Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.107
Filtrar
1.
Cells ; 13(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38995010

RESUMEN

The transcription factor Sox10 is an important determinant of oligodendroglial identity and influences oligodendroglial development and characteristics at various stages. Starting from RNA-seq data, we here show that the expression of several voltage-gated ion channels with known expression and important function in oligodendroglial cells depends upon Sox10. These include the Nav1.1, Cav2.2, Kv1.1, and Kir4.1 channels. For each of the four encoding genes, we found at least one regulatory region that is activated by Sox10 in vitro and at the same time bound by Sox10 in vivo. Cell-specific deletion of Sox10 in oligodendroglial cells furthermore led to a strong downregulation of all four ion channels in a mouse model and thus in vivo. Our study provides a clear functional link between voltage-gated ion channels and the transcriptional regulatory network in oligodendroglial cells. Furthermore, our study argues that Sox10 exerts at least some of its functions in oligodendrocyte progenitor cells, in myelinating oligodendrocytes, or throughout lineage development via these ion channels. By doing so, we present one way in which oligodendroglial development and properties can be linked to neuronal activity to ensure crosstalk between cell types during the development and function of the central nervous system.


Asunto(s)
Oligodendroglía , Factores de Transcripción SOXE , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción SOXE/genética , Animales , Oligodendroglía/metabolismo , Oligodendroglía/citología , Ratones , Canales Iónicos/metabolismo , Canales Iónicos/genética , Transcripción Genética , Regulación del Desarrollo de la Expresión Génica , Diferenciación Celular/genética , Humanos
3.
Orphanet J Rare Dis ; 19(1): 226, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844942

RESUMEN

BACKGROUND: Waardenburg syndrome (WS) is a rare genetic disorder mainly characterized by hearing loss and pigmentary abnormalities. Currently, seven causative genes have been identified for WS, but clinical genetic testing results show that 38.9% of WS patients remain molecularly unexplained. In this study, we performed multi-data integration analysis through protein-protein interaction and phenotype-similarity to comprehensively decipher the potential causative factors of undiagnosed WS. In addition, we explored the association between genotypes and phenotypes in WS with the manually collected 443 cases from published literature. RESULTS: We predicted two possible WS pathogenic genes (KIT, CHD7) through multi-data integration analysis, which were further supported by gene expression profiles in single cells and phenotypes in gene knockout mouse. We also predicted twenty, seven, and five potential WS pathogenic variations in gene PAX3, MITF, and SOX10, respectively. Genotype-phenotype association analysis showed that white forelock and telecanthus were dominantly present in patients with PAX3 variants; skin freckles and premature graying of hair were more frequently observed in cases with MITF variants; while aganglionic megacolon and constipation occurred more often in those with SOX10 variants. Patients with variations of PAX3 and MITF were more likely to have synophrys and broad nasal root. Iris pigmentary abnormality was more common in patients with variations of PAX3 and SOX10. Moreover, we found that patients with variants of SOX10 had a higher risk of suffering from auditory system diseases and nervous system diseases, which were closely associated with the high expression abundance of SOX10 in ear tissues and brain tissues. CONCLUSIONS: Our study provides new insights into the potential causative factors of WS and an alternative way to explore clinically undiagnosed cases, which will promote clinical diagnosis and genetic counseling. However, the two potential disease-causing genes (KIT, CHD7) and 32 potential pathogenic variants (PAX3: 20, MITF: 7, SOX10: 5) predicted by multi-data integration in this study are all computational predictions and need to be further verified through experiments in follow-up research.


Asunto(s)
Factor de Transcripción Asociado a Microftalmía , Factores de Transcripción SOXE , Síndrome de Waardenburg , Síndrome de Waardenburg/genética , Humanos , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX3/metabolismo , Ratones , Animales , Fenotipo , Genotipo , Mutación/genética
4.
Genes Chromosomes Cancer ; 63(6): e23249, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38884173

RESUMEN

The widespread use of advanced molecular techniques has led to the identification of several tumor types with PLAG1 gene fusions some of which also affect the skin and soft tissues. Herein, we present a 38-year-old female with a subcutaneous tumor affecting her forearm, which does not seem to fit into any currently recognized entity. It was a well-circumscribed tumor measuring 6 × 4,5 × 4 cm. It had a thick capsule composed of bland spindle cells forming palisades and Verocay body-like structures within a myxocollagenous background. Scattered calcifications were dispersed throughout the lesion. No cytological atypia, mitotic activity, or necrosis were present. Targeted NGS revealed a SOX10::PLAG1 fusion and fluorescent in situ hybridization confirmed the presence of PLAG1 gene rearrangement. The neoplastic cells showed a diffuse immunohistochemical expression of S100, SOX10, and PLAG1, as well as patchy desmin and CD34 positivity. The methylation profile of this tumor did not match any other entity covered by the DKFZ sarcoma classifier and apart from the gain of chromosome 12, the copy number profile was normal. The tumor was completely excised, and the patient has been free of disease for 4 years since the excision. While more cases are needed to confirm this tumor as a distinct entity, we propose a provisional name "SOX10::PLAG1-rearranged calcifying spindle cell tumor."


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción SOXE , Neoplasias de los Tejidos Blandos , Humanos , Femenino , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Adulto , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/patología , Neoplasias de los Tejidos Blandos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Calcinosis/genética , Calcinosis/patología , Calcinosis/metabolismo , Sarcoma/genética , Sarcoma/patología , Sarcoma/metabolismo
5.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791273

RESUMEN

The HMG-domain containing transcription factor Sox10 plays a crucial role in regulating Schwann cell survival and differentiation and is expressed throughout the entire Schwann cell lineage. While its importance in peripheral myelination is well established, little is known about its role in the early stages of Schwann cell development. In a search for direct target genes of Sox10 in Schwann cell precursors, the transcriptional co-repressor Tle4 was identified. At least two regions upstream of the Tle4 gene appear involved in mediating the Sox10-dependent activation. Once induced, Tle4 works in tandem with the bHLH transcriptional repressor Hes1 and exerts a dual inhibitory effect on Sox10 by preventing the Sox10 protein from transcriptionally activating maturation genes and by suppressing Sox10 expression through known enhancers of the gene. This mechanism establishes a regulatory barrier that prevents premature activation of factors involved in differentiation and myelin formation by Sox10 in immature Schwann cells. The identification of Tle4 as a critical downstream target of Sox10 sheds light on the gene regulatory network in the early phases of Schwann cell development. It unravels an elaborate regulatory circuitry that fine-tunes the timing and extent of Schwann cell differentiation and myelin gene expression.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN , Factores de Transcripción SOXE , Células de Schwann , Animales , Humanos , Ratones , Ratas , Diferenciación Celular/genética , Proteínas Co-Represoras/metabolismo , Proteínas Co-Represoras/genética , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Vaina de Mielina/metabolismo , Células de Schwann/metabolismo , Células de Schwann/citología , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción SOXE/genética , Factor de Transcripción HES-1/metabolismo , Factor de Transcripción HES-1/genética , Proteínas de Unión al ADN/metabolismo
7.
Arch Dermatol Res ; 316(5): 134, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662224

RESUMEN

Exploration of gene expression variations is a potential source to unravel biological pathways involved in pathological changes in body and understand the mechanism underneath. Vitiligo patients were explored for gene expression changes transcriptionally at perilesional site in comparison to normal site of same patients for melanogenesis pathway (TYR, DCT & TYRP1) cell adhesion (MMPs & TIMP1), cell survival (BCL2 & BAX1) as well as proliferation, migration & development (SOX9, SOX10 & MITF) regulatory system, using skin biopsy samples. Results were also compared with changes in gene expression for melanocytes under stress after hydrogen peroxide treatment in-vitro. Gene amplification was carried out via real time PCR. We found increased expression of proliferation, migration & development regulatory genes as well as melanogenesis pathway genes at perilesional site of patients. In-vitro study also supports induced MITF expression and disturbed melanogenesis in melanocytes under stress. Expression level ratio of cell survival regulatory genes' (BCL2/BAX1) as well as cell adhesion regulatory genes (MMPs/TIMP1) was observed upregulated at patient's perilesional site however downregulated in hydrogen peroxide treated melanocytes in-vitro. Observed upregulated gene expression at perilesional site of patients may be via positive feedback loop in response to stress to increase cell tolerance power to survive against adverse conditions. Gene expression analysis suggests better cell survival and proliferation potential at perilesional site in vitiligo patients. It seems in-vivo conditions/growth factors supports cells to fight for survival to accommodate stressed conditions.


Asunto(s)
Supervivencia Celular , Peróxido de Hidrógeno , Melanocitos , Vitíligo , Humanos , Vitíligo/genética , Vitíligo/patología , Melanocitos/metabolismo , Melanocitos/patología , Supervivencia Celular/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Masculino , Adulto , Femenino , Proliferación Celular/genética , Piel/patología , Piel/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Persona de Mediana Edad , Adulto Joven , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Biopsia , Adolescente , Adhesión Celular/genética
8.
J Cutan Pathol ; 51(8): 576-582, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38666479

RESUMEN

Melanoma's rare capacity to undergo heterologous differentiation can create significant diagnostic challenges. The molecular mechanisms underlying this phenomenon are not well understood. We present an unusual case of subungual melanoma exhibiting extensive cartilaginous differentiation and provide insights into its molecular and cytogenomic features. Histopathologically, the tumor was predominantly composed of nodules of malignant cartilage in association with a smaller population of nested epithelioid to rhabdoid cells. Immunohistochemically, the tumor cells in both components were positive for S100, SOX10, and PRAME, and were negative for Melan-A and HMB-45. Molecular analysis by whole exome DNA sequence did not detect any pathogenic variants in genes commonly implicated in melanoma. Additional analysis by SNP chromosomal microarray revealed a complex genome characterized by numerous chromosomal losses and gains, including a homozygous deletion of the CDKN2A locus and a heterozygous deletion of the locus containing EXT2, a tumor suppressor implicated in hereditary multiple osteochondromas and secondary chondrosarcomas. This case underscores the importance of recognizing cartilaginous differentiation as a rare manifestation of melanoma, particularly at subungual sites, and suggests that at least some of these melanomas may be driven by non-canonical molecular pathways.


Asunto(s)
Melanoma , Enfermedades de la Uña , Neoplasias Cutáneas , Humanos , Melanoma/patología , Melanoma/genética , Melanoma/diagnóstico , Melanoma/metabolismo , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Enfermedades de la Uña/patología , Enfermedades de la Uña/genética , Enfermedades de la Uña/metabolismo , Diferenciación Celular , Masculino , Cartílago/patología , Cartílago/metabolismo , Femenino , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Proteínas S100/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Antígenos de Neoplasias
9.
Cell ; 187(10): 2536-2556.e30, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38653237

RESUMEN

Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed "DrugMap," an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NF-κB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NF-κB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription-factor activity.


Asunto(s)
Cisteína , Neoplasias , Animales , Humanos , Ratones , Línea Celular Tumoral , Cisteína/metabolismo , Cisteína/química , Ligandos , Melanoma/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , FN-kappa B/química , FN-kappa B/metabolismo , Oxidación-Reducción , Transducción de Señal , Factores de Transcripción SOXE/química , Factores de Transcripción SOXE/metabolismo
10.
Breast Cancer Res ; 26(1): 70, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654332

RESUMEN

BACKGROUND: Basal-like breast cancer (BLBC) is the most aggressive subtype of breast cancer due to its aggressive characteristics and lack of effective therapeutics. However, the mechanism underlying its aggressiveness remains largely unclear. S-adenosylmethionine decarboxylase proenzyme (AMD1) overexpression occurs specifically in BLBC. Here, we explored the potential molecular mechanisms and functions of AMD1 promoting the aggressiveness of BLBC. METHODS: The potential effects of AMD1 on breast cancer cells were tested by western blotting, colony formation, cell proliferation assay, migration and invasion assay. The spermidine level was determined by high performance liquid chromatography. The methylation status of CpG sites within the AMD1 promoter was evaluated by bisulfite sequencing PCR. We elucidated the relationship between AMD1 and Sox10 by ChIP assays and quantitative real-time PCR. The effect of AMD1 expression on breast cancer cells was evaluated by in vitro and in vivo tumorigenesis model. RESULTS: In this study, we showed that AMD1 expression was remarkably elevated in BLBC. AMD1 copy number amplification, hypomethylation of AMD1 promoter and transcription activity of Sox10 contributed to the overexpression of AMD1 in BLBC. AMD1 overexpression enhanced spermidine production, which enhanced eIF5A hypusination, activating translation of TCF4 with multiple conserved Pro-Pro motifs. Our studies showed that AMD1-mediated metabolic system of polyamine in BLBC cells promoted tumor cell proliferation and tumor growth. Clinically, elevated expression of AMD1 was correlated with high grade, metastasis and poor survival, indicating poor prognosis of breast cancer patients. CONCLUSION: Our work reveals the critical association of AMD1-mediated spermidine-eIF5A hypusination-TCF4 axis with BLBC aggressiveness, indicating potential prognostic indicators and therapeutic targets for BLBC.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Factor 5A Eucariótico de Iniciación de Traducción , Regulación Neoplásica de la Expresión Génica , Lisina/análogos & derivados , Factores de Iniciación de Péptidos , Proteínas de Unión al ARN , Espermidina , Factor de Transcripción 4 , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/genética , Ratones , Animales , Espermidina/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Factor de Transcripción 4/metabolismo , Factor de Transcripción 4/genética , Línea Celular Tumoral , Regiones Promotoras Genéticas , Adenosilmetionina Descarboxilasa/metabolismo , Adenosilmetionina Descarboxilasa/genética , Movimiento Celular/genética , Metilación de ADN , Pronóstico , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción SOXE/genética
11.
Mol Biol Rep ; 51(1): 536, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642155

RESUMEN

OBJECTIVES: This study aimed to identify the causative variants in a patient with Waardenburg syndrome (WS) type 2 using whole exome sequencing (WES). METHODS: The clinical features of the patient were collected. WES was performed on the patient and his parents to screen causative genetic variants and Sanger sequencing was performed to validate the candidate mutation. The AlphaFold2 software was used to predict the changes in the 3D structure of the mutant protein. Western blotting and immunocytochemistry were used to determine the SOX10 mutant in vitro. RESULTS: A de novo variant of SOX10 gene, NM_006941.4: c.707_714del (p. H236Pfs*42), was identified, and it was predicted to disrupt the wild-type DIM/HMG conformation in SOX10. In-vitro analysis showed an increased level of expression of the mutant compared to the wild-type. CONCLUSIONS: Our findings helped to understand the genotype-phenotype association in WS2 cases with SOX10 mutations.


Asunto(s)
Factores de Transcripción SOXE , Síndrome de Waardenburg , Niño , Humanos , China , Mutación/genética , Linaje , Factores de Transcripción SOXE/genética , Síndrome de Waardenburg/genética , Pueblos del Este de Asia/genética
12.
BMC Med Genomics ; 17(1): 104, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659011

RESUMEN

BACKGROUND: Waardenburg syndrome type 2 (WS2) has been reported to be a rare hereditary disorder, which is distinguished by vivid blue eyes, varying degrees of hearing impairment, and abnormal pigment deposition in the skin and hair. Variants in the sex-determining region Y-box containing gene 10 (SOXl0) gene may cause congenital deafness and have been demonstrated to be important during the development of WS2. METHODS: Complete clinical data of the proband and her family members (her parents and 2 sisters) was collected and physical examinations were performed in the hospital. The laboratory examination including hemoglobin, Coomb's test, urine protein, ENA, autoimmune hepatitis-related autoantibodies and ultrasonography were all conducted. We obtained the peripheral blood samples from all the participants and performed whole exome sequencing and sanger sequencing validation. RESULTS: The present study identified a family of 5 members, and only the proband exhibited typical WS2. Beyond the characteristics of WS2, the proband also manifested absence of puberty. The proband and her younger sister manifested systemic lupus erythematosus (SLE). Whole exome sequencing revealed a de novo variant in the SOX10 gene. The variant c.175 C > T was located in exon 2 of the SOX10 gene, which is anticipated to result in early termination of protein translation. CONCLUSION: The present study is the first to report a case of both WS2 and SLE, and the present findings may provide a new insight into WS2.


Asunto(s)
Linaje , Factores de Transcripción SOXE , Síndrome de Waardenburg , Humanos , Síndrome de Waardenburg/genética , Factores de Transcripción SOXE/genética , Femenino , Masculino , Adulto , Secuenciación del Exoma , Mutación
13.
Oncogene ; 43(20): 1489-1505, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38519642

RESUMEN

Cell plasticity sustains intra-tumor heterogeneity and treatment resistance in melanoma. Deciphering the transcriptional mechanisms governing reversible phenotypic transitions between proliferative/differentiated and invasive/stem-like states is required. Expression of the ZEB1 transcription factor is frequently activated in melanoma, where it fosters adaptive resistance to targeted therapies. Here, we performed a genome-wide characterization of ZEB1 transcriptional targets, by combining ChIP-sequencing and RNA-sequencing, upon phenotype switching in melanoma models. We identified and validated ZEB1 binding peaks in the promoter of key lineage-specific genes crucial for melanoma cell identity. Mechanistically, ZEB1 negatively regulates SOX10-MITF dependent proliferative/melanocytic programs and positively regulates AP-1 driven invasive and stem-like programs. Comparative analyses with breast carcinoma cells revealed lineage-specific ZEB1 binding, leading to the design of a more reliable melanoma-specific ZEB1 regulon. We then developed single-cell spatial multiplexed analyses to characterize melanoma cell states intra-tumoral heterogeneity in human melanoma samples. Combined with scRNA-Seq analyses, our findings confirmed increased ZEB1 expression in Neural-Crest-like cells and mesenchymal cells, underscoring its significance in vivo in both populations. Overall, our results define ZEB1 as a major transcriptional regulator of cell states transitions and provide a better understanding of lineage-specific transcriptional programs sustaining intra-tumor heterogeneity in melanoma.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Melanoma , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Melanoma/genética , Melanoma/patología , Melanoma/metabolismo , Humanos , Línea Celular Tumoral , Linaje de la Célula/genética , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Ratones , Animales , Proliferación Celular/genética , Transcripción Genética/genética
14.
Glia ; 72(6): 1165-1182, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38497409

RESUMEN

Oligodendrocytes (OLs) are key players in the central nervous system, critical for the formation and maintenance of the myelin sheaths insulating axons, ensuring efficient neuronal communication. In the last decade, the use of human induced pluripotent stem cells (iPSCs) has become essential for recapitulating and understanding the differentiation and role of OLs in vitro. Current methods include overexpression of transcription factors for rapid OL generation, neglecting the complexity of OL lineage development. Alternatively, growth factor-based protocols offer physiological relevance but struggle with efficiency and cell heterogeneity. To address these issues, we created a novel SOX10-P2A-mOrange iPSC reporter line to track and purify oligodendrocyte precursor cells. Using this reporter cell line, we analyzed an existing differentiation protocol and shed light on the origin of glial cell heterogeneity. Additionally, we have modified the differentiation protocol, toward enhancing reproducibility, efficiency, and terminal maturity. Our approach not only advances OL biology but also holds promise to accelerate research and translational work with iPSC-derived OLs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Linaje de la Célula , Reproducibilidad de los Resultados , Neurogénesis , Oligodendroglía/metabolismo , Diferenciación Celular/fisiología , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo
15.
BMC Pediatr ; 24(1): 189, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493096

RESUMEN

BACKGROUND: HSCR is a complex genetic disorder characterized by the absence of ganglion cells in the intestine, leading to a functional obstruction. It is due to a disruption of complex signaling pathways within the gene regulatory network (GRN) during the development of the enteric nervous system (ENS), including SRY-Box Transcription Factor 10 (SOX10) and REarranged during Transfection (RET). This study evaluated the expressions of SOX10 and RET in HSCR patients in Indonesia. METHODS: Total RNA of 19 HSCR ganglionic and aganglionic colons and 16 control colons were analyzed using quantitative real-time polymerase chain reaction for SOX10 and RET with GAPDH as the reference gene. Livak's method (2-ΔΔCT) was used to determine the expression levels of SOX10 and RET. RESULTS: Most patients were males (68.4%), in the short aganglionosis segment (78.9%), and had undergone transanal endorectal pull-through (36.6%). There were significant upregulated SOX10 expressions in both ganglionic (2.84-fold) and aganglionic (3.72-fold) colon of HSCR patients compared to controls' colon (ΔCT 5.21 ± 2.04 vs. 6.71 ± 1.90; p = 0.032; and ΔCT 4.82 ± 1.59 vs. 6.71 ± 1.90; p = 0.003; respectively). Interestingly, the RET expressions were significantly downregulated in both ganglionic (11.71-fold) and aganglionic (29.96-fold) colon of HSCR patients compared to controls' colon (ΔCT 12.54 ± 2.21 vs. 8.99 ± 3.13; p = 0.0004; and ΔCT 13.90 ± 2.64 vs. 8.99 ± 3.13; p = 0.0001; respectively). CONCLUSIONS: Our study shows aberrant SOX10 and RET expressions in HSCR patients, implying the critical role of SOX10 and RET in the pathogenesis of HSCR, particularly in the Indonesian population. Our study further confirms the involvement of SOX10-RET within the GNR during the ENS development.


Asunto(s)
Enfermedad de Hirschsprung , Masculino , Humanos , Femenino , Enfermedad de Hirschsprung/metabolismo , Transducción de Señal , Indonesia , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Factores de Transcripción SOXE/genética
16.
Glia ; 72(7): 1304-1318, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38546197

RESUMEN

Oligodendrocyte differentiation and myelination in the central nervous system are controlled and coordinated by a complex gene regulatory network that contains several transcription factors, including Zfp488 and Nkx2.2. Despite the proven role in oligodendrocyte differentiation little is known about the exact mode of Zfp488 and Nkx2.2 action, including their target genes. Here, we used overexpression of Zfp488 and Nkx2.2 in differentiating CG4 cells to identify aspects of the oligodendroglial expression profile that depend on these transcription factors. Although both transcription factors are primarily described as repressors, the detected changes argue for an additional function as activators. Among the genes activated by both Zfp488 and Nkx2.2 was the G protein-coupled receptor Gpr37 that is important during myelination. In agreement with a positive effect on Gpr37 expression, downregulation of the G protein-coupled receptor was observed in Zfp488- and in Nkx2.2-deficient oligodendrocytes in the mouse. We also identified several potential regulatory regions of the Gpr37 gene. Although Zfp488 and Nkx2.2 both bind to one of the regulatory regions downstream of the Gpr37 gene in vivo, none of the regulatory regions was activated by either transcription factor alone. Increased activation by Zfp488 or Nkx2.2 was only observed in the presence of Sox10, a transcription factor continuously present in oligodendroglial cells. Our results argue that both Zfp488 and Nkx2.2 also act as transcriptional activators during oligodendrocyte differentiation and cooperate with Sox10 to allow the expression of Gpr37 as a modulator of the myelination process.


Asunto(s)
Diferenciación Celular , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio , Oligodendroglía , Receptores Acoplados a Proteínas G , Factores de Transcripción SOXE , Factores de Transcripción , Animales , Femenino , Masculino , Ratones , Diferenciación Celular/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
17.
Mol Genet Genomic Med ; 12(3): e2296, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38419387

RESUMEN

OBJECTIVE: To explore the molecular etiology of Waardenburg syndrome type II (WS2) in a family from Yunnan province, China. METHODS: A total of 406 genes related to hereditary hearing loss were sequenced using next-generation sequencing. DNA samples were isolated from the peripheral blood DNA of probands. Those pathogenic mutations detected by next-generation sequencing in probands and their parents were validated by Sanger sequencing. The conservatism of variation sites in genes was also analyzed. The protein expression was detected by flow cytometry. RESULTS: A heterozygous mutation c.178delG (p.D60fs*49) in the SOX10 gene was identified in the proband, which is a frameshift mutation and may cause protein loss of function and considered to be a pathogenic mutation. This was determined to be a de novo mutation because her family were demonstrated to be wild-type and symptom free. SOX10, FGFR3, SOX2, and PAX3 protein levels were reduced as determined by flow cytometry. CONCLUSION: A novel frameshift mutation in SOX10 gene was identified in this study, which may be the cause of WS2 in proband. In addition, FGFR3, SOX2, and PAX3 might also participate in promoting the progression of WS2.


Asunto(s)
Mutación del Sistema de Lectura , Síndrome de Waardenburg , Humanos , Femenino , Síndrome de Waardenburg/genética , Síndrome de Waardenburg/patología , China , Linaje , ADN , Factores de Transcripción SOXE/genética
18.
J Ethnopharmacol ; 325: 117846, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38301982

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Radix Astragali, a versatile traditional Chinese medicinal herb, has a rich history dating back to "Sheng Nong's herbal classic". It has been employed in clinical practice to address various ailments, including depression. One of its primary active components, total flavonoids from Astragalus (TFA), remains unexplored in terms of its potential antidepressant properties. This study delves into the antidepressant effects of TFA using a mouse model subjected to chronic unpredictable mild stress (CUMS). AIMS OF THE STUDY: The study aimed to scrutinize how TFA influenced depressive behaviors, corticosterone and glutamate levels in the hippocampus, as well as myelin-related protein expression in CUMS mice. Additionally, it sought to explore the involvement of the Wnt/ß-catenin/Olig2/Sox10 signaling axis as a potential antidepressant mechanism of TFA. MATERIALS AND METHODS: Male C57BL/6 mice were subjected to CUMS to induce depressive behaviors. TFA were orally administered at two different doses (50 mg/kg and 100 mg/kg). A battery of behavioral tests, biochemical analyses, immunohistochemistry, UPLC-MS/MS, real-time PCR, and Western blotting were employed to evaluate the antidepressant potential of TFA. The role of the Wnt/ß-catenin/Olig2/Sox10 signaling axis in the antidepressant mechanism of TFA was validated through MO3.13 cells. RESULTS: TFA administration significantly alleviated depressive behaviors in CUMS mice, as evidenced by improved sucrose preference, reduced immobility in tail suspension and forced swimming tests, and increased locomotor activity in the open field test. Moreover, TFA effectively reduced hippocampal corticosterone and glutamate levels and promoted myelin formation in the hippocampus of CUMS mice. Then, TFA increased Olig2 and Sox10 expression while inhibiting the Wnt/ß-catenin pathway in the hippocampus of CUMS mice. Finally, we further confirmed the role of TFA in promoting myelin regeneration through the Wnt/ß-catenin/Olig2/Sox10 signaling axis in MO3.13 cells. CONCLUSIONS: TFA exhibited promising antidepressant effects in the CUMS mouse model, facilitated by the restoration of myelin sheaths and regulation of corticosterone, glutamate, Olig2, Sox10, and the Wnt/ß-catenin pathway. This research provides valuable insights into the potential therapeutic application of TFA in treating depression, although further investigations are required to fully elucidate the underlying molecular mechanisms and clinical relevance.


Asunto(s)
Corticosterona , Depresión , Factor de Transcripción 2 de los Oligodendrocitos , Masculino , Animales , Ratones , Depresión/tratamiento farmacológico , Depresión/metabolismo , Flavonoides/farmacología , Cromatografía Liquida , beta Catenina/metabolismo , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Hipocampo , Glutamatos/metabolismo , Glutamatos/farmacología , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo
19.
Proc Natl Acad Sci U S A ; 121(8): e2316969121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346197

RESUMEN

SOX8 was linked in a genome-wide association study to human height heritability, but roles in chondrocytes for this close relative of the master chondrogenic transcription factor SOX9 remain unknown. We undertook here to fill this knowledge gap. High-throughput assays demonstrate expression of human SOX8 and mouse Sox8 in growth plate cartilage. In situ assays show that Sox8 is expressed at a similar level as Sox9 in reserve and early columnar chondrocytes and turned off when Sox9 expression peaks in late columnar and prehypertrophic chondrocytes. Sox8-/- mice and Sox8fl/flPrx1Cre and Sox9fl/+Prx1Cre mice (inactivation in limb skeletal cells) have a normal or near normal skeletal size. In contrast, juvenile and adult Sox8fl/flSox9fl/+Prx1Cre compound mutants exhibit a 15 to 20% shortening of long bones. Their growth plate reserve chondrocytes progress slowly toward the columnar stage, as witnessed by a delay in down-regulating Pthlh expression, in packing in columns and in elevating their proliferation rate. SOX8 or SOX9 overexpression in chondrocytes reveals not only that SOX8 can promote growth plate cell proliferation and differentiation, even upon inactivation of endogenous Sox9, but also that it is more efficient than SOX9, possibly due to greater protein stability. Altogether, these findings uncover a major role for SOX8 and SOX9 in promoting skeletal growth by stimulating commitment of growth plate reserve chondrocytes to actively proliferating columnar cells. Further, by showing that SOX8 is more chondrogenic than SOX9, they suggest that SOX8 could be preferred over SOX9 in therapies to promote cartilage formation or regeneration in developmental and degenerative cartilage diseases.


Asunto(s)
Condrocitos , Estudio de Asociación del Genoma Completo , Ratones , Humanos , Animales , Condrocitos/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Regulación de la Expresión Génica , Diferenciación Celular , Proliferación Celular , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo
20.
Histopathology ; 84(5): 893-899, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38253970

RESUMEN

AIMS: The SOX10 transcription factor is important for the maturation of oligodendrocytes involved in central nervous system (CNS) myelination. Currently, very little information exists about its expression and potential use in CNS tumour diagnoses. The aim of our study was to characterize the expression of SOX10 in a large cohort of CNS tumours and to evaluate its potential use as a biomarker. METHODS: We performed immunohistochemistry (IHC) for SOX10 and OLIG2 in a series of 683 cases of adult- and paediatric-type CNS tumours from different subtypes. The nuclear immunostaining results for SOX10 and OLIG2 were scored as positive (≥10% positive tumour cells) or negative. RESULTS: OLIG2 and SOX10 were positive in diffuse midline gliomas (DMG), H3-mutant, and EZHIP-overexpressed. However, in all DMG, EGFR-mutant, SOX10 was constantly negative. In diffuse paediatric-type high-grade gliomas (HGG), all RTK1 cases were positive for both OLIG2 and SOX10. RTK2 cases were all negative for both OLIG2 and SOX10. MYCN cases variably expressed OLIG2 and were all immunonegative for SOX10. In glioblastoma, IDH-wildtype, OLIG2 was mostly positive, but SOX10 was variably expressed, depending on the epigenetic subtype. All circumscribed astrocytic gliomas were positive for both OLIG2 and SOX10 except pleomorphic xanthoastrocytomas, astroblastomas, MN1-altered, and subependymal giant cell astrocytomas. SOX10 was negative in ependymomas, meningiomas, pinealoblastomas, choroid plexus tumours, intracranial Ewing sarcomas, and embryonal tumours except neuroblastoma, FOXR2-activated. CONCLUSION: To conclude, SOX10 can be incorporated into the IHC panel routinely used by neuropathologists in the diagnostic algorithm of embryonal tumours and for the subtyping of paediatric and adult-type HGG.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioma , Neoplasias de Células Germinales y Embrionarias , Adulto , Humanos , Niño , Inmunohistoquímica , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas del Tejido Nervioso/metabolismo , Biomarcadores de Tumor/metabolismo , Glioma/diagnóstico , Glioma/genética , Glioma/metabolismo , Astrocitoma/patología , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/genética , Factores de Transcripción SOXE , Factor de Transcripción 2 de los Oligodendrocitos , Factores de Transcripción Forkhead
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...