RESUMEN
Structural maintenance of chromosome (SMC) protein complexes are the key organizers of the spatiotemporal structure of chromosomes. The condensin SMC complex has recently been shown to be a molecular motor that extrudes large loops of DNA, but the mechanism of this unique motor remains elusive. Using atomic force microscopy, we show that budding yeast condensin exhibits mainly open 'O' shapes and collapsed 'B' shapes, and it cycles dynamically between these two states over time, with ATP binding inducing the O to B transition. Condensin binds DNA via its globular domain and also via the hinge domain. We observe a single condensin complex at the stem of extruded DNA loops, where the neck size of the DNA loop correlates with the width of the condensin complex. The results are indicative of a type of scrunching model in which condensin extrudes DNA by a cyclic switching of its conformation between O and B shapes.
Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Cromosomas Fúngicos/ultraestructura , ADN de Hongos/química , ADN de Hongos/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Expresión Génica , Microscopía de Fuerza Atómica , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Single-celled eukaryote genomes predominantly replicate through multiple origins. Although origin usage during the S-phase has been elucidated in some of these organisms, few studies have comparatively approached this dynamic. Here, we developed a user-friendly website able to calculate the length of the cell cycle phases for any organism. Next, using a formula developed by our group, we showed a comparative analysis among the minimum number of replication origins (MO) required to duplicate an entire chromosome within the S-phase duration in trypanosomatids (Trypanosoma cruzi, Leishmania major, and Trypanosoma brucei) and yeasts (Saccharomyces cerevisiae and Schizosaccharomyces pombe). Using the data obtained by our analysis, it was possible to predict the MO required in a situation of replication stress. Also, our findings allow establishing a threshold for the number of origins, which serves as a parameter for genome approaches that map origins. Moreover, our data suggest that when compared to yeasts, trypanosomatids use much more origins than the minimum needed. This is the first time a comparative analysis of the minimum number of origins has been successfully applied. These data may provide new insight into the understanding of the replication mechanism and a new methodological framework for studying single-celled eukaryote genomes.
Asunto(s)
Cromosomas/genética , Leishmania major/genética , Origen de Réplica , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/genética , Ciclo Celular , Cromosomas/ultraestructura , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/ultraestructura , Replicación del ADN , ADN de Hongos/genética , ADN Protozoario/genética , Internet , Leishmania major/crecimiento & desarrollo , Especificidad de la Especie , Trypanosoma cruzi/crecimiento & desarrolloRESUMEN
During meiotic prophase, concurrent transcription, recombination, and chromosome synapsis place substantial topological strain on chromosomal DNA, but the role of topoisomerases in this context remains poorly defined. Here, we analyzed the roles of topoisomerases I and II (Top1 and Top2) during meiotic prophase in Saccharomyces cerevisiae We show that both topoisomerases accumulate primarily in promoter-containing intergenic regions of actively transcribing genes, including many meiotic double-strand break (DSB) hotspots. Despite the comparable binding patterns, top1 and top2 mutations have different effects on meiotic recombination. TOP1 disruption delays DSB induction and shortens the window of DSB accumulation by an unknown mechanism. By contrast, temperature-sensitive top2-1 mutants exhibit a marked delay in meiotic chromosome remodeling and elevated DSB signals on synapsed chromosomes. The problems in chromosome remodeling were linked to altered Top2 binding patterns rather than a loss of Top2 catalytic activity, and stemmed from a defect in recruiting the chromosome remodeler Pch2/TRIP13 to synapsed chromosomes. No chromosomal defects were observed in the absence of TOP1 Our results imply independent roles for Top1 and Top2 in modulating meiotic chromosome structure and recombination.
Asunto(s)
Roturas del ADN de Doble Cadena , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/ultraestructura , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo II/genética , Meiosis , Unión Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
The three-dimensional (3D) organization of chromosomes can influence transcription. However, the frequency and magnitude of these effects remain debated. To determine how changes in chromosome positioning affect transcription across thousands of genes with minimal perturbation, we characterized nuclear organization and global gene expression in budding yeast containing chromosome fusions. We used computational modeling and single-cell imaging to determine chromosome positions, and integrated these data with genome-wide transcriptional profiles from RNA sequencing. We find that chromosome fusions dramatically alter 3D nuclear organization without leading to strong genome-wide changes in transcription. However, we observe a mild but significant and reproducible increase in the expression of genes displaced away from the periphery. The increase in transcription is inversely proportional to the propensity of a given locus to be at the nuclear periphery; for example, a 10% decrease in the propensity of a gene to reside at the nuclear envelope is accompanied by a 10% increase in gene expression. Modeling suggests that this is due to both deletion of telomeres and to displacement of genes relative to the nuclear periphery. These data suggest that basal transcriptional activity is sensitive to radial changes in gene position, and provide insight into the functional relevance of budding yeast chromosome-level 3D organization in gene expression.
Asunto(s)
Cromosomas Fúngicos/genética , Genoma Fúngico/genética , Conformación Molecular , Saccharomyces cerevisiae/genética , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Cromosomas Fúngicos/ultraestructura , Regulación Fúngica de la Expresión Génica/genética , Membrana Nuclear/genética , Membrana Nuclear/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Telómero/genética , Telómero/ultraestructuraRESUMEN
In Saccharomyces cerevisiae, dicentric chromosomes stemming from telomere fusions preferentially break at the fusion. This process restores a normal karyotype and protects chromosomes from the detrimental consequences of accidental fusions. Here, we address the molecular basis of this rescue pathway. We observe that tandem arrays tightly bound by the telomere factor Rap1 or a heterologous high-affinity DNA binding factor are sufficient to establish breakage hotspots, mimicking telomere fusions within dicentrics. We also show that condensins generate forces sufficient to rapidly refold dicentrics prior to breakage by cytokinesis and are essential to the preferential breakage at telomere fusions. Thus, the rescue of fused telomeres results from a condensin- and Rap1-driven chromosome folding that favors fusion entrapment where abscission takes place. Because a close spacing between the DNA-bound Rap1 molecules is essential to this process, Rap1 may act by stalling condensins.
Asunto(s)
Adenosina Trifosfatasas/genética , Cromosomas Fúngicos/metabolismo , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Unión a Telómeros/genética , Telómero/metabolismo , Factores de Transcripción/genética , Adenosina Trifosfatasas/metabolismo , Puntos de Rotura del Cromosoma , Cromosomas Fúngicos/ultraestructura , Citocinesis/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Cariotipo , Modelos Genéticos , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo Shelterina , Telómero/ultraestructura , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/metabolismoRESUMEN
In dividing cells, depolymerizing spindle microtubules move chromosomes by pulling at their kinetochores. While kinetochore subcomplexes have been studied extensively in vitro, little is known about their in vivo structure and interactions with microtubules or their response to spindle damage. Here we combine electron cryotomography of serial cryosections with genetic and pharmacological perturbation to study the yeast chromosome segregation machinery in vivo. Each kinetochore microtubule has one (rarely, two) Dam1C/DASH outer kinetochore assemblies. Dam1C/DASH contacts the microtubule walls and does so with its flexible "bridges"; there are no contacts with the protofilaments' curved tips. In metaphase, â¼40% of the Dam1C/DASH assemblies are complete rings; the rest are partial rings. Ring completeness and binding position along the microtubule are sensitive to kinetochore attachment and tension, respectively. Our study and those of others support a model in which each kinetochore must undergo cycles of conformational change to couple microtubule depolymerization to chromosome movement.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/fisiología , Cromosomas Fúngicos , Cinetocoros , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Huso Acromático , Cromosomas Fúngicos/metabolismo , Cromosomas Fúngicos/ultraestructura , Microscopía por Crioelectrón , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Huso Acromático/metabolismo , Huso Acromático/ultraestructuraRESUMEN
Distinct chromatin organization features, such as centromeres and heterochromatin domains, are inherited epigenetically. However, the mechanisms that modulate the accuracy of epigenetic inheritance, especially at the individual nucleosome level, are not well-understood. Here, using ChIP and next-generation sequencing (ChIP-Seq), we characterized Ccp1, a homolog of the histone chaperone Vps75 in budding yeast that functions in centromere chromatin duplication and heterochromatin maintenance in fission yeast (Schizosaccharomyces pombe). We show that Ccp1 is enriched at the central core regions of the centromeres. Of note, among all histone chaperones characterized, deletion of the ccp1 gene uniquely reduced the rate of epigenetic switching, manifested as position effect variegation within the centromeric core region (CEN-PEV). In contrast, gene deletion of other histone chaperones either elevated the PEV switching rates or did not affect centromeric PEV. Ccp1 and the kinetochore components Mis6 and Sim4 were mutually dependent for centromere or kinetochore association at the proper levels. Moreover, Ccp1 influenced heterochromatin distribution at multiple loci in the genome, including the subtelomeric and the pericentromeric regions. We also found that Gar2, a protein predominantly enriched in the nucleolus, functions similarly to Ccp1 in modulating the epigenetic stability of centromeric regions, although its mechanism remained unclear. Together, our results identify Ccp1 as an important player in modulating epigenetic stability and maintaining proper organization of multiple chromatin domains throughout the fission yeast genome.
Asunto(s)
Centrómero/metabolismo , Cromosomas Fúngicos/metabolismo , Epigénesis Genética , Heterocromatina/metabolismo , Chaperonas Moleculares/genética , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrómero/ultraestructura , Ensamble y Desensamble de Cromatina , Segregación Cromosómica , Cromosomas Fúngicos/ultraestructura , Inestabilidad Genómica , Heterocromatina/ultraestructura , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismoRESUMEN
Seeing physiological processes at the nanoscale in living organisms without labeling is an ultimate goal in life sciences. Using X-ray ptychography, we explored in situ the dynamics of unstained, living fission yeast Schizosaccharomyces pombe cells in natural, aqueous environment at the nanoscale. In contrast to previous X-ray imaging studies on biological matter, in this work the eukaryotic cells were alive even after several ptychographic X-ray scans, which allowed us to visualize the chromatin motion as well as the autophagic cell death induced by the ionizing radiation. The accumulated radiation of the sequential scans allowed for the determination of a characteristic dose of autophagic vacuole formation and the lethal dose for fission yeast. The presented results demonstrate a practical method that opens another way of looking at living biological specimens and processes in a time-resolved label-free setting.
Asunto(s)
Autofagia , Cromatina/ultraestructura , Cromosomas Fúngicos/ultraestructura , Schizosaccharomyces/fisiología , Tomografía por Rayos X/métodos , Vacuolas/patología , Procesamiento de Imagen Asistido por Computador , Schizosaccharomyces/ultraestructuraRESUMEN
Eukaryotic genomes are highly ordered through various mechanisms, including topologically associating domain (TAD) organization. We employed an in situ Hi-C approach to follow the 3D organization of the fission yeast genome during the cell cycle. We demonstrate that during mitosis, large domains of 300 kb-1 Mb are formed by condensin. This mitotic domain organization does not suddenly dissolve, but gradually diminishes until the next mitosis. By contrast, small domains of 30-40 kb that are formed by cohesin are relatively stable across the cell cycle. Condensin and cohesin mediate long- and short-range contacts, respectively, by bridging their binding sites, thereby forming the large and small domains. These domains are inversely regulated during the cell cycle but assemble independently. Our study describes the chromosomal oscillation between the formation and decay phases of the large and small domains, and we predict that the condensin-mediated domains serve as chromosomal compaction units.
Asunto(s)
Cromosomas Fúngicos/metabolismo , Cromosomas Fúngicos/ultraestructura , Genoma Fúngico , Mitosis , Schizosaccharomyces/citología , Schizosaccharomyces/fisiología , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Complejos Multiproteicos/metabolismo , CohesinasRESUMEN
Centrosomes are a functionally conserved feature of eukaryotic cells that play an important role in cell division. The conserved γ-tubulin complex organizes spindle and astral microtubules, which, in turn, separate replicated chromosomes accurately into daughter cells. Like DNA, centrosomes are duplicated once each cell cycle. Although in some cell types it is possible for cell division to occur in the absence of centrosomes, these divisions typically result in defects in chromosome number and stability. In single-celled organisms such as fungi, centrosomes [known as spindle pole bodies (SPBs)] are essential for cell division. SPBs also must be inserted into the membrane because fungi undergo a closed mitosis in which the nuclear envelope (NE) remains intact. This poorly understood process involves events similar or identical to those needed for de novo nuclear pore complex assembly. Here, we review how analysis of fungal SPBs has advanced our understanding of centrosomes and NE events.
Asunto(s)
Centrosoma/ultraestructura , Regulación Fúngica de la Expresión Génica , Microtúbulos/ultraestructura , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Cuerpos Polares del Huso/ultraestructura , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Cromosomas Fúngicos/metabolismo , Cromosomas Fúngicos/ultraestructura , Microtúbulos/genética , Microtúbulos/metabolismo , Mitosis , Poro Nuclear/genética , Poro Nuclear/metabolismo , Poro Nuclear/ultraestructura , Proteoma/genética , Proteoma/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestructura , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Cuerpos Polares del Huso/genética , Cuerpos Polares del Huso/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismoRESUMEN
The three-dimensional (3D) genome structure is highly ordered by a hierarchy of organizing events ranging from enhancer-promoter or gene-gene contacts to chromosomal territorial arrangement. It is becoming clear that the cohesin and condensin complexes are key molecular machines that organize the 3D genome structure. These complexes are highly conserved from simple systems, e.g., yeast cells, to the much more complex human system. Therefore, knowledge from the budding and fission yeast systems illuminates highly conserved molecular mechanisms of how cohesin and condensin establish the functional 3D genome structures. Here I discuss how these complexes are recruited across the yeast genomes, mediate distinct genome-organizing events such as gene contacts and topological domain formation, and participate in important nuclear activities including transcriptional regulation and chromosomal dynamics.
Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Complejos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/ultraestructura , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/química , Cromosomas Fúngicos/ultraestructura , Secuencia Conservada , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Complejos Multiproteicos/metabolismo , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestructura , Transcripción Genética , CohesinasRESUMEN
The eukaryotic genome consists of DNA molecules far longer than the cells that contain them. They reach their greatest compaction during chromosome condensation in mitosis. This process is aided by condensin, a structural maintenance of chromosomes (SMC) family member. The spatial organization of mitotic chromosomes and how condensin shapes chromatin architecture are not yet fully understood. Here we use chromosome conformation capture (Hi-C) to study mitotic chromosome condensation in the fission yeast Schizosaccharomyces pombe. This showed that the interphase landscape characterized by small chromatin domains is replaced by fewer but larger domains in mitosis. Condensin achieves this by setting up longer-range, intrachromosomal DNA interactions, which compact and individualize chromosomes. At the same time, local chromatin contacts are constrained by condensin, with profound implications for local chromatin function during mitosis. Our results highlight condensin as a major determinant that changes the chromatin landscape as cells prepare their genomes for cell division.
Asunto(s)
Adenosina Trifosfatasas/fisiología , Ensamble y Desensamble de Cromatina/fisiología , Cromosomas Fúngicos/ultraestructura , Proteínas de Unión al ADN/fisiología , Complejos Multiproteicos/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/genética , Adenosina Trifosfatasas/genética , Secuencia de Bases , Cromatina/ultraestructura , Ensamble y Desensamble de Cromatina/genética , Inmunoprecipitación de Cromatina , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Desoxirribonucleasas de Localización Especificada Tipo II , Interfase , Mitosis , Complejos Multiproteicos/genética , Schizosaccharomyces/ultraestructura , Proteínas de Schizosaccharomyces pombe/genéticaRESUMEN
Nuclear landmarks and biochemical factors play important roles in the organization of the yeast genome. The interaction pattern of budding yeast as measured from genome-wide 3C studies are largely recapitulated by model polymer genomes subject to landmark constraints. However, the origin of inter-chromosomal interactions, specific roles of individual landmarks, and the roles of biochemical factors in yeast genome organization remain unclear. Here we describe a multi-chromosome constrained self-avoiding chromatin model (mC-SAC) to gain understanding of the budding yeast genome organization. With significantly improved sampling of genome structures, both intra- and inter-chromosomal interaction patterns from genome-wide 3C studies are accurately captured in our model at higher resolution than previous studies. We show that nuclear confinement is a key determinant of the intra-chromosomal interactions, and centromere tethering is responsible for the inter-chromosomal interactions. In addition, important genomic elements such as fragile sites and tRNA genes are found to be clustered spatially, largely due to centromere tethering. We uncovered previously unknown interactions that were not captured by genome-wide 3C studies, which are found to be enriched with tRNA genes, RNAPIII and TFIIS binding. Moreover, we identified specific high-frequency genome-wide 3C interactions that are unaccounted for by polymer effects under landmark constraints. These interactions are enriched with important genes and likely play biological roles.
Asunto(s)
Núcleo Celular/genética , Núcleo Celular/ultraestructura , Cromatina/genética , Cromosomas Fúngicos/genética , Genoma Fúngico/genética , Saccharomycetales/genética , Cromatina/metabolismo , Cromatina/ultraestructura , Cromosomas Fúngicos/metabolismo , Cromosomas Fúngicos/ultraestructura , Genómica , Modelos Genéticos , Análisis de la Célula IndividualRESUMEN
Chromosome positioning is crucial for multiple chromosomal events, including DNA replication, repair, and recombination. The linker of nucleoskeleton and cytoskeleton (LINC) complexes, which consist of conserved nuclear membrane proteins, were shown to control chromosome positioning and facilitate various biological processes by interacting with the cytoskeleton. However, the precise functions and regulation of LINC-dependent chromosome positioning are not fully understood. During meiosis, the LINC complexes induce clustering of telomeres, forming the bouquet chromosome arrangement, which promotes homologous chromosome pairing. In fission yeast, the bouquet forms through LINC-dependent clustering of telomeres at the spindle pole body (SPB, the centrosome equivalent in fungi) and detachment of centromeres from the SPB-localized LINC. It was recently found that, in fission yeast, the bouquet contributes to formation of the spindle and meiotic centromeres, in addition to homologous chromosome pairing, and that centromere detachment is linked to telomere clustering, which is crucial for proper spindle formation. Here, we summarize these findings and show that the bouquet chromosome arrangement also contributes to nuclear fusion during karyogamy. The available evidence suggests that these functions are universal among eukaryotes. The findings demonstrate that LINC-dependent chromosome positioning performs multiple functions and controls non-chromosomal as well as chromosomal events, and that the chromosome positioning is stringently regulated for its functions. Thus, chromosome positioning plays a much broader role and is more strictly regulated than previously thought.
Asunto(s)
Centrómero/química , Posicionamiento de Cromosoma , Cromosomas Fúngicos/química , Regulación Fúngica de la Expresión Génica , Schizosaccharomyces/genética , Telómero/química , Centrómero/ultraestructura , Emparejamiento Cromosómico , Cromosomas Fúngicos/ultraestructura , Microtúbulos/química , Microtúbulos/ultraestructura , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plaquinas/genética , Plaquinas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestructura , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Telómero/ultraestructuraRESUMEN
The ring-shaped cohesin complex orchestrates long-range DNA interactions to mediate sister chromatid cohesion and other aspects of chromosome structure and function. In the yeast Saccharomyces cerevisiae, the complex binds discrete sites along chromosomes, including positions within and around genes. Transcriptional activity redistributes the complex to the 3' ends of convergently oriented gene pairs. Despite the wealth of information about where cohesin binds, little is known about cohesion at individual chromosomal binding sites and how transcription affects cohesion when cohesin complexes redistribute. In this study, we generated extrachromosomal DNA circles to study cohesion in response to transcriptional induction of a model gene, URA3. Functional cohesin complexes loaded onto the locus via a poly(dA:dT) tract in the gene promoter and mediated cohesion before induction. Upon transcription, the fate of these complexes depended on whether the DNA was circular or not. When gene activation occurred before DNA circularization, cohesion was lost. When activation occurred after DNA circularization, cohesion persisted. The presence of a convergently oriented gene also prevented transcription-driven loss of functional cohesin complexes, at least in M phase-arrested cells. The results are consistent with cohesin binding chromatin in a topological embrace and with transcription mobilizing functional complexes by sliding them along DNA.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Activación Transcripcional/fisiología , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Cromosomas Fúngicos/ultraestructura , ADN Circular/metabolismo , ADN de Hongos/genética , Proteínas de Unión al ADN/metabolismo , Herencia Extracromosómica , Genes Fúngicos , Genes Reporteros , Genes Sintéticos , Metafase , Complejos Multiproteicos/metabolismo , Poli dA-dT/farmacología , Regiones Promotoras Genéticas/genética , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , CohesinasRESUMEN
Sister chromatid intertwines (SCIs), or catenanes, are topological links between replicated chromatids that interfere with chromosome segregation. The formation of SCIs is thought to be a consequence of fork swiveling during DNA replication, and their removal is thought to occur because of the intrinsic feature of type II topoisomerases (Top2) to simplify DNA topology. Here, we report that SCIs are also formed independently of DNA replication during G2/M by Top2-dependent concatenation of cohesed chromatids due to their physical proximity. We demonstrate that, in contrast to G2/M, Top2 removes SCIs from cohesed chromatids at the anaphase onset. Importantly, SCI removal in anaphase requires condensin and coincides with the hyperactivation of condensin DNA supercoiling activity. This is consistent with the longstanding proposal that condensin provides a bias in Top2 function toward decatenation. A comprehensive model for the formation and resolution of toxic SCI entanglements on eukaryotic genomes is proposed.
Asunto(s)
Adenosina Trifosfatasas/genética , Cromosomas Fúngicos/metabolismo , Replicación del ADN , ADN-Topoisomerasas de Tipo II/genética , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/metabolismo , Anafase , Cromátides/metabolismo , Cromátides/ultraestructura , Segregación Cromosómica , Cromosomas Fúngicos/ultraestructura , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Expresión Génica , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructuraRESUMEN
Cohesin is a ring-shaped protein complex that is capable of embracing DNA. Most of the ring circumference is comprised of the anti-parallel intramolecular coiled coils of the Smc1 and Smc3 proteins, which connect globular head and hinge domains. Smc coiled coil arms contain multiple acetylated and ubiquitylated lysines. To investigate the role of these modifications, we substituted lysines for arginines to mimic the unmodified state and uncovered genetic interaction between the Smc arms. Using scanning force microscopy, we show that wild-type Smc arms associate with each other when the complex is not on DNA. Deacetylation of the Smc1/Smc3 dimers promotes arms' dissociation. Smc arginine mutants display loose packing of the Smc arms and, although they dimerize at the hinges, fail to connect the heads and associate with the DNA. Our findings highlight the importance of a "collapsed ring," or "rod," conformation of cohesin for its loading on the chromosomes.
Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , ADN de Hongos/química , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Acetilación , Sustitución de Aminoácidos , Animales , Arginina/metabolismo , Baculoviridae/genética , Baculoviridae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/química , Cromátides/metabolismo , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/química , Cromosomas Fúngicos/metabolismo , Cromosomas Fúngicos/ultraestructura , Clonación Molecular , ADN de Hongos/genética , ADN de Hongos/metabolismo , Expresión Génica , Regulación Fúngica de la Expresión Génica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Células Sf9 , Transducción de Señal , Spodoptera , CohesinasRESUMEN
Recent genomic studies have revealed that chromosomal structures are formed by a hierarchy of organizing processes ranging from gene associations, including interactions among enhancers and promoters, to topologically associating domain formations. Gene associations identified by these studies can be characterized by microscopic analyses. Fission yeast is a model organism, in which gene associations have been broadly mapped across the genome, although many of those associations have not been further examined by cell biological approaches. To address the technically challenging process of the visualization of associating gene loci in the fission yeast nuclei, we provide, in detail, an IF-FISH procedure that allows for covisualizing both gene loci and nuclear structural markers such as the nuclear membrane and nucleolus.
Asunto(s)
Cromosomas Fúngicos , Técnica del Anticuerpo Fluorescente/métodos , Sitios Genéticos , Hibridación Fluorescente in Situ/métodos , Schizosaccharomyces/genética , Schizosaccharomyces/ultraestructura , Centrómero/genética , Centrómero/ultraestructura , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/ultraestructura , Genoma Fúngico , Schizosaccharomyces/citologíaRESUMEN
Structural maintenance of chromosomes (SMC) protein complexes, including cohesin and condensin, play key roles in the regulation of higher-order chromosome organization. Even though SMC proteins are thought to mechanistically determine the function of the complexes, their native conformations and dynamics have remained unclear. Here, we probe the topology of Smc2-Smc4 dimers of the S. cerevisiae condensin complex with high-speed atomic force microscopy (AFM) in liquid. We show that the Smc2-Smc4 coiled coils are highly flexible polymers with a persistence length of only â¼ 4 nm. Moreover, we demonstrate that the SMC dimers can adopt various architectures that interconvert dynamically over time, and we find that the SMC head domains engage not only with each other, but also with the hinge domain situated at the other end of the â¼ 45-nm-long coiled coil. Our findings reveal structural properties that provide insights into the molecular mechanics of condensin complexes.
Asunto(s)
Proteínas Portadoras/química , Proteínas Cromosómicas no Histona/química , Cromosomas Fúngicos/química , Proteínas Nucleares/química , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/ultraestructura , Expresión Génica , Procesamiento de Imagen Asistido por Computador , Microscopía de Fuerza Atómica/métodos , Simulación de Dinámica Molecular , Imagen Molecular , Método de Montecarlo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Dominios Proteicos , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
In budding yeast, Set2 catalyzes di- and trimethylation of H3K36 (H3K36me2 and H3K36me3) via an interaction between its Set2-Rpb1 interaction (SRI) domain and C-terminal repeats of RNA polymerase II (Pol2) phosphorylated at Ser2 and Ser5 (CTD-S2,5-P). H3K36me2 is sufficient for recruitment of the Rpd3S histone deacetylase complex to repress cryptic transcription from transcribed regions. In fission yeast, Set2 is also responsible for H3K36 methylation, which represses a subset of RNAs including heterochromatic and subtelomeric RNAs, at least in part via recruitment of Clr6 complex II, a homolog of Rpd3S. Here, we show that CTD-S2P-dependent interaction of fission yeast Set2 with Pol2 via the SRI domain is required for formation of H3K36me3, but not H3K36me2. H3K36me3 silenced heterochromatic and subtelomeric transcripts mainly through post-transcriptional and transcriptional mechanisms, respectively, whereas H3K36me2 was not enough for silencing. Clr6 complex II appeared not to be responsible for heterochromatic silencing by H3K36me3. Our results demonstrate that H3K36 methylation has multiple outputs in fission yeast; these findings provide insights into the distinct roles of H3K36 methylation in metazoans, which have different enzymes for synthesis of H3K36me1/2 and H3K36me3.