Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.460
Filtrar
2.
PLoS One ; 19(5): e0303053, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38776297

RESUMEN

OBJECTIVE: To describe the protocol of a prospective study to test the validity of intermuscular coherence (IMC) as a diagnostic tool and biomarker of upper motor neuron degeneration in amyotrophic lateral sclerosis (ALS). METHODS: This is a multicenter, prospective study. IMC of muscle pairs in the upper and lower limbs is gathered in ∼650 subjects across three groups using surface electrodes and conventional electromyography (EMG) machines. The following subjects will be tested: 1) neurotypical controls; 2) patients with symptomatology suggestive for early ALS but not meeting probable or definite ALS by Awaji Criteria; 3) patients with a known ALS mimic. The recruitment period is between 3/31/2021 and 12/31/2025. Written consent will be sought from the subject or the subject's legally authorized representative during enrollment. RESULTS: The endpoints of this study include: 1) whether adding IMC to the Awaji ALS criteria improve its sensitivity in early ALS and can allow for diagnosis earlier; 2) constructing a database of IMC across different ages, genders, and ethnicities. SIGNIFICANCE: This study may validate a new inexpensive, painless, and widely available tool for the diagnosis of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Biomarcadores , Electromiografía , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/fisiopatología , Humanos , Estudios Prospectivos , Electromiografía/métodos , Biomarcadores/análisis , Masculino , Femenino , Persona de Mediana Edad , Músculo Esquelético/fisiopatología , Músculo Esquelético/patología , Neuronas Motoras/patología , Anciano , Adulto
3.
Transl Neurodegener ; 13(1): 28, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811997

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons, resulting in global health burden and limited post-diagnosis life expectancy. Although primarily sporadic, familial ALS (fALS) cases suggest a genetic basis. This review focuses on SOD1, the first gene found to be associated with fALS, which has been more recently confirmed by genome sequencing. While informative, databases such as ALSoD and STRENGTH exhibit regional biases. Through a systematic global examination of SOD1 mutations from 1993 to 2023, we found different geographic distributions and clinical presentations. Even though different SOD1 variants are expressed at different protein levels and have different half-lives and dismutase activities, these alterations lead to loss of function that is not consistently correlated with disease severity. Gain of function of toxic aggregates of SOD1 resulting from mutated SOD1 has emerged as one of the key contributors to ALS. Therapeutic interventions specifically targeting toxic gain of function of mutant SOD1, including RNA interference and antibodies, show promise, but a cure remains elusive. This review provides a comprehensive perspective on SOD1-associated ALS and describes molecular features and the complex genetic landscape of SOD1, highlighting its importance in determining diverse clinical manifestations observed in ALS patients and emphasizing the need for personalized therapeutic strategies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Superóxido Dismutasa-1 , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/diagnóstico , Humanos , Superóxido Dismutasa-1/genética , Mutación/genética
4.
Int Rev Neurobiol ; 176: 171-207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38802175

RESUMEN

Engineering new solutions for therapeutic benefit in Amyotrophic Lateral Sclerosis (ALS) has proved a difficult task to accomplish. This is largely the reflection of complexities at multiple levels, that require solutions to improve cost-effectiveness and outcomes. The main obstacle related to the condition's clinical heterogeneity, chiefly the broad difference in survival observed among ALS patients, imposes large populations studies and long follow-up to evaluate any efficacy. The emerging solution is composite clinical and biological parameters enabling prognostic stratification into homogeneous phenotypes for more affordable studies. From a therapeutic development perspective, the choice of a medicinal product requires the availability of treatment-specific biomarkers of target engagement to identify off-target effects based on the compound's putative modality of action. More importantly, there are no established biomarkers of treatment response that can complement clinical outcome measures and support futility and end of treatment analyses of efficacy. Ultimately the onus rests on the development of biomarkers encompassing the unmet needs of clinical trial design, from inclusion to efficacy. These readouts of the pathological process may be used in combination with clinical and paraclinical outcome measured, significantly reducing the time and financial burden of clinical studies. Progress towards a biomarker-driven clinical trial design in ALS has been possible thanks to the accurate detection of neurofilaments and of other immunological mediators in biological fluids with the disease progression, a step change enabling the testing of novel therapeutic agents in a new clinical trial setting. However, further progress remains to be made to find treatment specific target engagement biomarkers along with readouts of treatment response that can be reliably applied to all emerging therapies and clinical studies. Here we will cover the basic notions of biomarker development in ALS clinical trials, the most crucial unanswered questions and the unmet needs in the ALS biomarkers space.


Asunto(s)
Esclerosis Amiotrófica Lateral , Biomarcadores , Ensayos Clínicos como Asunto , Humanos , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Ensayos Clínicos como Asunto/métodos
5.
Int Rev Neurobiol ; 176: 1-47, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38802173

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a late-onset syndrome characterized by the progressive degeneration of both upper motor neurons (UMN) and lower motor neurons (LMN). ALS forms a clinical continuum with frontotemporal dementia (FTD), in which there are progressive language deficits or behavioral changes. The genetics and pathology underlying both ALS and FTD overlap as well, with cytoplasmatic misvocalization of TDP-43 as the hallmark. ALS is diagnosed by exclusion. Over the years several diagnostic criteria have been proposed, which in essence all require a history of slowly progressive motor symptoms, with UMN and LMN signs on neurological examination, clear spread of symptoms through the body, the exclusion of other disorder that cause similar symptoms and an EMG that it is compatible with LMN loss. ALS is heterogeneous disorder that may present in multitude ways, which makes the diagnosis challenging. Therefore, a systematic approach in the diagnostic process is required in line with the most common presentations. Subsequently, assessing whether there are cognitive and/or behavioral changes within the spectrum of FTD and lastly determining the cause is genetic. This chapter, an outline on how to navigate this 3 step process.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Diagnóstico Diferencial , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/genética , Demencia Frontotemporal/fisiopatología , Demencia Frontotemporal/patología
6.
Int Rev Neurobiol ; 176: 87-118, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38802184

RESUMEN

This chapter describes the role of neurophysiological techniques in diagnosing and monitoring amyotrophic lateral sclerosis (ALS). Despite many advances, electromyography (EMG) remains a keystone investigation from which to build support for a diagnosis of ALS, demonstrating the pathophysiological processes of motor unit hyperexcitability, denervation and reinnervation. We consider development of the different diagnostic criteria and the role of EMG therein. While not formally recognised by established diagnostic criteria, we discuss the pioneering studies that have demonstrated the diagnostic potential of transcranial magnetic stimulation (TMS) of the motor cortex and highlight the growing evidence for TMS in the diagnostic process. Finally, accurately monitoring disease progression is crucial for the successful implementation of clinical trials. Neurophysiological measures of disease state have been incorporated into clinical trials for over 20 years and we review prominent techniques for assessing disease progression.


Asunto(s)
Esclerosis Amiotrófica Lateral , Electromiografía , Neurofisiología , Estimulación Magnética Transcraneal , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/fisiopatología , Humanos , Estimulación Magnética Transcraneal/métodos , Electromiografía/métodos , Neurofisiología/métodos , Progresión de la Enfermedad , Corteza Motora/fisiopatología
7.
Muscle Nerve ; 70(1): 130-139, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38738747

RESUMEN

INTRODUCTION/AIMS: Language is frequently affected in patients with sporadic amyotrophic lateral sclerosis (sALS), with reduced performance in naming, syntactic comprehension, grammatical expression, and orthographic processing. However, the language profile of patients with familial type 8 ALS (ALS8), linked to p.P56S VAPB mutation, remains unclear. We investigated language in patients with ALS8 by examining their auditory comprehension and verbal production. METHODS: We included three groups of participants: (1) patients with sALS (n = 20), (2) patients with familial ALS8 (n = 22), and (3) healthy controls (n = 21). The groups were matched for age, sex, and education level. All participants underwent a comprehensive language battery, including the Boston Diagnostic Aphasia Examination, the reduced Token test, letter fluency, categorical fluency (animals), word definition from the Cambridge Semantic Memory Research Battery, and a narrative discourse analysis. Participants also were evaluated using Addenbrooke's Cognitive Exam-Revised Version, the Hospital Anxiety and Depression Scale, and the ALS Functional Rating Scale-Revised. RESULTS: Compared to controls, sALS and ALS8 patients had impaired performance on oral (syntactic and phonological processing) comprehension and inappropriate discourse cohesion. sALS and ALS8 did not differ in any language measure. There was no correlation between language scores and functional and psychiatric scales. DISCUSSION: ALS8 patients exhibit language deficits that are independent of motor features. These findings are consistent with the current evidence suggesting that ALS8 has prominent non-motor features.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Trastornos del Lenguaje/etiología , Trastornos del Lenguaje/diagnóstico , Adulto , Pruebas Neuropsicológicas , Pruebas del Lenguaje
8.
Nat Rev Neurol ; 20(6): 364-376, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38769202

RESUMEN

Increasing appreciation of the phenotypic and biological overlap between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, alongside evolving biomarker evidence for a pre-symptomatic stage of disease and observations that this stage of disease might not always be clinically silent, is challenging traditional views of these disorders. These advances have highlighted the need to adapt ingrained notions of these clinical syndromes to include both the full phenotypic continuum - from clinically silent, to prodromal, to clinically manifest - and the expanded phenotypic spectrum that includes ALS, frontotemporal dementia and some movement disorders. The updated clinical paradigms should also align with our understanding of the biology of these disorders, reflected in measurable biomarkers. The Miami Framework, emerging from discussions at the Second International Pre-Symptomatic ALS Workshop in Miami (February 2023; a full list of attendees and their affiliations appears in the Supplementary Information) proposes a classification system built on: first, three parallel phenotypic axes - motor neuron, frontotemporal and extrapyramidal - rather than the unitary approach of combining all phenotypic elements into a single clinical entity; and second, biomarkers that reflect different aspects of the underlying pathology and biology of neurodegeneration. This framework decouples clinical syndromes from biomarker evidence of disease and builds on experiences from other neurodegenerative diseases to offer a unified approach to specifying the pleiotropic clinical manifestations of disease and describing the trajectory of emergent biomarkers.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Fenotipo , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/genética , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/metabolismo , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/genética , Biomarcadores/metabolismo
9.
Muscle Nerve ; 70(1): 36-41, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38712849

RESUMEN

The amyotrophic lateral sclerosis (ALS) functional rating scale-revised (ALSFRS-R) has become the most widely utilized measure of disease severity in patients with ALS, with change in ALSFRS-R from baseline being a trusted primary outcome measure in ALS clinical trials. This is despite the scale having several established limitations, and although alternative scales have been proposed, it is unlikely that these will displace ALSFRS-R in the foreseeable future. Here, we discuss the merits of delta FS (ΔFS), the slope or rate of ALSFRS-R decline over time, as a relevant tool for innovative ALS study design, with an as yet untapped potential for optimization of drug effectiveness and patient management. In our view, categorization of the ALS population via the clinical determinant of post-onset ΔFS is an important study design consideration. It serves not only as a critical stratification factor and basis for patient enrichment but also as a tool to explore differences in treatment response across the overall population; thereby, facilitating identification of responder subgroups. Moreover, because post-onset ΔFS is derived from information routinely collected as part of standard patient care and monitoring, it provides a suitable patient selection tool for treating physicians. Overall, post-onset ΔFS is a very attractive enrichment tool that is, can and should be regularly incorporated into ALS trial design.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proyectos de Investigación , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Ensayos Clínicos como Asunto/métodos , Progresión de la Enfermedad , Evaluación de Resultado en la Atención de Salud/normas , Índice de Severidad de la Enfermedad
10.
PLoS One ; 19(5): e0302479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38805448

RESUMEN

Biomechanical analysis of human movement plays an essential role in understanding functional changes in people with Amyotrophic Lateral Sclerosis (ALS), providing information on muscle impairment. Studies suggest that surface electromyography (sEMG) may be able to quantify muscle activity, identify levels of fatigue, assess muscle strength, and monitor variation in limb movement. In this article, a systematic review protocol will analyze the psychometric properties of the sEMG regarding the clinical data on the skeletal muscles of people with ALS. This protocol uses the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodological tool. A specific field structure was defined to reach each phase. Nine scientific databases (PubMed, Web of Science, Embase, Elsevier, IEEE, Google Scholar, SciELO, PEDro, LILACS E CENTRAL) were searched. The framework developed will extract data (i.e. study information, sample information, sEMG information, intervention, and outcomes) from the selected studies using a rigorous approach. The data will be described quantitatively using frequency and trend analysis methods, and heterogeneity between the included studies will be assessed using the I2 test. The risk of bias will be summarized using the most recent prediction model risk of bias assessment tool. Be sure to include relevant statistics here, such as sample sizes, response rates, P values or Confidence Intervals. Be specific (by stating the value) rather than general (eg, "there were differences between the groups"). This protocol will map out the construction of a systematic review that will identify and synthesize the advances in movement analysis of people with ALS through sEMG, using data extracted from articles.


Asunto(s)
Esclerosis Amiotrófica Lateral , Electromiografía , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/diagnóstico , Humanos , Electromiografía/métodos , Revisiones Sistemáticas como Asunto , Músculo Esquelético/fisiopatología , Movimiento/fisiología , Fenómenos Biomecánicos
11.
Ann Clin Transl Neurol ; 11(5): 1280-1289, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38647181

RESUMEN

OBJECTIVE: Magnetic resonance imaging can detect neurodegenerative iron accumulation in the motor cortex, called the motor band sign. This study aims to evaluate its sensitivity/specificity and correlations to symptomatology, biomarkers, and clinical outcome in amyotrophic lateral sclerosis. METHODS: This prospective study consecutively enrolled 114 persons with amyotrophic lateral sclerosis and 79 mimics referred to Karolinska University Hospital, and also 31 healthy controls. All underwent 3-Tesla brain susceptibility-weighted imaging. Three raters independently assessed motor cortex susceptibility with total and regional motor band scores. Survival was evaluated at a median of 34.2 months after the imaging. RESULTS: The motor band sign identified amyotrophic lateral sclerosis with a sensitivity of 59.6% and a specificity of 91.1% versus mimics and 96.8% versus controls. Higher motor band scores were more common with genetic risk factors (p = 0.032), especially with C9orf72 mutation, and were associated with higher neurofilament light levels (std. ß 0.22, p = 0.019). Regional scores correlated strongly with focal symptoms (medial region vs. gross motor dysfunction, std. ß -0.64, p = 0.001; intermediate region vs. fine motor dysfunction, std. ß -0.51, p = 0.031; lateral region vs. bulbar symptoms std. ß -0.71, p < 0.001). There were no associations with cognition, progression rate, or survival. INTERPRETATION: In a real-life clinical setting, the motor band sign has high specificity but relatively low sensitivity for identifying amyotrophic lateral sclerosis. Associations with genetic risk factors, neurofilament levels and somatotopic correspondence to focal motor weakness suggest that the motor band sign could be a suitable biomarker for diagnostics and clinical trials in amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Imagen por Resonancia Magnética , Corteza Motora , Humanos , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiopatología , Estudios Prospectivos , Adulto , Sensibilidad y Especificidad , Proteína C9orf72/genética
12.
Muscle Nerve ; 69(6): 719-729, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593477

RESUMEN

INTRODUCTION/AIMS: Biomarkers have shown promise in amyotrophic lateral sclerosis (ALS) research, but the quest for reliable biomarkers remains active. This study evaluates the effect of debamestrocel on cerebrospinal fluid (CSF) biomarkers, an exploratory endpoint. METHODS: A total of 196 participants randomly received debamestrocel or placebo. Seven CSF samples were to be collected from all participants. Forty-five biomarkers were analyzed in the overall study and by two subgroups characterized by the ALS Functional Rating Scale-Revised (ALSFRS-R). A prespecified model was employed to predict clinical outcomes leveraging biomarkers and disease characteristics. Causal inference was used to analyze relationships between neurofilament light chain (NfL) and ALSFRS-R. RESULTS: We observed significant changes with debamestrocel in 64% of the biomarkers studied, spanning pathways implicated in ALS pathology (63% neuroinflammation, 50% neurodegeneration, and 89% neuroprotection). Biomarker changes with debamestrocel show biological activity in trial participants, including those with advanced ALS. CSF biomarkers were predictive of clinical outcomes in debamestrocel-treated participants (baseline NfL, baseline latency-associated peptide/transforming growth factor beta1 [LAP/TGFß1], change galectin-1, all p < .01), with baseline NfL and LAP/TGFß1 remaining (p < .05) when disease characteristics (p < .005) were incorporated. Change from baseline to the last measurement showed debamestrocel-driven reductions in NfL were associated with less decline in ALSFRS-R. Debamestrocel significantly reduced NfL from baseline compared with placebo (11% vs. 1.6%, p = .037). DISCUSSION: Following debamestrocel treatment, many biomarkers showed increases (anti-inflammatory/neuroprotective) or decreases (inflammatory/neurodegenerative) suggesting a possible treatment effect. Neuroinflammatory and neuroprotective biomarkers were predictive of clinical response, suggesting a potential multimodal mechanism of action. These results offer preliminary insights that need to be confirmed.


Asunto(s)
Esclerosis Amiotrófica Lateral , Biomarcadores , Proteínas de Neurofilamentos , Humanos , Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/diagnóstico , Biomarcadores/líquido cefalorraquídeo , Masculino , Femenino , Persona de Mediana Edad , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Anciano , Adulto , Método Doble Ciego , Resultado del Tratamiento
13.
Biomolecules ; 14(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38672416

RESUMEN

Neurological disorders are the leading cause of cognitive and physical disability worldwide, affecting 15% of the global population. Due to the demographics of aging, the prevalence of neurological disorders, including neurodegenerative diseases, will double over the next two decades. Unfortunately, while available therapies provide symptomatic relief for cognitive and motor impairment, there is an urgent unmet need to develop disease-modifying therapies that slow the rate of pathological progression. In that context, biomarkers could identify at-risk and prodromal patients, monitor disease progression, track responses to therapy, and parse the causality of molecular events to identify novel targets for further clinical investigation. Thus, identifying biomarkers that discriminate between diseases and reflect specific stages of pathology would catalyze the discovery and development of therapeutic targets. This review will describe the prevalence, known mechanisms, ongoing or recently concluded therapeutic clinical trials, and biomarkers of three of the most prevalent neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD).


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Enfermedades Neurodegenerativas , Humanos , Biomarcadores/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/terapia , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/terapia , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/diagnóstico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/terapia , Animales
14.
EBioMedicine ; 103: 105104, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582030

RESUMEN

BACKGROUND: There is an urgent need for objective and sensitive measures to quantify clinical disease progression and gauge the response to treatment in clinical trials for amyotrophic lateral sclerosis (ALS). Here, we evaluate the ability of an accelerometer-derived outcome to detect differential clinical disease progression and assess its longitudinal associations with overall survival in patients with ALS. METHODS: Patients with ALS wore an accelerometer on the hip for 3-7 days, every 2-3 months during a multi-year observation period. An accelerometer-derived outcome, the Vertical Movement Index (VMI), was calculated, together with predicted disease progression rates, and jointly analysed with overall survival. The clinical utility of VMI was evaluated using comparisons to patient-reported functionality, while the impact of various monitoring schemes on empirical power was explored through simulations. FINDINGS: In total, 97 patients (70.1% male) wore the accelerometer for 1995 days, for a total of 27,701 h. The VMI was highly discriminatory for predicted disease progression rates, revealing faster rates of decline in patients with a worse predicted prognosis compared to those with a better predicted prognosis (p < 0.0001). The VMI was strongly associated with the hazard for death (HR 0.20, 95% CI: 0.09-0.44, p < 0.0001), where a decrease of 0.19-0.41 unit was associated with reduced ambulatory status. Recommendations for future studies using accelerometery are provided. INTERPRETATION: The results serve as motivation to incorporate accelerometer-derived outcomes in clinical trials, which is essential for further validation of these markers to meaningful endpoints. FUNDING: Stichting ALS Nederland (TRICALS-Reactive-II).


Asunto(s)
Esclerosis Amiotrófica Lateral , Progresión de la Enfermedad , Dispositivos Electrónicos Vestibles , Humanos , Esclerosis Amiotrófica Lateral/mortalidad , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Anciano , Acelerometría/instrumentación , Pronóstico , Tecnología de Sensores Remotos/instrumentación , Tecnología de Sensores Remotos/métodos , Adulto
15.
Genes (Basel) ; 15(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38674431

RESUMEN

BACKGROUND: Neurofilament proteins have been implicated to be altered in amyotrophic lateral sclerosis (ALS). The objectives of this study were to assess the diagnostic and prognostic utility of neurofilaments in ALS. METHODS: Studies were conducted in electronic databases (PubMed/MEDLINE, Embase, Web of Science, and Cochrane CENTRAL) from inception to 17 August 2023, and investigated neurofilament light (NfL) or phosphorylated neurofilament heavy chain (pNfH) in ALS. The study design, enrolment criteria, neurofilament concentrations, test accuracy, relationship between neurofilaments in cerebrospinal fluid (CSF) and blood, and clinical outcome were recorded. The protocol was registered with PROSPERO, CRD42022376939. RESULTS: Sixty studies with 8801 participants were included. Both NfL and pNfH measured in CSF showed high sensitivity and specificity in distinguishing ALS from disease mimics. Both NfL and pNfH measured in CSF correlated with their corresponding levels in blood (plasma or serum); however, there were stronger correlations between CSF NfL and blood NfL. NfL measured in blood exhibited high sensitivity and specificity in distinguishing ALS from controls. Both higher levels of NfL and pNfH either measured in blood or CSF were correlated with more severe symptoms as assessed by the ALS Functional Rating Scale Revised score and with a faster disease progression rate; however, only blood NfL levels were associated with shorter survival. DISCUSSION: Both NfL and pNfH measured in CSF or blood show high diagnostic utility and association with ALS functional scores and disease progression, while CSF NfL correlates strongly with blood (either plasma or serum) and is also associated with survival, supporting its use in clinical diagnostics and prognosis. Future work must be conducted in a prospective manner with standardized bio-specimen collection methods and analytical platforms, further improvement in immunoassays for quantification of pNfH in blood, and the identification of cut-offs across the ALS spectrum and controls.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Neurofilamentos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/sangre , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/líquido cefalorraquídeo , Humanos , Proteínas de Neurofilamentos/sangre , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Filamentos Intermedios/metabolismo , Filamentos Intermedios/genética , Pronóstico
16.
Genes (Basel) ; 15(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38540369

RESUMEN

Juvenile Amyotrophic Lateral Sclerosis is a genetically heterogeneous neurodegenerative disorder, which is frequently misdiagnosed due to low clinical suspicion and little knowledge about disease characteristics. More than 20 different genetic loci have been associated with both sporadic and familial juvenile Amyotrophic Lateral Sclerosis. Currently, almost 40% of cases have an identifiable monogenic basis; type 6, associated with FUS gene variants, is the most prevalent globally. Despite several upper motor neuron-dominant forms being generally associated with long-standing motor symptoms and slowly progressive course, certain subtypes with lower motor neuron-dominant features and early bulbar compromise lead to rapidly progressive motor handicap. For some monogenic forms, there is a well-established genotypic-phenotypic correlation. There are no specific biochemical and neuroimaging biomarkers for the diagnosis of juvenile Amyotrophic Lateral Sclerosis. There are several inherited neurodegenerative and neurometabolic disorders which can lead to the signs of motor neuron impairment. This review emphasizes the importance of high clinical suspicion, assessment, and proper diagnostic work-up for juvenile Amyotrophic Lateral Sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras , Neuroimagen
17.
Rinsho Shinkeigaku ; 64(4): 252-271, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38522911

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an adult-onset intractable motor neuron disease characterized by selective degeneration of cortical neurons in the frontotemporal lobe and motor neurons in the brainstem and spinal cord. Impairment of these neural networks causes progressive muscle atrophy and weakness that spreads throughout the body, resulting in life-threatening bulbar palsy and respiratory muscle paralysis. However, no therapeutic strategy has yet been established to halt ALS progression. Although evidence for clinical practice in ALS remains insufficient, novel research findings have steadily accumulated in recent years. To provide updated evidence-based or expert consensus recommendations for the diagnosis and management of ALS, the ALS Clinical Practice Guideline Development Committee, approved by the Japanese Society of Neurology, revised and published the Japanese clinical practice guidelines for the management of ALS in 2023. In this guideline, disease-modifying therapies that have accumulated evidence from randomized controlled trials were defined as "Clinical Questions," in which the level of evidence was determined by systematic reviews. In contrast, "Questions and Answers" were defined as issues of clinically important but insufficient evidence, according to reports of a small number of cases, observational studies, and expert opinions. Based on a literature search performed in February 2022, recommendations were reached by consensus, determined by an independent panel, reviewed by external reviewers, and submitted for public comments by Japanese Society of Neurology members before publication. In this article, we summarize the revised Japanese guidelines for ALS, highlighting the regional and cultural diversity of care processes and decision-making. The guidelines cover a broad range of essential topics such as etiology, diagnostic criteria, disease monitoring and treatments, management of symptoms, respiration, rehabilitation, nutrition, metabolism, patient instructions, and various types of care support. We believe that this summary will help improve the daily clinical practice for individuals living with ALS and their caregivers.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/diagnóstico , Progresión de la Enfermedad , Medicina Basada en la Evidencia , Japón
18.
Health Expect ; 27(2): e14024, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38528673

RESUMEN

BACKGROUND: Motor neuron disease (MND) (also known as amyotrophic lateral sclerosis) is a life-limiting neurodegenerative condition. In up to 20% of people with MND, a pathogenic variant associated with autosomal dominant inheritance can be identified. Children of people carrying a pathogenic variant have a 50% chance of inheriting this and a higher, although harder to predict, chance of developing the disease compared to the general adult population. This paper explores the experience of living with the genetic risk of MND. METHODS: We undertook a UK-based interview study with 35 individuals, including: 7 people living with genetically-mediated forms of MND; 24 asymptomatic relatives, the majority of whom had an increased risk of developing the disease; and 4 unrelated partners. RESULTS: We explore how individuals make sense of genetic risk, unpacking the interplay between genetic knowledge, personal perception, experiences of the disease in the family, age and life stage and the implications that living with risk has for different aspects of their lives. We balance an emphasis on the emotional and psychological impact described by participants, with a recognition that the salience of risk fluctuates over time. Furthermore, we highlight the diverse strategies and approaches people employ to live well in the face of uncertainty and the complex ways they engage with the possibility of developing symptoms in the future. Finally, we outline the need for open-ended, tailored support and information provision. CONCLUSIONS: Drawing on wider literature on genetic risk, we foreground how knowledge of MND risk can disrupt individuals' taken-for-granted assumptions on life and perceptions of the future, but also its contextuality, whereby its relevance becomes more prominent at critical junctures. This research has been used in the development of a public-facing resource on the healthtalk.org website. PATIENT OR PUBLIC CONTRIBUTION: People with experience of living with genetic risk were involved throughout the design and conduct of the study and advised on aspects including the topic guide, sampling and recruitment and the developing analysis. Two patient and public involvement contributors joined a formal advisory panel.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedad de la Neurona Motora , Adulto , Niño , Humanos , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/diagnóstico , Enfermedad de la Neurona Motora/psicología , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/patología , Investigación Cualitativa , Incertidumbre , Emociones
19.
J Clin Neurosci ; 122: 19-24, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432041

RESUMEN

BACKGROUND: The geriatric nutritional risk index (GNRI) is a prognostic indicator for several diseases, meanwhile, nutrition and inflammation play important roles in the disease progression of amyotrophic lateral sclerosis (ALS). However, the association between the GNRI and ALS remains unknown. METHODS: 443 patients diagnosed with ALS were divided into two groups based on the GNRI levels. Associations between GNRI and survival time were analyzed using Kaplan-Meier curves and compared by the log-rank test. Univariate and multivariate analyses were used to assess their prognostic values for survival time. Spearman correlation analysis was used to evaluate the correlation coefficients between GNRI and other clinical variables. RESULTS: No significant differences were found in diagnostic delay between the two groups. The onset age and disease progression rate (DPR) were significantly lower in high GNRI group while forced vital capacity (FVC), revised version of the ALS functional rating scale (ALSFRS-R), serum albumin and body mass index (BMI) were significantly lower in low GNRI group. Lower GNRI levels were linked with shorter ALS patients' survival time by Kaplan-Meier curves. The univariate and multivariate analysis identified the onset age, gender, onset site, diagnostic delay, DRP and GNRI as predictors of survival time in patients with ALS. CONCLUSION: Nutritional status was closely corelated with ALS progression. The GNRI may be used as a potential prognostic indictor for ALS patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Anciano , Pronóstico , Esclerosis Amiotrófica Lateral/complicaciones , Esclerosis Amiotrófica Lateral/diagnóstico , Diagnóstico Tardío , Estado Nutricional , Progresión de la Enfermedad , Factores de Riesgo , Estudios Retrospectivos
20.
BMC Med Inform Decis Mak ; 24(1): 80, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504285

RESUMEN

Prognosticating Amyotrophic Lateral Sclerosis (ALS) presents a formidable challenge due to patients exhibiting different onset sites, progression rates, and survival times. In this study, we have developed and evaluated Machine Learning (ML) algorithms that integrate Ensemble and Imbalance Learning techniques to classify patients into Short and Non-Short survival groups based on data collected during diagnosis. We aimed to identify individuals at high risk of mortality within 24 months of symptom onset through analysis of patient data commonly encountered in daily clinical practice. Our Ensemble-Imbalance approach underwent evaluation employing six ML algorithms as base classifiers. Remarkably, our results outperformed those of individual algorithms, achieving a Balanced Accuracy of 88% and a Sensitivity of 96%. Additionally, we used the Shapley Additive Explanations framework to elucidate the decision-making process of the top-performing model, pinpointing the most important features and their correlations with the target prediction. Furthermore, we presented helpful tools to visualize and compare patient similarities, offering valuable insights. Confirming the obtained results, our approach could aid physicians in devising personalized treatment plans at the time of diagnosis or serve as an inclusion/exclusion criterion in clinical trials.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Pronóstico , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA