Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 771
Filtrar
1.
J Immunotoxicol ; 21(1): 2373247, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39066679

RESUMEN

Molecular mimicry has been proposed to be a possible mechanism of induction of autoimmunity. In some cases, it is believed that such events could lead to a disease such as Type 1 diabetes (T1D). One of the primary MHC-I epitopes in the non-obese diabetic (NOD) mouse model of T1D has been identified as a peptide from the islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) protein. In humans, the most common MHC-I model allele is HLA-A02; based on this, the study here identified a potential HLA-A0201-restricted human IGRP epitope as YLKTNLFLFL and also found a homologous A0201-restricted peptide in an Enterococcal protein. Using cells obtained from healthy human donors, it was seen that after a 2-week incubation with the synthetic bacterial protein, healthy A0201+ donor CD8+ cells displayed increased staining for human IGRP-peptide-dextramer. On the other hand, in control cultures, no significant levels of dextramer-staining CD8+ T-cells were detectable. From these outcomes, it is possible to conclude that certain bacterial proteins may initiate CD8+ T-cell-mediated immune reaction toward homologous human antigens.


Asunto(s)
Antígenos Bacterianos , Linfocitos T CD8-positivos , Reacciones Cruzadas , Diabetes Mellitus Tipo 1 , Epítopos de Linfocito T , Glucosa-6-Fosfatasa , Antígeno HLA-A2 , Humanos , Diabetes Mellitus Tipo 1/inmunología , Antígeno HLA-A2/inmunología , Antígeno HLA-A2/metabolismo , Antígenos Bacterianos/inmunología , Glucosa-6-Fosfatasa/inmunología , Glucosa-6-Fosfatasa/genética , Reacciones Cruzadas/inmunología , Epítopos de Linfocito T/inmunología , Linfocitos T CD8-positivos/inmunología , Animales , Ratones , Imitación Molecular/inmunología , Ratones Endogámicos NOD , Proteínas Bacterianas/inmunología , Células Cultivadas
2.
Proc Natl Acad Sci U S A ; 121(30): e2319958121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39008673

RESUMEN

Neuropeptides (NPs) and their cognate receptors are critical effectors of diverse physiological processes and behaviors. We recently reported of a noncanonical function of the Drosophila Glucose-6-Phosphatase (G6P) gene in a subset of neurosecretory cells in the central nervous system that governs systemic glucose homeostasis in food-deprived flies. Here, we show that G6P-expressing neurons define six groups of NP-secreting cells, four in the brain and two in the thoracic ganglion. Using the glucose homeostasis phenotype as a screening tool, we find that neurons located in the thoracic ganglion expressing FMRFamide NPs (FMRFaG6P neurons) are necessary and sufficient to maintain systemic glucose homeostasis in starved flies. We further show that G6P is essential in FMRFaG6P neurons for attaining a prominent Golgi apparatus and secreting NPs efficiently. Finally, we establish that G6P-dependent FMRFa signaling is essential for the build-up of glycogen stores in the jump muscle which expresses the receptor for FMRFamides. We propose a general model in which the main role of G6P is to counteract glycolysis in peptidergic neurons for the purpose of optimizing the intracellular environment best suited for the expansion of the Golgi apparatus, boosting release of NPs and enhancing signaling to respective target tissues expressing cognate receptors.


Asunto(s)
Drosophila melanogaster , FMRFamida , Glucosa-6-Fosfatasa , Glucógeno , Neuronas , Neuropéptidos , Transducción de Señal , Animales , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , FMRFamida/metabolismo , Glucosa/metabolismo , Glucosa-6-Fosfatasa/metabolismo , Glucosa-6-Fosfatasa/genética , Glucógeno/metabolismo , Aparato de Golgi/metabolismo , Homeostasis , Músculos/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/genética
3.
Mol Med Rep ; 30(1)2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38785154

RESUMEN

Although there are several types of radiation exposure, it is debated whether low­dose­rate (LDR) irradiation (IR) affects the body. Since the small intestine is a radiation­sensitive organ, the present study aimed to evaluate how it changes when exposed to LDR IR and identify the genes sensitive to these doses. After undergoing LDR (6.0 mGy/h) γ radiation exposure, intestinal RNA from BALB/c mice was extracted 1 and 24 h later. Mouse whole genome microarrays were used to explore radiation­induced transcriptional alterations. Reverse transcription­quantitative (RT­q) PCR was used to examine time­ and dose­dependent radiation responses. The histopathological status of the jejunum in the radiated mouse was not changed by 10 mGy of LDR IR; however, 23 genes were upregulated in response to LDR IR of the jejunum in mice after 1 and 24 h of exposure. Upregulated genes were selected to validate the results of the RNA sequencing analysis for RT­qPCR detection and results showed that only Na+/K+ transporting subunit α4, glucose­6­phosphatase catalytic subunit 2 (G6PC2), mucin 6 (MUC6) and transient receptor potential cation channel subfamily V member 6 levels significantly increased after 24 h of LDR IR. Furthermore, G6PC2 and MUC6 were notable genes induced by LDR IR exposure according to protein expression via western blot analysis. The mRNA levels of G6PC2 and MUC6 were significantly elevated within 24 h under three conditions: i) Exposure to LDR IR, ii) repeated exposure to LDR IR and iii) exposure to LDR IR in the presence of inflammatory bowel disease. These results could contribute to an improved understanding of immediate radiation reactions and biomarker development to identify radiation­susceptible individuals before histopathological changes become noticeable. However, further investigation into the specific mechanisms involving G6PC2 and MUC6 is required to accomplish this.


Asunto(s)
Glucosa-6-Fosfatasa , Enfermedades Inflamatorias del Intestino , Mucina 6 , Animales , Masculino , Ratones , Relación Dosis-Respuesta en la Radiación , Rayos gamma/efectos adversos , Glucosa-6-Fosfatasa/metabolismo , Glucosa-6-Fosfatasa/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Enfermedades Inflamatorias del Intestino/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de la radiación , Mucosa Intestinal/patología , Intestinos/efectos de la radiación , Intestinos/patología , Yeyuno/efectos de la radiación , Yeyuno/metabolismo , Yeyuno/patología , Ratones Endogámicos BALB C , Mucina 6/metabolismo , Mucina 6/genética
4.
Mol Metab ; 84: 101940, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641253

RESUMEN

OBJECTIVE: The liver releases glucose into the blood using the glucose-6-phosphatase (G6Pase) system, a multiprotein complex located in the endoplasmic reticulum (ER). Here, we show for the first time that the G6Pase system is also expressed in hypothalamic tanycytes, and it is required to regulate energy balance. METHODS: Using automatized qRT-PCR and immunohistochemical analyses, we evaluated the expression of the G6Pase system. Fluorescent glucose analogue (2-NBDG) uptake was evaluated by 4D live-cell microscopy. Glucose release was tested using a glucose detection kit and high-content live-cell analysis instrument, Incucyte s3. In vivo G6pt knockdown in tanycytes was performed by AAV1-shG6PT-mCherry intracerebroventricular injection. Body weight gain, adipose tissue weight, food intake, glucose metabolism, c-Fos, and neuropeptide expression were evaluated at 4 weeks post-transduction. RESULTS: Tanycytes sequester glucose-6-phosphate (G6P) into the ER through the G6Pase system and release glucose in hypoglycaemia via facilitative glucose transporters (GLUTs). Strikingly, in vivo tanycytic G6pt knockdown has a powerful peripheral anabolic effect observed through decreased body weight, white adipose tissue (WAT) tissue mass, and strong downregulation of lipogenesis genes. Selective deletion of G6pt in tanycytes also decreases food intake, c-Fos expression in the arcuate nucleus (ARC), and Npy mRNA expression in fasted mice. CONCLUSIONS: The tanycyte-associated G6Pase system is a central mechanism involved in controlling metabolism and energy balance.


Asunto(s)
Metabolismo Energético , Células Ependimogliales , Glucosa-6-Fosfatasa , Glucosa , Hipoglucemia , Hipotálamo , Animales , Glucosa-6-Fosfatasa/metabolismo , Glucosa-6-Fosfatasa/genética , Ratones , Hipotálamo/metabolismo , Glucosa/metabolismo , Masculino , Hipoglucemia/metabolismo , Células Ependimogliales/metabolismo , Ratones Endogámicos C57BL , Retículo Endoplásmico/metabolismo
5.
Eur J Haematol ; 113(2): 146-162, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38600884

RESUMEN

BACKGROUND: Congenital neutropenias are characterized by severe infections and a high risk of myeloid transformation; the causative genes vary across ethnicities. The Israeli population is characterized by an ethnically diverse population with a high rate of consanguinity. OBJECTIVE: To evaluate the clinical and genetic spectrum of congenital neutropenias in Israel. METHODS: We included individuals with congenital neutropenias listed in the Israeli Inherited Bone Marrow Failure Registry. Sanger sequencing was performed for ELANE or G6PC3, and patients with wild-type ELANE/G6PC3 were referred for next-generation sequencing. RESULTS: Sixty-five patients with neutropenia were included. Of 51 patients with severe congenital neutropenia, 34 were genetically diagnosed, most commonly with variants in ELANE (15 patients). Nine patients had biallelic variants in G6PC3, all of consanguineous Muslim Arab origin. Other genes involved were SRP54, JAGN1, TAZ, and SLC37A4. Seven patients had cyclic neutropenia, all with pathogenic variants in ELANE, and seven had Shwachman-Diamond syndrome caused by biallelic SBDS variants. Eight patients (12%) developed myeloid transformation, including six patients with an unknown underlying genetic cause. Nineteen (29%) patients underwent hematopoietic stem cell transplantation, mostly due to insufficient response to treatment with granulocyte-colony stimulating factor or due to myeloid transformation. CONCLUSIONS: The genetic spectrum of congenital neutropenias in Israel is characterized by a high prevalence of G6PC3 variants and an absence of HAX1 mutations. Similar to other registries, for 26% of the patients, a molecular diagnosis was not achieved. However, myeloid transformation was common in this group, emphasizing the need for close follow-up.


Asunto(s)
Síndromes Congénitos de Insuficiencia de la Médula Ósea , Mutación , Neutropenia , Humanos , Neutropenia/genética , Neutropenia/congénito , Neutropenia/epidemiología , Neutropenia/diagnóstico , Masculino , Israel/epidemiología , Femenino , Niño , Síndromes Congénitos de Insuficiencia de la Médula Ósea/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea/diagnóstico , Preescolar , Adolescente , Predisposición Genética a la Enfermedad , Adulto , Trasplante de Células Madre Hematopoyéticas , Lactante , Consanguinidad , Glucosa-6-Fosfatasa/genética , Alelos , Sistema de Registros , Secuenciación de Nucleótidos de Alto Rendimiento , Adulto Joven , Fenotipo , Estudios de Asociación Genética
6.
Biochimie ; 222: 109-122, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38431189

RESUMEN

Three glucose-6-phosphatase catalytic subunits, that hydrolyze glucose-6-phosphate (G6P) to glucose and inorganic phosphate, have been identified, designated G6PC1-3, but only G6PC1 and G6PC2 have been implicated in the regulation of fasting blood glucose (FBG). Elevated FBG has been associated with multiple adverse clinical outcomes, including increased risk for type 2 diabetes and various cancers. Therefore, G6PC1 and G6PC2 inhibitors that lower FBG may be of prophylactic value for the prevention of multiple conditions. The studies described here characterize a G6PC2 inhibitor, designated VU0945627, previously identified as Compound 3. We show that VU0945627 preferentially inhibits human G6PC2 versus human G6PC1 but activates human G6PC3. VU0945627 is a mixed G6PC2 inhibitor, increasing the Km but reducing the Vmax for G6P hydrolysis. PyRx virtual docking to an AlphaFold2-derived G6PC2 structural model suggests VU0945627 binds two sites in human G6PC2. Mutation of residues in these sites reduces the inhibitory effect of VU0945627. VU0945627 does not inhibit mouse G6PC2 despite its 84% sequence identity with human G6PC2. Mutagenesis studies suggest this lack of inhibition of mouse G6PC2 is due, in part, to a change in residue 318 from histidine in human G6PC2 to proline in mouse G6PC2. Surprisingly, VU0945627 still inhibited glucose cycling in the mouse islet-derived ßTC-3 cell line. Studies using intact mouse liver microsomes and PyRx docking suggest that this observation can be explained by an ability of VU0945627 to also inhibit the G6P transporter SLC37A4. These data will inform future computational modeling studies designed to identify G6PC isoform-specific inhibitors.


Asunto(s)
Inhibidores Enzimáticos , Glucosa-6-Fosfatasa , Humanos , Glucosa-6-Fosfatasa/antagonistas & inhibidores , Glucosa-6-Fosfatasa/metabolismo , Glucosa-6-Fosfatasa/genética , Animales , Ratones , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular
7.
Proc Natl Acad Sci U S A ; 121(6): e2315419121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38285952

RESUMEN

Persistent antigen exposure results in the differentiation of functionally impaired, also termed exhausted, T cells which are maintained by a distinct population of precursors of exhausted T (TPEX) cells. T cell exhaustion is well studied in the context of chronic viral infections and cancer, but it is unclear whether and how antigen-driven T cell exhaustion controls progression of autoimmune diabetes and whether this process can be harnessed to prevent diabetes. Using nonobese diabetic (NOD) mice, we show that some CD8+ T cells specific for the islet antigen, islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) displayed terminal exhaustion characteristics within pancreatic islets but were maintained in the TPEX cell state in peripheral lymphoid organs (PLO). More IGRP-specific T cells resided in the PLO than in islets. To examine the impact of extraislet antigen exposure on T cell exhaustion in diabetes, we generated transgenic NOD mice with inducible IGRP expression in peripheral antigen-presenting cells. Antigen exposure in the extraislet environment induced severely exhausted IGRP-specific T cells with reduced ability to produce interferon (IFN)γ, which protected these mice from diabetes. Our data demonstrate that T cell exhaustion induced by delivery of antigen can be harnessed to prevent autoimmune diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Ratones , Animales , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevención & control , Proteínas/metabolismo , Agotamiento de Células T , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Ratones Transgénicos , Ratones Endogámicos NOD , Islotes Pancreáticos/metabolismo , Linfocitos T CD8-positivos
8.
PLoS One ; 18(11): e0288965, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033126

RESUMEN

Glycogen storage disease type I (GSD I) is a rare autosomal recessive inborn error of carbohydrate metabolism caused by the defects of glucose-6-phosphatase complex (G6PC). Disease causing variants in the G6PC gene, located on chromosome 17q21 result in glycogen storage disease type Ia (GSD Ia). Age of onset of GSD Ia ranges from 0.5 to 25 years with presenting features including hemorrhage, hepatic, physical and blood related abnormalities. The overall goal of proposed study was clinical and genetic characterization of GSD Ia cases from Pakistani population. This study included forty GSD Ia cases presenting with heterogeneous clinical profile including hypoglycemia, hepatomegaly, lactic acidosis i.e., pH less than 7.2, hyperuricemia, seizures, epistaxis, hypertriglyceridemia (more than180 mg/dl) and sometimes short stature. All coding exons and intron-exon boundaries of G6PC gene were screened to identify pathogenic variant in 20 patients based on availability of DNA samples and willingness to participate in molecular analysis. Pathogenic variant analysis was done using PCR-Sanger sequencing method and pathogenic effect predictions for identified variants were carried out using PROVEAN, MutationTaster, Polyphen 2, HOPE, Varsome, CADD, DANN, SIFT and HSF software. Overall, 21 variants were detected including 8 novel disease causing variants i.e., G6PC (NM_000151.4):c.71A>C (p.Gln24Pro), c.109G>C(p.Ala37Pro), c.133G>C(p.Val45Leu), c.49_50insT c.205G>A(p.Asp69Asn), c.244C>A(p.Gln82Lys) c.322A>C(p.Thr108Pro) and c.322A>C(p.Cys284Tyr) in the screened regions of G6PC gene. Out of 13 identified polymorphisms, 3 were identified in heterozygous condition while 10 were found in homozygous condition. This study revealed clinical presentation of GSD Ia cases from Pakistan and identification of novel disease-causing sequence variants in coding region and intron-exon boundaries of G6PC gene.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo I , Adolescente , Adulto , Niño , Preescolar , Humanos , Lactante , Adulto Joven , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/patología , Hígado/metabolismo , Mutación , Pakistán , Personas del Sur de Asia/genética
9.
Front Endocrinol (Lausanne) ; 14: 1265698, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034009

RESUMEN

Background: Glycogen plays an important role in glucose homeostasis and contributes to key functions related to brain cancer cell survival in glioblastoma multiforme (GBM) disease progression. Such adaptive molecular mechanism is dependent on the glycogenolytic pathway and intracellular glucose-6-phosphate (G6P) sensing by brain cancer cells residing within those highly hypoxic tumors. The involvement of components of the glucose-6-phosphatase (G6Pase) system remains however elusive. Objective: We questioned the gene expression levels of components of the G6Pase system in GBM tissues and their functional impact in the control of the invasive and brain cancer stem cells (CSC) phenotypes. Methods: In silico analysis of transcript levels in GBM tumor tissues was done by GEPIA. Total RNA was extracted and gene expression of G6PC1-3 as well as of SLC37A1-4 members analyzed by qPCR in four human brain cancer cell lines and from clinically annotated brain tumor cDNA arrays. Transient siRNA-mediated gene silencing was used to assess the impact of TGF-ß-induced epithelial-to-mesenchymal transition (EMT) and cell chemotaxis. Three-dimensional (3D) neurosphere cultures were generated to recapitulate the brain CSC phenotype. Results: Higher expression in G6PC3, SLC37A2, and SLC37A4 was found in GBM tumor tissues in comparison to low-grade glioma and healthy tissue. The expression of these genes was also found elevated in established human U87, U251, U118, and U138 GBM cell models compared to human HepG2 hepatoma cells. SLC37A4/G6PC3, but not SLC37A2, levels were induced in 3D CD133/SOX2-positive U87 neurospheres when compared to 2D monolayers. Silencing of SLC37A4/G6PC3 altered TGF-ß-induced EMT biomarker SNAIL and cell chemotaxis. Conclusion: Two members of the G6Pase system, G6PC3 and SLC37A4, associate with GBM disease progression and regulate the metabolic reprogramming of an invasive and CSC phenotype. Such molecular signature may support their role in cancer cell survival and chemoresistance and become future therapeutic targets.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Antiportadores/genética , Antiportadores/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Células Madre Neoplásicas/metabolismo , Fenotipo , Factor de Crecimiento Transformador beta/metabolismo
10.
J Clin Invest ; 133(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37788110

RESUMEN

Glycogen storage disease type 1a (GSD1a) is caused by a congenital deficiency of glucose-6-phosphatase-α (G6Pase-α, encoded by G6PC), which is primarily associated with life-threatening hypoglycemia. Although strict dietary management substantially improves life expectancy, patients still experience intermittent hypoglycemia and develop hepatic complications. Emerging therapies utilizing new modalities such as adeno-associated virus and mRNA with lipid nanoparticles are under development for GSD1a but potentially require complicated glycemic management throughout life. Here, we present an oligonucleotide-based therapy to produce intact G6Pase-α from a pathogenic human variant, G6PC c.648G>T, the most prevalent variant in East Asia causing aberrant splicing of G6PC. DS-4108b, a splice-switching oligonucleotide, was designed to correct this aberrant splicing, especially in liver. We generated a mouse strain with homozygous knockin of this variant that well reflected the pathophysiology of patients with GSD1a. DS-4108b recovered hepatic G6Pase activity through splicing correction and prevented hypoglycemia and various hepatic abnormalities in the mice. Moreover, DS-4108b had long-lasting efficacy of more than 12 weeks in mice that received a single dose and had favorable pharmacokinetics and tolerability in mice and monkeys. These findings together indicate that this oligonucleotide-based therapy could provide a sustainable and curative therapeutic option under easy disease management for GSD1a patients with G6PC c.648G>T.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo I , Hipoglucemia , Humanos , Ratones , Animales , Oligonucleótidos/genética , Ratones Noqueados , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Hígado/patología , Glucosa-6-Fosfatasa/genética , Hipoglucemia/genética , Hipoglucemia/prevención & control
11.
Diabetes ; 72(11): 1621-1628, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37552875

RESUMEN

G6PC2 is predominantly expressed in pancreatic islet ß-cells where it encodes a glucose-6-phosphatase catalytic subunit that modulates the sensitivity of insulin secretion to glucose by opposing the action of glucokinase, thereby regulating fasting blood glucose (FBG). Prior studies have shown that the G6pc2 promoter alone is unable to confer sustained islet-specific gene expression in mice, suggesting the existence of distal enhancers that regulate G6pc2 expression. Using information from both mice and humans and knowledge that single nucleotide polymorphisms (SNPs) both within and near G6PC2 are associated with variations in FBG in humans, we identified several putative enhancers 3' of G6pc2. One region, herein referred to as enhancer I, resides in the 25th intron of Abcb11 and binds multiple islet-enriched transcription factors. CRISPR-mediated deletion of enhancer I in C57BL/6 mice had selective effects on the expression of genes near the G6pc2 locus. In isolated islets, G6pc2 and Spc25 expression were reduced ∼50%, and Gm13613 expression was abolished, whereas Cers6 and nostrin expression were unaffected. This partial reduction in G6pc2 expression enhanced islet insulin secretion at basal glucose concentrations but did not affect FBG or glucose tolerance in vivo, consistent with the absence of a phenotype in G6pc2 heterozygous C57BL/6 mice.


Asunto(s)
Glucemia , Islotes Pancreáticos , Animales , Humanos , Ratones , Glucemia/metabolismo , Glucosa/metabolismo , Glucosa-6-Fosfatasa/genética , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones Endogámicos C57BL
12.
J Inherit Metab Dis ; 46(6): 1147-1158, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37467014

RESUMEN

Glycogen storage disease type-Ia (GSD-Ia), characterized by impaired blood glucose homeostasis, is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC). Using the G6pc-R83C mouse model of GSD-Ia, we explored a CRISPR/Cas9-based double-strand DNA oligonucleotide (dsODN) insertional strategy that uses the nonhomologous end-joining repair mechanism to correct the pathogenic p.R83C variant in G6pc exon-2. The strategy is based on the insertion of a short dsODN into G6pc exon-2 to disrupt the native exon and to introduce an additional splice acceptor site and the correcting sequence. When transcribed and spliced, the edited gene would generate a wild-type mRNA encoding the native G6Pase-α protein. The editing reagents formulated in lipid nanoparticles (LNPs) were delivered to the liver. Mice were treated either with one dose of LNP-dsODN at age 4 weeks or with two doses of LNP-dsODN at age 2 and 4 weeks. The G6pc-R83C mice receiving successful editing expressed ~4% of normal hepatic G6Pase-α activity, maintained glucose homeostasis, lacked hypoglycemic seizures, and displayed normalized blood metabolite profile. The outcomes are consistent with preclinical studies supporting previous gene augmentation therapy which is currently in clinical trials. This editing strategy may offer the basis for a therapeutic approach with an earlier clinical intervention than gene augmentation, with the additional benefit of a potentially permanent correction of the GSD-Ia phenotype.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo I , Oligonucleótidos , Ratones , Animales , Oligonucleótidos/metabolismo , Sistemas CRISPR-Cas , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/terapia , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Hígado/metabolismo , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo
13.
Mol Genet Genomic Med ; 11(12): e2255, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37493001

RESUMEN

BACKGROUND: C-reactive protein (CRP) is a sensitive biomarker of inflammation with moderate heritability. The role of rare functional genetic variants in relation to serum CRP is understudied. We aimed to examine gene mutation burden of protein-altering (PA) and loss-of-function (LOF) variants in association with serum CRP, and to further explore the clinical relevance. METHODS: We included 161,430 unrelated participants of European ancestry from the UK Biobank. Of the rare (minor allele frequency <0.1%) and functional variants, 1,776,249 PA and 266,226 LOF variants were identified. Gene-based burden tests, linear regressions, and logistic regressions were performed to identify the candidate mutations at the gene and variant levels, to estimate the potential interaction effect between the identified PA mutation and obesity, and to evaluate the relative risk of 16 CRP-associated diseases. RESULTS: At the gene level, PA mutation burdens of the CRP (ß = -0.685, p = 2.87e-28) and G6PC genes (ß = 0.203, p = 1.50e-06) were associated with reduced and increased serum CRP concentration, respectively. At the variant level, seven PA alleles in the CRP gene decreased serum CRP, of which the per-allele effects were approximately three to seven times greater than that of a common variant in the same locus. The effects of obesity and central obesity on serum CRP concentration were smaller among the PA mutation carriers in the CRP (pinteraction = 0.008) and G6PC gene (pinteraction = 0.034) compared to the corresponding non-carriers. CONCLUSION: PA mutation burdens in the CRP and G6PC genes are strongly associated with decreased serum CRP concentrations. As serum CRP and obesity are important predictors of cardiovascular risks in clinics, our observations suggest taking rare genetic factors into consideration might improve the delivery of precision medicine.


Asunto(s)
Proteína C-Reactiva , Glucosa-6-Fosfatasa , Obesidad , Polimorfismo de Nucleótido Simple , Humanos , Proteína C-Reactiva/genética , Proteína C-Reactiva/análisis , Frecuencia de los Genes , Obesidad/genética , Población Blanca/genética , Glucosa-6-Fosfatasa/genética
14.
Zhonghua Xue Ye Xue Za Zhi ; 44(4): 308-315, 2023 Apr 14.
Artículo en Chino | MEDLINE | ID: mdl-37357000

RESUMEN

Objective: To determine whether the adenine base editor (ABE7.10) can be used to fix harmful mutations in the human G6PC3 gene. Methods: To investigate the safety of base-edited embryos, off-target analysis by deep sequencing was used to examine the feasibility and editing efficiency of various sgRNA expression vectors. The human HEK293T mutation models and human embryos were also used to test the feasibility and editing efficiency of correction. Results: ①The G6PC3(C295T) mutant cell model was successfully created. ②In the G6PC3(C295T) mutant cell model, three distinct Re-sgRNAs were created and corrected, with base correction efficiency ranging from 8.79% to 19.56% . ③ ABE7.10 could successfully fix mutant bases in the human pathogenic embryo test; however, base editing events had also happened in other locations. ④ With the exception of one noncoding site, which had a high safety rate, deep sequencing analysis revealed that the detection of 32 probable off-target sites was <0.5% . Conclusion: This study proposes a new base correction strategy based on human pathogenic embryos; however, it also produces a certain nontarget site editing, which needs to be further analyzed on the PAM site or editor window.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Adenina , Células HEK293 , Mutación , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo
15.
J Inherit Metab Dis ; 46(4): 618-633, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37114839

RESUMEN

BACKGROUND: Glycogen storage disease type Ia (GSDIa) is caused by biallelic pathogenic variants in the glucose-6-phosphatase gene (G6PC) and mainly characterized by hypoglycemia, hepatomegaly, and renal insufficiency. Although its symptoms are reportedly mild in patients carrying the G6PC c.648G>T variant, the predominant variant in Japanese patients, details remain unclear. Therefore, we examined continuous glucose monitoring (CGM) data and daily nutritional intake to clarify their associations in Japanese patients with GSDIa with G6PC c.648G>T. METHODS: This cross-sectional study enrolled 32 patients across 10 hospitals. CGM was performed for 14 days, and nutritional intake was recorded using electronic diaries. Patients were divided according to genotype (homozygous/compound heterozygous) and age. The durations of biochemical hypoglycemia and corresponding nutritional intake were analyzed. Multiple regression analysis was performed to identify factors associated with the duration of biochemical hypoglycemia. RESULTS: Data were analyzed for 30 patients. The mean daily duration of hypoglycemia (<4.0 mmol/L) in the homozygous group increased with age (2-11 years [N = 8]: 79.8 min; 12-18 years [5]: 84.8 min; ≥19 years [10]: 131.5 min). No severe hypoglycemic symptoms were recorded in the patients' diaries. The mean frequency of snack intake was approximately three times greater in patients aged 2-11 years (7.1 times/day) than in those aged 12-18 years (1.9 times/day) or ≥19 years (2.2 times/day). Total cholesterol and lactate were independently associated with the duration of biochemical hypoglycemia. CONCLUSION: Although nutritional therapy prevents severe hypoglycemia in patients with GSDIa with G6PC c.648G>T, patients often experience asymptomatic hypoglycemia.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo I , Hipoglucemia , Humanos , Glucemia , Estudios Transversales , Automonitorización de la Glucosa Sanguínea , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Glucosa-6-Fosfatasa/genética , Hipoglucemia/complicaciones
16.
Amino Acids ; 55(5): 695-708, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36944899

RESUMEN

Glucose-6-phosphatase-α (G6Pase-α) catalyzes the hydrolysis of glucose-6-phosphate to glucose and functions as a key regulator in maintaining blood glucose homeostasis. Deficiency in G6Pase-α causes glycogen storage disease 1a (GSD1a), an inherited disorder characterized by life-threatening hypoglycemia and other long-term complications. We have developed a potential mRNA-based therapy for GSD1a and demonstrated that a human G6Pase-α (hG6Pase-α) variant harboring a single serine (S) to cysteine (C) substitution at the amino acid site 298 (S298C) had > twofold increase in protein expression, resulting in improved in vivo efficacy. Here, we sought to investigate the mechanisms contributing to the increased expression of the S298C variant. Mutagenesis of hG6Pase-α identified distinct protein variants at the 298 amino acid position with substantial reduction in protein expression in cultured cells. Kinetic analysis of expression and subcellular localization in mammalian cells, combined with cell-free in vitro translation assays, revealed that altered protein expression stemmed from differences in cellular protein stability rather than biosynthetic rates. Site-specific mutagenesis studies targeting other cysteines of the hG6Pase-α S298C variant suggest the observed improvements in stability are not due to additional disulfide bond formation. The glycosylation at Asparagine (N)-96 is critical in maintaining enzymatic activity and mutations at position 298 mainly affected glycosylated forms of hG6Pase-α. Finally, proteasome inhibition by lactacystin improved expression levels of unstable hG6Pase-α variants. Taken together, these data uncover a critical role for a single amino acid substitution impacting the stability of G6Pase-α and provide insights into the molecular genetics of GSD1a and protein engineering for therapeutic development.


Asunto(s)
Glucosa-6-Fosfatasa , Enfermedad del Almacenamiento de Glucógeno Tipo I , Animales , Humanos , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/química , Glucosa-6-Fosfatasa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Cinética , Glucosa/metabolismo , Aminoácidos , Mamíferos/metabolismo
17.
J Bioenerg Biomembr ; 55(2): 137-150, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36853470

RESUMEN

Animals suffer hypoxia when their oxygen consumption is larger than the oxygen available. Hypoxia affects the white shrimp Penaeus (Litopenaeus) vannamei, both in their natural habitat and in cultivation farms. Shrimp regulates some enzymes that participate in energy production pathways as a strategy to survive during hypoxia. Glucose-6-phosphatase (G6Pase) is key to maintain blood glucose homeostasis through gluconeogenesis and glycogenolysis. We previously reported a shrimp G6Pase gene (G6Pase1) and in this work, we report a second isoform that we named G6Pase2. The expression of the two isoforms was evaluated in oxygen limited conditions and during silencing of the transcription factor HIF-1. High G6Pase activity was detected in hepatopancreas followed by muscle and gills under good oxygen and feeding conditions. Gene expression of both isoforms was analyzed in normoxia, hypoxia and reoxygenation in hepatopancreas and gills, and in HIF-1-silenced shrimp. In fed shrimp with normal dissolved oxygen (DO) (5.0 mg L- 1 DO) the expression of G6Pase1 was detected in gills, but not in hepatopancreas or muscle, while G6Pase2 expression was undetectable in all three tissues. In hepatopancreas, G6Pase1 is induced at 3 and 48 h of hypoxia, while G6Pase2 is down-regulated in the same time points but in reoxygenation, both due to the knock-down of HIF-1. In gills, only G6Pase1 was detected, and was induced by the silencing of HIF-1 only after 3 h of reoxygenation. Therefore, the expression of the two isoforms appears to be regulated by HIF-1 at transcriptional level in response to oxygen deprivation and subsequent recovery of oxygen levels.


Asunto(s)
Glucosa-6-Fosfatasa , Penaeidae , Animales , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Penaeidae/genética , Penaeidae/metabolismo , Hipoxia/metabolismo , Oxígeno/metabolismo , Isoformas de Proteínas/metabolismo
18.
Mol Genet Metab ; 140(3): 107712, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38353183

RESUMEN

Glycogen storage disease type Ib (GSD1b) and G6PC3-deficiency are rare autosomal recessive diseases caused by inactivating mutations in SLC37A4 (coding for G6PT) and G6PC3, respectively. Both diseases are characterized by neutropenia and neutrophil dysfunction due to the intracellular accumulation of 1,5-anhydroglucitol-6-phosphate (1,5-AG6P), a potent inhibitor of hexokinases. We recently showed that the use of SGLT2 inhibitor therapy to reduce tubular reabsorption of its precursor, 1,5-anhydroglucitol (1,5-AG), a glucose analog present in blood, successfully restored the neutropenia and neutrophil function in G6PC3-deficient and GSD1b patients. The intra-individual variability of response to the treatment and the need to adjust the dose during treatment, especially in pediatric populations, can only be efficiently optimized if the concentration of 1,5-AG in blood is monitored during treatment, together with the patients' clinical signs and symptoms. Monitoring the 1,5-AG levels would be greatly simplified if it could be performed on dry blood spots (DBS) which are easy to collect, store and transport. The challenge is to know if a suitable method can be developed to perform accurate and reproducible assays for 1,5-AG using DBS. Here, we describe and validate an assay that quantifies 1,5-AG in DBS using isotopic dilution quantitation by LC-MS/MS that should greatly facilitate patients' follow-up. 1,5-AG levels measured in plasma and DBS give comparable values. This assay was used to monitor the levels of 1,5-AG in DBS from 3 G6PC3-deficient and 6 GSD1b patients during treatment with SGLT2 inhibitors. We recommend this approach to verify the adequate therapeutical response and compliance to the treatment in G6PC3-deficient and GSD1b patients treated with SGLT2 inhibitors.


Asunto(s)
Desoxiglucosa , Enfermedad del Almacenamiento de Glucógeno Tipo I , Neutropenia , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Niño , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Enfermedad del Almacenamiento de Glucógeno Tipo I/tratamiento farmacológico , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/complicaciones , Neutropenia/genética , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Monoéster Fosfórico Hidrolasas , Proteínas de Transporte de Monosacáridos , Antiportadores
19.
Rev Invest Clin ; 74(6): 328-339, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36546889

RESUMEN

Background: Severe congenital neutropenia type 4 (SCN4) is a rare autosomal recessive granulopoiesis disorder caused by G6PC3 gene pathogenic variants. The estimated prevalence is 1/10,000,000 people. Over 90% of patients present a syndromic form with variable multisystemic involvement, including congenital heart defects, increased visibility of superficial veins (IVSV), inflammatory bowel disease, and congenital urogenital defects as prominent symptoms. Objectives: The objective of the study was to study non-hematological phenotypic findings that suggest a clinical diagnosis of SCN4. Methods: We examined medical records of patients diagnosed with neutropenia from January 2000 to December 2020, selecting cases with non-hematologic manifestations for phenotypic description and G6PC3 gene sequencing. Results: We found 11 cases with non-hematologic features: congenital heart defects in 8, IVSV in 6, inflammatory bowel disease in 4, urogenital defects in 4, and similar facial appearance. In addition, Sanger sequencing confirmed 3 homozygous cases for the c.210delC variant, a compound heterozygous harboring this variant, and a c.199_218+1 deletion. Conclusions: Our findings of the c.210delC variant in very close geographical settings, to date, have only been reported among Mexicans, and a mutual uncommon surname in two families strongly supports a founder effect for the variant in the studied population. Furthermore, the described non-hematologic symptoms in patients with severe primary neutropenia should be explored, confirming SCN4 by investigating G6PC3 gene mutations.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Neutropenia , Humanos , Glucosa-6-Fosfatasa/genética , Cardiopatías Congénitas/genética , Enfermedades Inflamatorias del Intestino/genética , Mutación , Neutropenia/epidemiología , Neutropenia/genética , Neutropenia/congénito , Enfermedades Raras
20.
Toxins (Basel) ; 14(12)2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36548717

RESUMEN

Ricin toxin is an agent of biodefense concern and we have been developing countermeasures for ricin threats. In doing so, we sought biomarkers of ricin toxicosis and found that in mice parenteral injection of ricin toxin causes profound hypoglycemia, in the absence of other clinical laboratory abnormalities. We now seek to identify the mechanisms underlying this hypoglycemia. Within the first hours following injection, while still normoglycemic, lymphopenia and pro-inflammatory cytokine secretion were observed, particularly tumor necrosis factor (TNF)-α. The cytokine response evolved over the next day into a complex storm of both pro- and anti-inflammatory cytokines. Evaluation of pancreatic function and histology demonstrated marked islet hypertrophy involving predominantly ß-cells, but only mildly elevated levels of insulin secretion, and diminished hepatic insulin signaling. Drops in blood glucose were observed even after destruction of ß-cells with streptozotocin. In the liver, we observed a rapid and persistent decrease in the expression of glucose-6-phosphatase (G6Pase) RNA and protein levels, accompanied by a drop in glucose-6-phosphate and increase in glycogen. TNF-α has previously been reported to suppress G6Pase expression. In humans, a genetic deficiency of G6Pase results in glycogen storage disease, type-I (GSD-1), a hallmark of which is potentially fatal hypoglycemia.


Asunto(s)
Citocinas , Glucosa-6-Fosfatasa , Hipoglucemia , Hígado , Ricina , Animales , Humanos , Ratones , Citocinas/metabolismo , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Hipoglucemia/inducido químicamente , Hipoglucemia/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Ricina/toxicidad , Ricina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...