation of EIF2AK3/ATF4 pathway in OSCC.


Asunto(s)
Autofagia , Carcinoma de Células Escamosas , Movimiento Celular , Núcleo Celular , Proliferación Celular , Proteínas Homeobox A10 , Proteínas de Homeodominio , Neoplasias de la Boca , alfa Carioferinas , eIF-2 Quinasa , Humanos , Autofagia/genética , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Animales , Línea Celular Tumoral , Proliferación Celular/genética , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Movimiento Celular/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Núcleo Celular/metabolismo , Ratones , Estrés del Retículo Endoplásmico/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Transducción de Señal , Carioferinas/metabolismo , Carioferinas/genética , Masculino , Ratones Endogámicos BALB C , Femenino , Invasividad Neoplásica
7.
Nature ; 627(8002): 212-220, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355801

RESUMEN

Circular RNAs (circRNAs), which are increasingly being implicated in a variety of functions in normal and cancerous cells1-5, are formed by back-splicing of precursor mRNAs in the nucleus6-10. circRNAs are predominantly localized in the cytoplasm, indicating that they must be exported from the nucleus. Here we identify a pathway that is specific for the nuclear export of circular RNA. This pathway requires Ran-GTP, exportin-2 and IGF2BP1. Enhancing the nuclear Ran-GTP gradient by depletion or chemical inhibition of the major protein exporter CRM1 selectively increases the nuclear export of circRNAs, while reducing the nuclear Ran-GTP gradient selectively blocks circRNA export. Depletion or knockout of exportin-2 specifically inhibits nuclear export of circRNA. Analysis of nuclear circRNA-binding proteins reveals that interaction between IGF2BP1 and circRNA is enhanced by Ran-GTP. The formation of circRNA export complexes in the nucleus is promoted by Ran-GTP through its interactions with exportin-2, circRNA and IGF2BP1. Our findings demonstrate that adaptors such as IGF2BP1 that bind directly to circular RNAs recruit Ran-GTP and exportin-2 to export circRNAs in a mechanism that is analogous to protein export, rather than mRNA export.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular , Transporte de ARN , ARN Circular , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/metabolismo , Guanosina Trifosfato/metabolismo , Carioferinas/antagonistas & inhibidores , Carioferinas/deficiencia , Carioferinas/genética , Carioferinas/metabolismo , Proteínas Nucleares/metabolismo , Proteína de Unión al GTP ran/metabolismo , ARN Circular/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína Exportina 1/metabolismo , Transporte de Proteínas
8.
J Cell Biol ; 223(2)2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38241019

RESUMEN

Exportin receptors are concentrated in the nucleus to transport essential cargoes out of it. A mislocalization of exportins to the cytoplasm is linked to disease. Hence, it is important to understand how their containment within the nucleus is regulated. Here, we have studied the nuclear efflux of exportin2 (cellular apoptosis susceptibility protein or CAS) that delivers karyopherinα (Kapα or importinα), the cargo adaptor for karyopherinß1 (Kapß1 or importinß1), to the cytoplasm in a Ran guanosine triphosphate (RanGTP)-mediated manner. We show that the N-terminus of CAS attenuates the interaction of RanGTPase activating protein 1 (RanGAP1) with RanGTP to slow GTP hydrolysis, which suppresses CAS nuclear exit at nuclear pore complexes (NPCs). Strikingly, a single phosphomimetic mutation (T18D) at the CAS N-terminus is sufficient to abolish its nuclear retention and coincides with metastatic cellular behavior. Furthermore, downregulating Kapß1 disrupts CAS nuclear retention, which highlights the balance between their respective functions that is essential for maintaining the Kapα transport cycle. Therefore, NPCs play a functional role in selectively partitioning exportins in the cell nucleus.


Asunto(s)
Núcleo Celular , Proteína de Susceptibilidad a Apoptosis Celular , Carioferinas , Proteína de Unión al GTP ran , Transporte Activo de Núcleo Celular/fisiología , Transporte Biológico , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Carioferinas/metabolismo , Poro Nuclear/metabolismo , Proteína de Unión al GTP ran/metabolismo , Humanos , Proteína de Susceptibilidad a Apoptosis Celular/genética , Proteína de Susceptibilidad a Apoptosis Celular/metabolismo
9.
Nature ; 626(8000): 836-842, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267582

RESUMEN

HIV can infect non-dividing cells because the viral capsid can overcome the selective barrier of the nuclear pore complex and deliver the genome directly into the nucleus1,2. Remarkably, the intact HIV capsid is more than 1,000 times larger than the size limit prescribed by the diffusion barrier of the nuclear pore3. This barrier in the central channel of the nuclear pore is composed of intrinsically disordered nucleoporin domains enriched in phenylalanine-glycine (FG) dipeptides. Through multivalent FG interactions, cellular karyopherins and their bound cargoes solubilize in this phase to drive nucleocytoplasmic transport4. By performing an in vitro dissection of the nuclear pore complex, we show that a pocket on the surface of the HIV capsid similarly interacts with FG motifs from multiple nucleoporins and that this interaction licences capsids to penetrate FG-nucleoporin condensates. This karyopherin mimicry model addresses a key conceptual challenge for the role of the HIV capsid in nuclear entry and offers an explanation as to how an exogenous entity much larger than any known cellular cargo may be able to non-destructively breach the nuclear envelope.


Asunto(s)
Proteínas de la Cápside , Glicina , VIH , Carioferinas , Imitación Molecular , Proteínas de Complejo Poro Nuclear , Poro Nuclear , Fenilalanina , Humanos , Transporte Activo de Núcleo Celular , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Difusión , Dipéptidos/química , Dipéptidos/metabolismo , Glicina/metabolismo , VIH/química , VIH/metabolismo , Técnicas In Vitro , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Carioferinas/metabolismo , Poro Nuclear/química , Poro Nuclear/metabolismo , Poro Nuclear/virología , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/metabolismo , Permeabilidad , Fenilalanina/metabolismo , Solubilidad , Internalización del Virus , Cápside/química , Cápside/metabolismo
10.
New Phytol ; 241(5): 2075-2089, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38095260

RESUMEN

Nuclear-cytoplasmic trafficking is crucial for protein synthesis in eukaryotic cells due to the spatial separation of transcription and translation by the nuclear envelope. However, the mechanism underlying this process remains largely unknown in plants. In this study, we isolated a maize (Zea mays) mutant designated developmentally delayed kernel 1 (ddk1), which exhibits delayed seed development and slower filling. Ddk1 encodes a plant-specific protein known as Importin-4 ß, and its mutation results in reduced 80S monosomes and suppressed protein synthesis. Through our investigations, we found that DDK1 interacts with eIF1A proteins in vivo. However, in vitro experiments revealed that this interaction exhibits low affinity in the absence of RanGTP. Additionally, while the eIF1A protein primarily localizes to the cytoplasm in the wild-type, it remains significantly retained within the nuclei of ddk1 mutants. These observations suggest that DDK1 functions as an exportin and collaborates with RanGTP to facilitate the nuclear export of eIF1A, consequently regulating endosperm development at the translational level. Importantly, both DDK1 and eIF1A are conserved among various plant species, implying the preservation of this regulatory module across diverse plants.


Asunto(s)
Semillas , Zea mays , Transporte Activo de Núcleo Celular , Zea mays/metabolismo , Semillas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Grano Comestible/metabolismo
11.
IUBMB Life ; 76(1): 4-25, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37623925

RESUMEN

Systemic modalities are crucial in the management of disseminated malignancies and liquid tumours. However, patient responses and tolerability to treatment are generally poor and those that enter remission often return with refractory disease. Combination therapies provide a methodology to overcome chemoresistance mechanisms and address dose-limiting toxicities. A deeper understanding of tumorigenic processes at the molecular level has brought a targeted therapy approach to the forefront of cancer research, and novel cancer biomarkers are being identified at a rapid rate, with some showing potential therapeutic benefits. The Karyopherin superfamily of proteins is soluble receptors that mediate nucleocytoplasmic shuttling of proteins and RNAs, and recently, nuclear transport receptors have been recognized as novel anticancer targets. Inhibitors against nuclear export have been approved for clinical use against certain cancer types, whereas inhibitors against nuclear import are in preclinical stages of investigation. Mechanistically, targeting nucleocytoplasmic shuttling has shown to abrogate oncogenic signalling and restore tumour suppressor functions through nuclear sequestration of relevant proteins and mRNAs. Hence, nuclear transport inhibitors display broad spectrum anticancer activity and harbour potential to engage in synergistic interactions with a wide array of cytotoxic agents and other targeted agents. This review is focussed on the most researched nuclear transport receptors in the context of cancer, XPO1 and KPNB1, and highlights how inhibitors targeting these receptors can enhance the therapeutic efficacy of standard of care therapies and novel targeted agents in a combination therapy approach. Furthermore, an updated review on the therapeutic targeting of lesser characterized karyopherin proteins is provided and resistance to clinically approved nuclear export inhibitors is discussed.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Transporte Activo de Núcleo Celular/fisiología , Proteína Exportina 1 , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Quimioterapia Combinada
12.
Cancer Res ; 84(1): 101-117, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37801604

RESUMEN

Exportin-1 (XPO1), the main soluble nuclear export receptor in eukaryotic cells, is frequently overexpressed in diffuse large B-cell lymphoma (DLBCL). A selective XPO1 inhibitor, selinexor, received approval as single agent for relapsed or refractory (R/R) DLBCL. Elucidating the mechanisms by which XPO1 overexpression supports cancer cells could facilitate further clinical development of XPO1 inhibitors. We uncovered here that XPO1 overexpression increases tolerance to genotoxic stress, leading to a poor response to chemoimmunotherapy. Upon DNA damage induced by MYC expression or exogenous compounds, XPO1 bound and exported EIF4E and THOC4 carrying DNA damage repair mRNAs, thereby increasing synthesis of DNA damage repair proteins under conditions of increased turnover. Consequently, XPO1 inhibition decreased the capacity of lymphoma cells to repair DNA damage and ultimately resulted in increased cytotoxicity. In a phase I clinical trial conducted in R/R DLBCL, the combination of selinexor with second-line chemoimmunotherapy was tolerated with early indication of efficacy. Overall, this study reveals that XPO1 overexpression plays a critical role in the increased tolerance of cancer cells to DNA damage while providing new insights to optimize the clinical development of XPO1 inhibitors. SIGNIFICANCE: XPO1 regulates the dynamic ribonucleoprotein nuclear export in response to genotoxic stress to support tolerance and can be targeted to enhance the sensitivity of cancer cells to endogenous and exogenous DNA damage. See related commentary by Knittel and Reinhardt, p. 3.


Asunto(s)
Linfoma de Células B Grandes Difuso , Linfoma no Hodgkin , Humanos , Transporte Activo de Núcleo Celular , Carioferinas/metabolismo , Línea Celular Tumoral , Hidrazinas/farmacología , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Daño del ADN , Linfoma no Hodgkin/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
J Med Chem ; 66(24): 17044-17058, 2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38105606

RESUMEN

Protein localization is frequently manipulated to favor tumor initiation and progression. In cancer cells, the nuclear export factor CRM1 is often overexpressed and aberrantly localizes many tumor suppressors via protein-protein interactions. Although targeting protein-protein interactions is usually challenging, covalent inhibitors, including the FDA-approved drug KPT-330 (selinexor), were successfully developed. The development of noncovalent CRM1 inhibitors remains scarce. Here, by shifting the side chain of two methionine residues and virtually screening against a large compound library, we successfully identified a series of noncovalent CRM1 inhibitors with a stable scaffold. Crystal structures of inhibitor-protein complexes revealed that one of the compounds, B28, utilized a deeply hidden protein interior cavity for binding. SAR analysis guided the development of several B28 derivatives with enhanced inhibition on nuclear export and growth of multiple cancer cell lines. This work may benefit the development of new CRM1-targeted therapies.


Asunto(s)
Proteína Exportina 1 , Carioferinas , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Unión Proteica , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo
14.
Sci Rep ; 13(1): 19668, 2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951956

RESUMEN

The human aryl hydrocarbon receptor (AHR) undergoes continuous shuttling between nucleus and cytoplasm. Binding to exogenous or endogenous ligands promotes its rapid nuclear import. The proposed mechanism for the ligand-dependent import is based on exposing the bipartite nuclear localisation signal (NLS) to members of the importin (IMP) superfamily. Among this, the molecular interactions involved in the basal import still need to be clarified. Utilizing fluorescently fused AHR variants, we recapitulated and characterized AHR localization and nucleo-cytoplasmic shuttling in living cells. Analysis of AHR variants carrying NLS point mutations demonstrated a mandatory role of first (13RKRRK17) and second (37KR-R40) NLS segments on the basal import of AHR. Further experiments indicated that ligand-induced import is mainly regulated through the first NLS, while the second NLS is supportive but not essential. Additionally, applying IMPα/ß specific inhibitors, ivermectin (IVM) and importazole (IPZ), slowed down the ligand-induced import and, correspondingly, decreased the basal nuclear accumulation of the receptor. In conclusion, our data show that ligand-induced and basal nuclear entry of AHR rely on the same mechanism but are controlled uniquely by the two NLS components.


Asunto(s)
Señales de Localización Nuclear , Receptores de Hidrocarburo de Aril , Humanos , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Ligandos , Transporte Activo de Núcleo Celular , Carioferinas/metabolismo , Núcleo Celular/metabolismo
15.
PLoS Genet ; 19(11): e1011026, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37948444

RESUMEN

The meiotic recombination checkpoint reinforces the order of events during meiotic prophase I, ensuring the accurate distribution of chromosomes to the gametes. The AAA+ ATPase Pch2 remodels the Hop1 axial protein enabling adequate levels of Hop1-T318 phosphorylation to support the ensuing checkpoint response. While these events are localized at chromosome axes, the checkpoint activating function of Pch2 relies on its cytoplasmic population. In contrast, forced nuclear accumulation of Pch2 leads to checkpoint inactivation. Here, we reveal the mechanism by which Pch2 travels from the cell nucleus to the cytoplasm to maintain Pch2 cellular homeostasis. Leptomycin B treatment provokes the nuclear accumulation of Pch2, indicating that its nucleocytoplasmic transport is mediated by the Crm1 exportin recognizing proteins containing Nuclear Export Signals (NESs). Consistently, leptomycin B leads to checkpoint inactivation and impaired Hop1 axial localization. Pch2 nucleocytoplasmic traffic is independent of its association with Zip1 and Orc1. We also identify a functional NES in the non-catalytic N-terminal domain of Pch2 that is required for its nucleocytoplasmic trafficking and proper checkpoint activity. In sum, we unveil another layer of control of Pch2 function during meiosis involving nuclear export via the exportin pathway that is crucial to maintain the critical balance of Pch2 distribution among different cellular compartments.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Meiosis/genética , Saccharomyces cerevisiae/genética , Transporte Activo de Núcleo Celular/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión al ADN/genética , Carioferinas/genética , Carioferinas/metabolismo , Homeostasis
16.
Signal Transduct Target Ther ; 8(1): 425, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37945593

RESUMEN

Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.


Asunto(s)
Neoplasias , Receptores Citoplasmáticos y Nucleares , Humanos , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/uso terapéutico , Transporte Activo de Núcleo Celular/genética , Carioferinas/genética , Carioferinas/metabolismo , Carioferinas/uso terapéutico , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Neoplasias/metabolismo , Proteína de Unión al GTP ran
17.
Viruses ; 15(11)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38005895

RESUMEN

In eukaryotic cells, the spatial distribution between cytoplasm and nucleus is essential for cell homeostasis. This dynamic distribution is selectively regulated by the nuclear pore complex (NPC), which allows the passive or energy-dependent transport of proteins between these two compartments. Viruses possess many strategies to hijack nucleocytoplasmic shuttling for the benefit of their viral replication. Here, we review how viruses interfere with the karyopherin CRM1 that controls the nuclear export of protein cargoes. We analyze the fact that the viral hijacking of CRM1 provokes are-localization of numerous cellular factors in a suitable place for specific steps of viral replication. While CRM1 emerges as a critical partner for viruses, it also takes part in antiviral and inflammatory response regulation. This review also addresses how CRM1 hijacking affects it and the benefits of CRM1 inhibitors as antiviral treatments.


Asunto(s)
Carioferinas , Virus , Transporte Activo de Núcleo Celular , Carioferinas/metabolismo , Virus/genética , Citoplasma/metabolismo , Antivirales/metabolismo , Cromosomas/metabolismo , Núcleo Celular/metabolismo
18.
Ulus Travma Acil Cerrahi Derg ; 29(11): 1228-1236, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37889026

RESUMEN

BACKGROUND: This study aims to investigate whether the expression levels of proteins involved in microRNA (miRNA) biogenesis vary in early- and late-stage traumatic brain injury (TBI) patients and to evaluate its effect on prognosis. METHODS: Dicer, Drosha, DiGeorge Syndrome Critical Region eight (DGCR8), Exportin5 (XPO5), and Argonaute2 (AGO2) levels were measured in the blood samples of severe TBI patients collected 4-6 h and 72 h after the trauma and compared with the control group. Prognostic follow-up of the patients was performed using the Glasgow Coma Scale score. RESULTS: There were no statistically significant changes in the expression of the miRNA biogenesis proteins Dicer, Drosha, DGCR8, XPO5, and AGO2 in patients with severe TBI. However, the expression of Dicer increased in the patients who improved from the severe TBI grade to the mild TBI grade, and the expression of AGO2 decreased in most of these patients. The Dicer expression profile was found to increase in patients discharged from the intensive care unit in a short time. CONCLUSION: MicroRNAs and their biogenesis proteins may guide prognostic and therapeutic decisions for patients with TBI in the future.


Asunto(s)
Lesiones Traumáticas del Encéfalo , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Unión al ARN/genética , Pronóstico , Lesiones Traumáticas del Encéfalo/genética , Carioferinas/genética , Carioferinas/metabolismo
19.
J Virol ; 97(10): e0092623, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37754758

RESUMEN

IMPORTANCE: Type I interferon (IFN-I), produced by the innate immune system, plays an essential role in host antiviral responses. Proper regulation of IFN-I production is required for the host to balance immune responses and prevent superfluous inflammation. IFN regulatory factor 3 (IRF3) and subsequent sensors are activated by RNA virus infection to induce IFN-I production. Therefore, proper regulation of IRF3 serves as an important way to control innate immunity and viral replication. Here, we first identified Prohibitin1 (PHB1) as a negative regulator of host IFN-I innate immune responses. Mechanistically, PHB1 inhibited the nucleus import of IRF3 by impairing its binding with importin subunit alpha-1 and importin subunit alpha-5. Our study demonstrates the mechanism by which PHB1 facilitates the replication of multiple RNA viruses and provides insights into the negative regulation of host immune responses.


Asunto(s)
Proteína 58 DEAD Box , Prohibitinas , Virus ARN , Receptores Inmunológicos , Transducción de Señal , Replicación Viral , Proteína 58 DEAD Box/antagonistas & inhibidores , Proteína 58 DEAD Box/metabolismo , Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , Carioferinas/metabolismo , Prohibitinas/metabolismo , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/metabolismo , Interferón Tipo I/biosíntesis , Interferón Tipo I/inmunología , Virus ARN/crecimiento & desarrollo , Virus ARN/inmunología , Virus ARN/metabolismo
20.
Mol Immunol ; 163: 116-126, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37769576

RESUMEN

Pulpitis is a chronic inflammatory process that greatly affects the physical, mental health and life quality of patients. Human dental pulp cells (hDPCs) are essential components of dental pulp tissue and play a significant role in pulpitis. Lipopolysaccharide (LPS) is an initiator of pulpitis and can induce the production of inflammatory cytokines in hDPCs by activating p38 MAPK and NF-κB signaling pathways. Importin7 (IPO7), a member of the importin-ß family, is widely expressed in many tissues. Previous studies have shown that IPO7 mediated nuclear translocation of p-p38 after stimulation, and IPO7 homologous protein IPO8 participated in human dental pulp inflammation. This research aims to investigate whether IPO7 is involved in pulpitis and explore its underlying mechanisms. In the current study, we found the expression of IPO7 was increased in pulpitis tissue. In vitro, hDPCs treated with LPS to mimic the inflammatory environment, the expression of IPO7 was increased. Knockdown of IPO7 significantly inhibited the production of inflammatory cytokines and suppressed the p38 MAPK and NF-κB signaling pathways. Activating the p38 MAPK and NF-κB signaling pathways by the p38 activator and p65 activator reversed the inflammatory responses. IPO7 interacted with p-p38 under LPS stimulation in hDPCs. In addition, the increased binding between IPO7 and p-p38 is associated with the decreased binding ability of IPO7 to Sirt2. In conclusion, we found that IPO7 was highly expressed in pulpitis and played a vital role in modulating human dental pulp inflammation.


Asunto(s)
FN-kappa B , Pulpitis , Humanos , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Pulpitis/metabolismo , Pulpa Dental/metabolismo , Transducción de Señal , Citocinas/metabolismo , Inflamación/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Carioferinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA