Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 555
Filtrar
1.
Nutrients ; 15(14)2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37513501

RESUMEN

This study investigated the effect of nicotinamide (NAM) supplementation on the development of brain inflammation and microglial activation in a mouse model of type 1 diabetes mellitus. C57BL/6J male mice, which were made diabetic with five consecutive, low-dose (55 mg/kg i.p.) streptozotocin (STZ) injections. Diabetic mice were randomly distributed in different experimental groups and challenged to different doses of NAM (untreated, NAM low-dose, LD, 0.1%; NAM high-dose, HD, 0.25%) for 25 days. A control, non-diabetic group of mice was used as a reference. The NAD+ content was increased in the brains of NAM-treated mice compared with untreated diabetic mice (NAM LD: 3-fold; NAM HD: 3-fold, p-value < 0.05). Immunohistochemical staining revealed that markers of inflammation (TNFα: NAM LD: -35%; NAM HD: -46%; p-value < 0.05) and microglial activation (IBA-1: NAM LD: -29%; NAM HD: -50%; p-value < 0.05; BDKRB1: NAM LD: -36%; NAM HD: -37%; p-value < 0.05) in brains from NAM-treated diabetic mice were significantly decreased compared with non-treated T1D mice. This finding was accompanied by a concomitant alleviation of nuclear NFκB (p65) signaling in treated diabetic mice (NFκB (p65): NAM LD: -38%; NAM HD: -53%, p-value < 0.05). Notably, the acetylated form of the nuclear NFκB (p65) was significantly decreased in the brains of NAM-treated, diabetic mice (NAM LD: -48%; NAM HD: -63%, p-value < 0.05) and inversely correlated with NAD+ content (r = -0.50, p-value = 0.03), suggesting increased activity of NAD+-dependent deacetylases in the brains of treated mice. Thus, dietary NAM supplementation in diabetic T1D mice prevented brain inflammation via NAD+-dependent deacetylation mechanisms, suggesting an increased action of sirtuin signaling.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Encefalitis , Ratones , Masculino , Animales , Niacinamida/farmacología , NAD , Ratones Endogámicos C57BL , Encefalitis/prevención & control
2.
Mol Brain ; 16(1): 14, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36694204

RESUMEN

Status epilepticus (SE) in humans is characterized by prolonged convulsive seizures that are generalized and often difficult to control. The current antiseizure drugs (ASDs) aim to stop seizures quickly enough to prevent the SE-induced brain inflammation, injury, and long-term sequelae. However, sole reliance on acute therapies is imprudent because prompt treatment may not always be possible under certain circumstances. The pathophysiological mechanisms underlying the devastating consequences of SE are presumably associated with neuroinflammatory reactions, where prostaglandin E2 (PGE2) plays a pivotal role. As the terminal synthase for pathogenic PGE2, the microsomal prostaglandin E synthase-1 (mPGES-1) is rapidly and robustly induced by prolonged seizures. Congenital deletion of mPGES-1 in mice is neuroprotective and blunts gliosis following chemoconvulsant seizures, suggesting the feasibility of mPGES-1 as a potential antiepileptic target. Herein, we investigated the effects of a dual species mPGES-1 inhibitor in a mouse pilocarpine model of SE. Treatment with the mPGES-1 inhibitor in mice after SE that was terminated by diazepam, a fast-acting benzodiazepine, time-dependently abolished the SE-induced PGE2 within the brain. Its negligible effects on cyclooxygenases, the enzymes responsible for the initial step of PGE2 biosynthesis, validated its specificity to mPGES-1. Post-SE inhibition of mPGES-1 also blunted proinflammatory cytokines and reactive gliosis in the hippocampus and broadly prevented neuronal damage in a number of brain areas. Thus, pharmacological inhibition of mPGES-1 by small-molecule inhibitors might provide an adjunctive strategy that can be implemented hours after SE, together with first-line ASDs, to reduce SE-provoked brain inflammation and injury.


Asunto(s)
Encefalitis , Estado Epiléptico , Animales , Ratones , Dinoprostona , Modelos Animales de Enfermedad , Encefalitis/genética , Encefalitis/metabolismo , Encefalitis/prevención & control , Gliosis/complicaciones , Gliosis/tratamiento farmacológico , Prostaglandina-E Sintasas , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Convulsiones/metabolismo , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/genética , Estado Epiléptico/metabolismo
3.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35887020

RESUMEN

Acute brain inflammation after status epilepticus (SE) is involved in blood-brain barrier (BBB) dysfunction and brain edema, which cause the development of post-SE symptomatic epilepsy. Using pilocarpine-induced SE mice, we previously reported that treatment with levetiracetam (LEV) after SE suppresses increased expression levels of proinflammatory mediators during epileptogenesis and prevents the development of spontaneous recurrent seizures. However, it remains unclear how LEV suppresses neuroinflammation after SE. In this study, we demonstrated that LEV suppressed the infiltration of CD11b+CD45high cells into the brain after SE. CD11b+CD45high cells appeared in the hippocampus between 1 and 4 days after SE and contained Ly6G+Ly6C+ and Ly6G-Ly6C+ cells. Ly6G+Ly6C+ cells expressed higher levels of proinflammatory cytokines such as IL-1ß and TNFα suggesting that these cells were inflammatory neutrophils. Depletion of peripheral Ly6G+Ly6C+ cells prior to SE by anti-Ly6G antibody (NIMP-R14) treatment completely suppressed the infiltration of Ly6G+Ly6C+ cells into the brain. Proteome analysis revealed the downregulation of a variety of inflammatory cytokines, which exhibited increased expression in the post-SE hippocampus. These results suggest that Ly6G+Ly6C+ neutrophils are involved in the induction of acute brain inflammation after SE. The proteome expression profile of the hippocampus treated with LEV after SE was similar to that after NIMP-R14 treatment. Therefore, LEV may prevent acute brain inflammation after SE by suppressing inflammatory neutrophil infiltration.


Asunto(s)
Anticonvulsivantes , Encefalitis , Levetiracetam , Estado Epiléptico , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Citocinas/inmunología , Modelos Animales de Enfermedad , Encefalitis/inducido químicamente , Encefalitis/inmunología , Encefalitis/prevención & control , Levetiracetam/farmacología , Levetiracetam/uso terapéutico , Ratones , Monocitos/inmunología , Neutrófilos/inmunología , Pilocarpina/toxicidad , Proteoma , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/etiología , Estado Epiléptico/inmunología
4.
Life Sci ; 286: 119989, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34597609

RESUMEN

AIMS: Isoformononetin (IFN), a methoxyl isoflavone present in most of human dietary supplements. However, being a highly potent antioxidant and anti-inflammatory molecule, its activity against neuronal oxidative stress and neuroinflammation has not been explored till now. The present study was inquested to assess the antioxidant, anti-apoptotic and anti-inflammatory activity of IFN against streptozotocin induced neuroinflammation in different brain regions of rat. MAIN METHODS: Four groups of animals were subjected to treatment as control, toxic control (STZ; single intracerebrovascular injection), third group (STZ + IFN; 20 mg/kg p.o.), fourth group (IFN) for 14 days. The different brain regions of rats were evaluated for inflammatory, apoptotic and biochemical antioxidant markers. The brain tissues were further assessed for gene expression, immunohistochemical and western blotting examination for localization of inflammasome cascade expression that plays a pivotal role in neuroinflammation. KEY FINDINGS: The modulation in oxidant/antioxidant status after exposure of STZ was significantly balanced after administration of IFN to rats. Further, IFN was also found to be an apoptotic agent as it modulates the apoptotic gene (Bax) and anti-apoptotic gene (BcL2) expression. IFN significantly curtailed the augmented protein expression of NLRP3, NLRP2, ASC, NFκBP65, IL-1ß and caspase-1 due to STZ administration in cortex and hippocampus rat brain regions. SIGNIFICANCE: The aforementioned results proclaim the neuroprotective functioning of IFN against STZ induced inflammation. IFN significantly prevents the neuroinflammation by decreasing the generation of ROS that reduces the activation of NLRP3/ASC/IL-1 axis thereby exerting neuroprotection as evidenced in rat model of STZ induced neuroninflammation.


Asunto(s)
Antioxidantes/farmacología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Encefalitis/prevención & control , Interleucina-1/metabolismo , Isoflavonas/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estreptozocina/toxicidad , Animales , Modelos Animales de Enfermedad , Encefalitis/inducido químicamente , Encefalitis/metabolismo , Encefalitis/patología , Expresión Génica/fisiología , Interferones/fisiología , Peroxidación de Lípido/efectos de los fármacos , Óxido Nítrico/biosíntesis , Estrés Oxidativo/efectos de los fármacos , Conejos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
5.
Am J Respir Crit Care Med ; 204(12): 1391-1402, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34491883

RESUMEN

Rationale: Mechanical ventilation (MV) is associated with hippocampal apoptosis and inflammation, and it is important to study strategies to mitigate them. Objectives: To explore whether temporary transvenous diaphragm neurostimulation (TTDN) in association with MV mitigates hippocampal apoptosis and inflammation after 50 hours of MV. Methods: Normal-lung porcine study comparing apoptotic index, inflammatory markers, and neurological-damage serum markers between never-ventilated subjects, subjects undergoing 50 hours of MV plus either TTDN every other breath or every breath, and subjects undergoing 50 hours of MV (MV group). MV settings in volume control were Vt of 8 ml/kg, and positive end-expiratory pressure of 5 cm H2O. Measurements and Main Results: Apoptotic indices, microglia percentages, and reactive astrocyte percentages were greater in the MV group in comparison with the other groups (P < 0.05). Transpulmonary pressure at baseline and at study end were both lower in the group receiving TTDN every breath, but lung injury scores and systemic inflammatory markers were not different between the groups. Serum concentrations of four neurological-damage markers were lower in the group receiving TTDN every breath than in the MV group (P < 0.05). Heart rate variability declined significantly in the MV group and increased significantly in both TTDN groups over the course of the experiments. Conclusions: Our study found that mechanical ventilation is associated with hippocampal apoptosis and inflammation, independent of lung injury and systemic inflammation. Also, in a porcine model, TTDN results in neuroprotection after 50 hours, and the degree of neuroprotection increases with greater exposure to TTDN.


Asunto(s)
Apoptosis , Lesiones Encefálicas/prevención & control , Diafragma/inervación , Terapia por Estimulación Eléctrica/métodos , Encefalitis/prevención & control , Hipocampo/patología , Respiración Artificial/efectos adversos , Animales , Lesiones Encefálicas/diagnóstico , Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Encefalitis/diagnóstico , Encefalitis/etiología , Encefalitis/patología , Femenino , Nervio Frénico , Respiración Artificial/métodos , Porcinos , Resultado del Tratamiento
6.
J Alzheimers Dis ; 83(3): 1113-1124, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34397411

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common cause of dementia in the elderly and is characterized by progressive cognitive decline. Considerable evidence supports an important role of amyloid-ß oligomers (AßOs) in the pathogenesis of AD, including the induction of aberrant glial activation and memory impairment. OBJECTIVE: We have investigated the protective actions of a nutritional formulation, denoted AZ formulation, on glial activation and memory deficits induced by intracerebroventricular (i.c.v.) infusion of AßOs in mice. METHODS: Two-month-old male mice were treated orally with AZ formulation or isocaloric placebo for 30 consecutive days. Microglial and astrocytic activation were analyzed by immunohistochemistry in the hippocampus 10 days after i.c.v. infusion of AßOs (n = 5 mice per experimental condition). Memory loss was assessed by the novel object recognition (NOR) test (n = 6-10 mice per experimental condition). RESULTS: Oral treatment with the AZ formulation prevented hippocampal microglial and astrocytic activation induced by i.c.v. infusion of AßOs. The AZ formulation further protected mice from AßO-induced memory impairment. CONCLUSION: Results suggest that administration of the AZ formulation may comprise a promising preventative and non-pharmacological strategy to reduce brain inflammation and attenuate memory impairment in AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Dietoterapia , Encefalitis/prevención & control , Hipocampo/fisiología , Neuroglía/metabolismo , Enfermedad de Alzheimer/prevención & control , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Neuronas/metabolismo
7.
J Cell Physiol ; 236(10): 6920-6931, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33792028

RESUMEN

Subarachnoid hemorrhage (SAH) is a subtype of stroke with high mortality and morbidity due to the lack of effective therapy. Atorvastatin has been reported to alleviate early brain injury (EBI) following subarachnoid hemorrhage (SAH) via reducing reactive oxygen species, antiapoptosis, regulated autophagy, and neuroinflammation. Which was the related to the pyroptosis? Pyroptosis can be defined as a highly specific inflammatory programmed cell death, distinct from classical apoptosis and necrosis. However, the precise role of pyroptosis in atorvastatin-mediated neuroprotection following SAH has not been confirmed. The present study aimed to investigate the neuroprotection and potential molecular mechanisms of atorvastatin in the SAH-induced EBI via regulating neural pyroptosis using the filament perforation model of SAH in male C57BL/6 mice, and the hemin-induced neuron damage model in HT-22. Atorvastatin or vehicle was administrated 2 h after SAH and hemin-induced neuron damage. The mortality, neurological score, brain water content, and neuronal death were evaluated. The results show that the atorvastatin treatment markedly increased survival rate, neurological score, greater survival of neurons, downregulated the protein expression of NLRP1, cleaved caspase-1, interleukin-1ß (IL-1ß), and IL-18, which indicated that atorvastatin-inhibited pyroptosis and neuroinflammation, ameliorated neuron death in vivo/vitro subjected to SAH. Taken together, this study demonstrates that atorvastatin improved the neurological outcome in rats and reduced the neuron death by against neural pyroptosis and neuroinflammation.


Asunto(s)
Atorvastatina/farmacología , Lesiones Encefálicas/prevención & control , Encéfalo/efectos de los fármacos , Encefalitis/prevención & control , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Piroptosis/efectos de los fármacos , Hemorragia Subaracnoidea/tratamiento farmacológico , Animales , Encéfalo/metabolismo , Encéfalo/patología , Edema Encefálico/etiología , Edema Encefálico/metabolismo , Edema Encefálico/patología , Edema Encefálico/prevención & control , Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Estudios de Casos y Controles , Caspasa 1/metabolismo , Línea Celular , Citocinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Encefalitis/etiología , Encefalitis/metabolismo , Encefalitis/patología , Hemina/toxicidad , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuronas/metabolismo , Neuronas/patología , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/patología
8.
Biomed Pharmacother ; 139: 111579, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33845375

RESUMEN

Alzheimer's disease (AD) is the most common type of dementia worldwide, characterized by the deposition of neurofibrillary tangles and amyloid-ß (Aß) peptides in the brain. Additionally, increasing evidence demonstrates that a neuroinflammatory state and oxidative stress, iron-dependent, play a crucial role in the onset and disease progression. Besides conventional therapies, the use of natural-based products represents a future medical option for AD treatment and/or prevention. We, therefore, evaluated the effects of a ribonucleotides-based ingredient (Ribodiet®) in a non-genetic mouse model of AD. To this aim, mice were injected intracerebroventricularly (i.c.v.) with Aß1-42 peptide (3 µg/3 µl) and after with Ribodiet® (0.1-10 mg/mouse) orally (p.o.) 3 times weekly for 21 days following the induction of experimental AD. The mnemonic and cognitive decline was then evaluated, and, successively, we have assessed ex vivo the modulation of different cyto-chemokines on mice brain homogenates. Finally, the level of GFAP, S100ß, and iron-related metabolic proteins were monitored as markers of reactive gliosis, neuro-inflammation, and oxidative stress. Results indicate that Ribodiet® lessens oxidative stress, brain inflammation, and amyloid pathology via modulation of iron-related metabolic proteins paving the way for its rationale use for the treatment of AD and other age-related diseases.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Angiopatía Amiloide Cerebral/prevención & control , Suplementos Dietéticos , Encefalitis/prevención & control , Estrés Oxidativo/efectos de los fármacos , Ribonucleótidos/uso terapéutico , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides , Animales , Conducta Animal/efectos de los fármacos , Biomarcadores , Angiopatía Amiloide Cerebral/psicología , Dieta , Encefalitis/psicología , Gliosis/prevención & control , Inyecciones Intraventriculares , Masculino , Ratones , Proteínas de Hierro no Heme/metabolismo , Fragmentos de Péptidos , Desempeño Psicomotor/efectos de los fármacos , Ribonucleótidos/farmacología
9.
J Cardiovasc Pharmacol ; 77(5): 632-641, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33852527

RESUMEN

ABSTRACT: Inconsistent reports are available on the role of testosterone in end-organ damage caused by endotoxemia. Here, pharmacologic, surgical, and molecular studies were employed to assess the testosterone modulation of cardiovascular, autonomic, and peripheral and central inflammatory derangements caused by endotoxemia. Studies were performed in conscious male rats preinstrumented with femoral indwelling catheters for the measurement of blood pressure and subjected to castration or pharmacologic interventions that interrupt the biosynthetic cascade of testosterone. Compared with the effects of lipopolysaccharide (10 mg/kg intravenously) in sham operated rats, 2-week castration reduced the lipopolysaccharide-evoked (1) falls in blood pressure, (2) decreases in time- and frequency-domain indices of heart rate variability, (3) shifts in spectral measures of cardiac sympathovagal balance toward parasympathetic dominance, and (4) increases in protein expressions of toll-like receptor-4 and monocyte chemoattractant protein-1 in heart and medullary neurons of the nucleus tractus solitarius and rostral ventrolateral medulla. While the ameliorating actions of castration on endotoxic cardiovascular manifestations were maintained after testosterone replacement, the concomitant inflammatory signals were restored to near-sham levels. The favorable influences of castration on inflammatory and cardiovascular abnormalities of endotoxemia were replicated in intact rats pretreated with degarelix (gonadotropin-releasing hormone receptor blocker) or finasteride (5α-reductase inhibitor) but not formestane (aromatase inhibitor). The data signifies the importance of androgens and its biosynthetic enzymes in cardiovascular and autonomic insults induced by the endotoxic inflammatory response. Clinically, the interruption of testosterone biosynthesis could offer a potential strategy for endotoxemia management.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Tronco Encefálico/fisiopatología , Encefalitis/etiología , Endotoxemia/complicaciones , Cardiopatías/etiología , Corazón/inervación , Testosterona/sangre , Inhibidores de 5-alfa-Reductasa/farmacología , Androstenodiona/análogos & derivados , Androstenodiona/farmacología , Animales , Inhibidores de la Aromatasa/farmacología , Sistema Nervioso Autónomo/efectos de los fármacos , Presión Sanguínea , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/metabolismo , Modelos Animales de Enfermedad , Encefalitis/sangre , Encefalitis/fisiopatología , Encefalitis/prevención & control , Endotoxemia/sangre , Endotoxemia/tratamiento farmacológico , Endotoxemia/fisiopatología , Finasterida/farmacología , Cardiopatías/sangre , Cardiopatías/fisiopatología , Cardiopatías/prevención & control , Frecuencia Cardíaca , Mediadores de Inflamación/metabolismo , Masculino , Oligopéptidos/farmacología , Orquiectomía , Ratas Wistar , Receptores LHRH/antagonistas & inhibidores , Receptores LHRH/metabolismo
10.
Basic Res Cardiol ; 116(1): 31, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33929610

RESUMEN

Aircraft noise induces vascular and cerebral inflammation and oxidative stress causing hypertension and cardiovascular/cerebral dysfunction. With the present studies, we sought to determine the role of myeloid cells in the vascular vs. cerebral consequences of exposure to aircraft noise. Toxin-mediated ablation of lysozyme M+ (LysM+) myeloid cells was performed in LysMCreiDTR mice carrying a cre-inducible diphtheria toxin receptor. In the last 4d of toxin treatment, the animals were exposed to noise at maximum and mean sound pressure levels of 85 and 72 dB(A), respectively. Flow cytometry analysis revealed accumulation of CD45+, CD11b+, F4/80+, and Ly6G-Ly6C+ cells in the aortas of noise-exposed mice, which was prevented by LysM+ cell ablation in the periphery, whereas brain infiltrates were even exacerbated upon ablation. Aircraft noise-induced increases in blood pressure and endothelial dysfunction of the aorta and retinal/mesenteric arterioles were almost completely normalized by ablation. Correspondingly, reactive oxygen species in the aorta, heart, and retinal/mesenteric vessels were attenuated in ablated noise-exposed mice, while microglial activation and abundance in the brain was greatly increased. Expression of phagocytic NADPH oxidase (NOX-2) and vascular cell adhesion molecule-1 (VCAM-1) mRNA in the aorta was reduced, while NFκB signaling appeared to be activated in the brain upon ablation. In sum, we show dissociation of cerebral and peripheral inflammatory reactions in response to aircraft noise after LysM+ cell ablation, wherein peripheral myeloid inflammatory cells represent a dominant part of the pathomechanism for noise stress-induced cardiovascular effects and their central nervous counterparts, microglia, as key mediators in stress responses.


Asunto(s)
Arterias/enzimología , Encéfalo/enzimología , Encefalitis/prevención & control , Microglía/enzimología , Muramidasa/deficiencia , Células Mieloides/enzimología , Ruido del Transporte/efectos adversos , Enfermedades Vasculares Periféricas/prevención & control , Aeronaves , Animales , Arterias/fisiopatología , Encéfalo/patología , Modelos Animales de Enfermedad , Encefalitis/enzimología , Encefalitis/etiología , Encefalitis/patología , Eliminación de Gen , Mediadores de Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/patología , Muramidasa/genética , Estrés Oxidativo , Enfermedades Vasculares Periféricas/enzimología , Enfermedades Vasculares Periféricas/etiología , Enfermedades Vasculares Periféricas/fisiopatología , Especies Reactivas de Oxígeno/metabolismo
11.
J Neuroinflammation ; 18(1): 95, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33874954

RESUMEN

BACKGROUND: Chronic brain inflammation has been implicated in the pathogenesis of various neurodegenerative diseases and disorders. For example, overexpression of pro-inflammatory cytokines has been associated with impairments in hippocampal-dependent memory. Lipopolysaccharide (LPS) injection is a widely used model to explore the pathobiology of inflammation. LPS injection into mice causes systemic inflammation, neuronal damage, and poor memory outcomes if the inflammation is not controlled. Activation of the alpha-7 nicotinic receptor (α7) plays an anti-inflammatory role in the brain through vagal efferent nerve signaling. 4R-cembranoid (4R) is a natural compound that crosses the blood-brain barrier, induces neuronal survival, and has been shown to modulate the activity of nicotinic receptors. The purpose of this study is to determine whether 4R reduces the deleterious effects of LPS-induced neuroinflammation and whether the α7 receptor plays a role in mediating these beneficial effects. METHODS: Ex vivo population spike recordings were performed in C57BL/6J wild-type (WT) and alpha-7-knockout (α7KO) mouse hippocampal slices in the presence of 4R and nicotinic receptor inhibitors. For in vivo studies, WT and α7KO mice were injected with LPS for 2 h, followed by 4R or vehicle for 22 h. Analyses of IL-1ß, TNF-α, STAT3, CREB, Akt1, and the long-term novel object recognition test (NORT) were performed for both genotypes. In addition, RNA sequencing and RT-qPCR analyses were carried out for 12 mRNAs related to neuroinflammation and their modification by 4R. RESULTS: 4R confers neuroprotection after NMDA-induced neurotoxicity in both WT and α7KO mice. Moreover, hippocampal TNF-α and IL-1ß levels were decreased with 4R treatment following LPS exposure in both strains of mice. 4R restored LPS-induced cognitive decline in NORT. There was a significant increase in the phosphorylation of STAT3, CREB, and Akt1 with 4R treatment in the WT mouse hippocampus following LPS exposure. In α7KO mice, only pAkt levels were significantly elevated in the cortex. 4R significantly upregulated mRNA levels of ORM2, GDNF, and C3 following LPS exposure. These proteins are known to play a role in modulating microglial activation, neuronal survival, and memory. CONCLUSION: Our results indicate that 4R decreases the levels of pro-inflammatory cytokines; improves memory function; activates STAT3, Akt1, and CREB phosphorylation; and upregulates the mRNA levels of ORM2, GDNF, and C3. These effects are independent of the α7 nicotinic receptor.


Asunto(s)
Diterpenos/farmacología , Encefalitis/prevención & control , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Lipopolisacáridos , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Antiinflamatorios , Citocinas/inmunología , Encefalitis/fisiopatología , Hipocampo/inmunología , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
12.
Transfusion ; 61(5): 1505-1517, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33713461

RESUMEN

BACKGROUND: Naïve T-cell-depleted grafts have been employed as an ex vivo T-cell depletion (TCD) platform to prevent graft-versus-host disease (GvHD) and improve immune reconstitution by providing rapid donor memory T-cell reconstitution after allogenic hematopoietic stem cell transplantation (allo-HSCT). CD45RA- memory T cells confer protection against viruses such as cytomegalovirus, Epstein-Barr virus, and adenovirus; however, reports have shown an unexpectedly high incidence of human herpesvirus (HHV)-6B encephalitis among pediatric allo-HSCT patients. METHODS: We report the first 18 consecutive allo-HSCT, 16 haplo-HSCT, and two human leukocyte antigen-matched related donors implanted with naïve TCD grafts. All donors were administered three cell products: first, a CD34+ stem cell product; second, a CD45RA+ TCD graft, followed by an adoptive natural killer (NK) cell infusion within 10 days after HSCT. The study's primary endpoint was the incidence of HHV-6B encephalitis. RESULTS: Engraftment was achieved in 94.5% of cases; 2-year overall survival, event-free survival, and GvHD/relapse-free survival were 87.2% (95% CI 78.6-95.8), 67.3% (95% CI 53.1-81.5), and 64% (95% CI 50.5-78.1), respectively. HHV-6B reactivation occurred in 7 of the haplo-HSCT patients, six of who received a cell infusion with an NK/CD4 ratio <2. None of the patients developed encephalitis. CONCLUSIONS: In this clinical study, we show that early adoptive NK cell infusion after a 45RA+ TCD allo-HSCT graft is safe and can prevent HHV-6B encephalitis. We recommend infusing adoptive NK cells after allo-HSCT using CD45RA+ TCD grafts.


Asunto(s)
Encefalitis/prevención & control , Trasplante de Células Madre Hematopoyéticas , Herpesvirus Humano 6/aislamiento & purificación , Células Asesinas Naturales/trasplante , Depleción Linfocítica , Infecciones por Roseolovirus/prevención & control , Adolescente , Traslado Adoptivo/métodos , Niño , Preescolar , Encefalitis/inmunología , Femenino , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Trasplante de Células Madre Hematopoyéticas/métodos , Herpesvirus Humano 6/inmunología , Humanos , Lactante , Células Asesinas Naturales/inmunología , Masculino , Infecciones por Roseolovirus/inmunología , Linfocitos T/inmunología , Trasplante Homólogo/métodos
13.
Ann Neurol ; 89(5): 952-966, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33550655

RESUMEN

OBJECTIVE: Apolipoprotein E (ApoE) genotype is the strongest genetic risk factor for late-onset Alzheimer's disease, with the ε4 allele increasing risk in a dose-dependent fashion. In addition to ApoE4 playing a crucial role in amyloid-ß deposition, recent evidence suggests that it also plays an important role in tau pathology and tau-mediated neurodegeneration. It is not known, however, whether therapeutic reduction of ApoE4 would exert protective effects on tau-mediated neurodegeneration. METHODS: Herein, we used antisense oligonucleotides (ASOs) against human APOE to reduce ApoE4 levels in the P301S/ApoE4 mouse model of tauopathy. We treated P301S/ApoE4 mice with ApoE or control ASOs via intracerebroventricular injection at 6 and 7.5 months of age and performed brain pathological assessments at 9 months of age. RESULTS: Our results indicate that treatment with ApoE ASOs reduced ApoE4 protein levels by ~50%, significantly protected against tau pathology and associated neurodegeneration, decreased neuroinflammation, and preserved synaptic density. These data were also corroborated by a significant reduction in levels of neurofilament light chain (NfL) protein in plasma of ASO-treated mice. INTERPRETATION: We conclude that reducing ApoE4 levels should be explored further as a therapeutic approach for APOE4 carriers with tauopathy including Alzheimer's disease. ANN NEUROL 2021;89:952-966.


Asunto(s)
Apolipoproteína E4/antagonistas & inhibidores , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/etiología , Oligonucleótidos Antisentido/uso terapéutico , Tauopatías/complicaciones , Tauopatías/tratamiento farmacológico , Animales , Apolipoproteína E4/sangre , Apolipoproteína E4/genética , Colesterol/metabolismo , Giro Dentado/patología , Encefalitis/prevención & control , Técnicas de Sustitución del Gen , Inyecciones Intraventriculares , Ratones , Ratones Endogámicos C57BL , Proteínas de Neurofilamentos/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , Sinapsis/efectos de los fármacos , Sinapsis/patología , Proteínas tau/metabolismo
14.
Hum Vaccin Immunother ; 17(7): 2097-2100, 2021 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-33522390

RESUMEN

In order to analyze the effect of EV71 vaccination on the incidence of encephalitis in patients with HFMD, 292 cases were vaccinated, and 2,486 cases were not vaccinated which were collected in 2018 and 2019. It shows that the incidence rate of encephalitis in vaccinated patients was significantly lower than that in non-vaccinated (P = .028), which suggests that EV71 vaccine has a protective effect on the occurrence of encephalitis. But some EV71 vaccinated patients still developed into encephalitis showed that they had not produced protection or protection was weak against EV71-related encephalitis; the reasons require further investigation.


Asunto(s)
Encefalitis , Enterovirus Humano A , Enfermedad de Boca, Mano y Pie , China , Encefalitis/epidemiología , Encefalitis/prevención & control , Enfermedad de Boca, Mano y Pie/epidemiología , Enfermedad de Boca, Mano y Pie/prevención & control , Humanos , Incidencia , Lactante , Vacunación
15.
Neurotoxicology ; 83: 89-105, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33412218

RESUMEN

The aggregation of Aß plays a major role in the progression of Alzheimer's disease (AD) and induces neuroinflammation, neurodegeneration and cognitive decline. Recent studies have shown that the soluble aggregates of Aß are the major culprits in the development of these aberrations inside the brain. In this study, we investigated the neuroprotective potential of carbenoxolone (Cbx), which has been found to possess anti-inflammatory and nootropic properties. Male SD rats (250-300 g) were divided into the four groups (n = 8 per group): (1) sham control rats injected with vehicles, (2) Aß 1-42 group rats injected i.c.v. with Aß 42 oligomers (10 µl/rat), (3) Aß 1-42+Cbx group rats injected i.c.v. with Aß 42 oligomers (10 µl/rat) and i.p. with carbenoxolone disodium (20 mg/kg body weight) for six-weeks and (4) Cbx group rats injected i.p. with carbenoxolone disodium (20 mg/kg body weight) for six-weeks. Progressive learning and memory deficits were seen through a battery of behavioral tests and a significant increase in the expressions of GFAP and Iba-1 was observed which resulted in the release of pro-inflammatory cytokines post Aß oligomer injection. The levels of BDNF, Bcl-2 and pCREB were decreased while Bax, caspase-3, caspase-9 and cytochrome c levels were induced. Also, neurotransmitter levels were altered and neuronal damage was observed through histopathological studies. After Cbx supplementation, the expressions of GFAP, IBA-1, pro-inflammatory cytokines, iNOS, nNOS and nitric oxide levels were normalized. The expression levels of pro-apoptotic markers were decreased and neurotrophin levels were restored. Also, neurotransmitter levels and neuronal profile were improved and progressive improvements in behavioural performance were observed. Our results demonstrated that Cbx might have prevented the Aß induced neurodegeneration and cognitive decline by inhibiting the neuroinflammation and inducing BDNF/CREB signalling. These findings suggest that Cbx can be explored as a potential therapeutic agent against the progression of AD.


Asunto(s)
Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Carbenoxolona/farmacología , Cognición/efectos de los fármacos , Disfunción Cognitiva/prevención & control , Encefalitis/prevención & control , Fármacos Neuroprotectores/farmacología , Acetilcolinesterasa/metabolismo , Péptidos beta-Amiloides , Animales , Apoptosis/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Encefalitis/inducido químicamente , Encefalitis/metabolismo , Encefalitis/fisiopatología , Proteínas Ligadas a GPI/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Memoria/efectos de los fármacos , Monoaminooxidasa/metabolismo , FN-kappa B/metabolismo , Fragmentos de Péptidos , Fosforilación , Ratas Sprague-Dawley , Transducción de Señal
16.
Neurotoxicology ; 83: 77-88, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33417987

RESUMEN

Low-dose repeated lipopolysaccharide pre-challenge followed by chronic mild stress (LPS/CMS) protocol has been introduced as a rodent model of depression combining the roles of immune activation and chronic psychological stress. However, the impact of this paradigm on cognitive functioning has not been investigated hitherto. METHODS: This study evaluated LPS/CMS-induced cognitive effects and the role of glycogen synthase kinase-3ß (GSK-3ß) activation with subsequent neuroinflammation and pathological tau deposition in the pathogenesis of these effects using lithium (Li) as a tool for GSK-3 inhibition. RESULTS: LPS pre-challenge reduced CMS-induced neuroinflammation, depressive-like behavior and cognitive inflexibility. It also improved spatial learning but increased GSK-3ß expression and exaggerated hyperphosphorylated tau accumulation in hippocampus and prefrontal cortex. Li ameliorated CMS and LPS/CMS-induced depressive and cognitive deficits, reduced GSK-3ß over-expression and tau hyperphosphorylation, impeded neuroinflammation and enhanced neuronal survival. CONCLUSION: This study draws attention to LPS/CMS-triggered cognitive changes and highlights how prior low-dose immune challenge could develop an adaptive capacity to buffer inflammatory damage and maintain the cognitive abilities necessary to withstand threats. This work also underscores the favorable effect of Li (as a GSK-3ß inhibitor) in impeding exaggerated tauopathy and neuroinflammation, rescuing neuronal survival and preserving cognitive functions. Yet, further in-depth studies utilizing different low-dose LPS challenge schedules are needed to elucidate the complex interactions between immune activation and chronic stress exposure.


Asunto(s)
Conducta Animal/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Cognición/efectos de los fármacos , Disfunción Cognitiva/prevención & control , Depresión/prevención & control , Encefalitis/prevención & control , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Hipocampo/efectos de los fármacos , Cloruro de Litio/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Tauopatías/prevención & control , Animales , Corteza Cerebral/enzimología , Corteza Cerebral/fisiopatología , Enfermedad Crónica , Disfunción Cognitiva/enzimología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Depresión/enzimología , Depresión/etiología , Depresión/fisiopatología , Modelos Animales de Enfermedad , Encefalitis/enzimología , Encefalitis/etiología , Encefalitis/fisiopatología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipocampo/enzimología , Hipocampo/fisiopatología , Mediadores de Inflamación/metabolismo , Lipopolisacáridos , Masculino , Fosforilación , Ratas Wistar , Aprendizaje Espacial/efectos de los fármacos , Estrés Psicológico/complicaciones , Estrés Psicológico/psicología , Tauopatías/enzimología , Tauopatías/etiología , Tauopatías/fisiopatología , Proteínas tau/metabolismo
17.
Neurotox Res ; 39(2): 119-132, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33025358

RESUMEN

Sepsis-associated encephalopathy is a serious consequence of sepsis, triggered by the host response against an infectious agent, that can lead to brain damage and cognitive impairment. Several mechanisms have been proposed in this bidirectional communication between the immune system and the brain after sepsis as neuroinflammation, oxidative stress, and mitochondrial dysfunction. Stanniocalcin-1 (STC-1), an endogen neuroprotective protein, acts as an anti-inflammatory and suppresses superoxide generation through induction of uncoupling proteins (UCPs) in the mitochondria. Here, we demonstrated a protective role of STC-1 on inflammatory responses in vitro, in activated microglia stimulated with LPS, and on neuroinflammation, oxidative stress, and mitochondrial function in the hippocampus of rats subjected to an animal model of sepsis by cecal ligation and puncture (CLP), as well the consequences on long-term memory. Recombinant human STC-1 (rhSTC1) suppressed the pro-inflammatory cytokine production in LPS-stimulated microglia without changing the UCP-2 expression. Besides, rhSTC1 injected into the cisterna magna decreased acute hippocampal inflammation and oxidative stress and increased the activity of complex I and II activity of mitochondrial respiratory chain and creatine kinase at 24 h after sepsis. rhSTC1 was effective in preventing long-term cognitive impairment after CLP. In conclusion, rhSTC1 confers significant neuroprotection by inhibiting the inflammatory response in microglia and protecting against sepsis-associated encephalopathy in rats.


Asunto(s)
Encefalitis/prevención & control , Glicoproteínas/administración & dosificación , Microglía/efectos de los fármacos , Microglía/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Encefalopatía Asociada a la Sepsis/prevención & control , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar
18.
Int J Radiat Oncol Biol Phys ; 109(5): 1508-1520, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33307152

RESUMEN

PURPOSE: Cranial radiation therapy (CRT) is a common treatment for pediatric brain tumor patients. However, side effects include significant neurobehavioral dysfunction in survivors. This dysfunction may in part be caused by inflammation, including increased production of tumor necrosis factor alpha (TNFα) and its receptor TNFR1, which can activate the nuclear factor kappa light-chain enhancer of activated B cells (NF-κB). The TNFα blockade abrogates this inflammatory response, although it presents immunologic risks. Thus, modulation of pathway subsets may be preferable. Here, we test whether inhibition of NF-κB activation using an NF-κB essential modulator binding domain (NBD) peptide mitigates CRT-induced neuroinflammation and improves behavioral outcomes. METHODS AND MATERIALS: Male C57BL/6J 28-day old mice were randomized to saline (sham), 5 Gy whole-brain CRT, or CRT + NBD-peptide. Brain tissue was collected after 4 hours or 3 months for Western blot or immunohistochemistry. The cortex, corpus callosum (CC), and dentate gyrus were variably imaged for NF-κB-p65, IκBα, proliferation, apoptosis, necroptosis, TNFα, TNFR1, IBA-1, doublecortin, CD11c, and GFAP. Neurobehavioral changes were assessed by open field and elevated plus maze tests 3 months post-CRT. RESULTS: NF-κB expression increased in whole and nuclear fractions 4 hours after CRT and was abrogated by NBD treatment. Cell death increased and proliferation decreased after CRT, including within neuronal progenitors, with some loss mitigated by NBD. Increased levels of TNFα, IBA-1, and GFAP were found in the CC and cortex months after CRT and were limited by NBD. The anti-NF-κB peptide also improved neurobehavioral assessments, yielding improvements in anxiety and exploration. CONCLUSIONS: Results suggest a role for NF-κB modulation by NBD peptide in the reduction of neuroinflammation and mitigation of behavioral complications after pediatric radiation therapy.


Asunto(s)
Conducta Animal/efectos de la radiación , Irradiación Craneana/efectos adversos , Encefalitis/prevención & control , Péptidos y Proteínas de Señalización Intracelular/farmacología , Factor de Transcripción ReIA/antagonistas & inhibidores , Factores de Edad , Animales , Apoptosis , Proteínas de Unión al Calcio/metabolismo , Muerte Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Canales de Cloruro/metabolismo , Irradiación Craneana/métodos , Encefalitis/etiología , Encefalitis/metabolismo , Encefalitis/patología , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/prevención & control , Proteína HMGB1/metabolismo , Etiquetado Corte-Fin in Situ , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Inhibidor NF-kappaB alfa , Dosis de Radiación , Distribución Aleatoria , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Transcripción ReIA/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
19.
Pediatr Infect Dis J ; 39(12): e417-e422, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33165276

RESUMEN

BACKGROUND: Acute encephalitis in childhood is a serious condition. The severity varies between studies, partly reflecting differences in study design where only severe cases from referral centers often are reported. The aim of this study was to prospectively study the clinical picture and etiology of acute encephalitis in childhood at a primary and tertiary pediatric hospital in Sweden. METHODS: All children with acute encephalitis were prospectively included from 2011 to 2016. Laboratory tests, investigations and follow-up were performed according to standardized study protocols. RESULTS: Eighty-nine children were included (46 female and 43 male) with a median age of 53 months. An etiology was established in 61/89. Tick-borne encephalitis virus, enterovirus and rotavirus dominated and 34% were caused by a virus preventable by vaccination. Immune-mediated encephalitis was seen in 7 children. An abnormal electroencephalography picture was seen in 77/86, pathologic findings on neuroimaging in 13/49, and 38/89 children had seizures. Sequelae were reported by 49%. A high prevalence of previous contact with child and adolescent psychiatry was seen and, although not statistically significant, the need for extra support at school before encephalitis and the presence of central nervous system disease in the family seemed to predispose for a longer hospital stay. CONCLUSION: Encephalitis is a condition with long-term consequences. Most children need admission to hospital, and many need surveillance in the intensive care unit. The etiology can be determined in a majority of cases, and 1/3 could have been prevented by vaccination. This study corroborates electroencephalography as a cornerstone in diagnosis.


Asunto(s)
Encefalitis , Antivirales/uso terapéutico , Niño , Preescolar , Electroencefalografía , Encefalitis/diagnóstico , Encefalitis/tratamiento farmacológico , Encefalitis/epidemiología , Encefalitis/prevención & control , Femenino , Humanos , Masculino , Estudios Prospectivos , Factores de Riesgo , Suecia , Resultado del Tratamiento
20.
Neuropharmacology ; 181: 108334, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33011199

RESUMEN

Chemotherapy-induced cognitive dysfunction (chemobrain) is one of the major complaints for cancer patients treated with chemotherapy such as Doxorubicin (DOX). The induction of oxidative stress and neuroinflammation were identified as major contributors to such adverse effect. Caffeic acid phenethyl ester (CAPE) is a natural polyphenolic compound, that exhibits unique context-dependent antioxidant activity. It exhibits pro-oxidant effects in cancer cells, while it is a potent antioxidant and cytoprotective in normal cells. The present study was designed to investigate the potential neuroprotective effects of CAPE against DOX-induced cognitive impairment. Chemobrain was induced in Sprague Dawley rats via systemic DOX administration once per week for 4 weeks (2 mg/kg/week, i.p.). CAPE was administered at 10 or 20 µmol/kg/day, i.p., 5 days per week for 4 weeks. Morris water maze (MWM) and passive avoidance tests were used to assess learning and memory functions. Oxidative stress was evaluated via the colorimetric determination of GSH and MDA levels in both hippocampal and prefrontal cortex brain regions. However, inflammatory markers, acetylcholine levels, and neuronal cell apoptosis were assessed in the same brain areas using immunoassays including either ELISA, western blotting or immunohistochemistry. DOX produced significant impairment in learning and memory as indicated by the data generated from MWM and step-through passive avoidance tests. Additionally DOX-triggered oxidative stress as evidenced from the reduction in GSH levels and increased lipid peroxidation. Treatment with DOX resulted in neuroinflammation as indicated by the increase in NF-kB (p65) nuclear translocation in addition to boosting the levels of pro-inflammatory mediators (COX-II/TNF-α) along with the increased levels of glial fibrillary acid protein (GFAP) in the tested tissues. Moreover, DOX reduced acetylcholine levels and augmented neuronal cell apoptosis as supported by the increased active caspase-3 levels. Co-treatment with CAPE significantly counteracted DOX-induced behavioral and molecular abnormalities in rat brain tissues. Our results provide the first preclinical evidence for CAPE promising neuroprotective activity against DOX-induced neurodegeneration and memory deficits.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Ácidos Cafeicos/uso terapéutico , Deterioro Cognitivo Relacionado con la Quimioterapia/prevención & control , Doxorrubicina/antagonistas & inhibidores , Encefalitis/prevención & control , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Alcohol Feniletílico/análogos & derivados , Animales , Reacción de Prevención/efectos de los fármacos , Química Encefálica , Caspasa 3/metabolismo , Deterioro Cognitivo Relacionado con la Quimioterapia/psicología , Doxorrubicina/toxicidad , Encefalitis/inducido químicamente , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Alcohol Feniletílico/uso terapéutico , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA