Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.270
Filtrar
1.
Clin Neurophysiol ; 164: 57-99, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852434

RESUMEN

In this review, different aspects of the use of clinical neurophysiology techniques for the treatment of movement disorders are addressed. First of all, these techniques can be used to guide neuromodulation techniques or to perform therapeutic neuromodulation as such. Neuromodulation includes invasive techniques based on the surgical implantation of electrodes and a pulse generator, such as deep brain stimulation (DBS) or spinal cord stimulation (SCS) on the one hand, and non-invasive techniques aimed at modulating or even lesioning neural structures by transcranial application. Movement disorders are one of the main areas of indication for the various neuromodulation techniques. This review focuses on the following techniques: DBS, repetitive transcranial magnetic stimulation (rTMS), low-intensity transcranial electrical stimulation, including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), and focused ultrasound (FUS), including high-intensity magnetic resonance-guided FUS (MRgFUS), and pulsed mode low-intensity transcranial FUS stimulation (TUS). The main clinical conditions in which neuromodulation has proven its efficacy are Parkinson's disease, dystonia, and essential tremor, mainly using DBS or MRgFUS. There is also some evidence for Tourette syndrome (DBS), Huntington's disease (DBS), cerebellar ataxia (tDCS), and axial signs (SCS) and depression (rTMS) in PD. The development of non-invasive transcranial neuromodulation techniques is limited by the short-term clinical impact of these techniques, especially rTMS, in the context of very chronic diseases. However, at-home use (tDCS) or current advances in the design of closed-loop stimulation (tACS) may open new perspectives for the application of these techniques in patients, favored by their easier use and lower rate of adverse effects compared to invasive or lesioning methods. Finally, this review summarizes the evidence for keeping the use of electromyography to optimize the identification of muscles to be treated with botulinum toxin injection, which is indicated and widely performed for the treatment of various movement disorders.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos del Movimiento , Estimulación Transcraneal de Corriente Directa , Humanos , Trastornos del Movimiento/terapia , Trastornos del Movimiento/fisiopatología , Estimulación Encefálica Profunda/métodos , Estimulación Transcraneal de Corriente Directa/métodos , Neurofisiología/métodos , Estimulación Magnética Transcraneal/métodos
2.
Sci Rep ; 14(1): 13456, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38862558

RESUMEN

The agonist-antagonist myoneural interface (AMI) is an amputation surgery that preserves sensorimotor signaling mechanisms of the central-peripheral nervous systems. Our first neuroimaging study investigating AMI subjects conducted by Srinivasan et al. (2020) focused on task-based neural signatures, and showed evidence of proprioceptive feedback to the central nervous system. The study of resting state neural activity helps non-invasively characterize the neural patterns that prime task response. In this study on resting state functional magnetic resonance imaging in AMI subjects, we compared functional connectivity in patients with transtibial AMI (n = 12) and traditional (n = 7) amputations (TA). To test our hypothesis that we would find significant neurophysiological differences between AMI and TA subjects, we performed a whole-brain exploratory analysis to identify a seed region; namely, we conducted ANOVA, followed by t-test statistics to locate a seed in the salience network. Then, we implemented a seed-based connectivity analysis to gather cluster-level inferences contrasting our subject groups. We show evidence supporting our hypothesis that the AMI surgery induces functional network reorganization resulting in a neural configuration that significantly differs from the neural configuration after TA surgery. AMI subjects show significantly less coupling with regions functionally dedicated to selecting where to focus attention when it comes to salient stimuli. Our findings provide researchers and clinicians with a critical mechanistic understanding of the effect of AMI amputation on brain networks at rest, which has promising implications for improved neurorehabilitation and prosthetic control.


Asunto(s)
Amputación Quirúrgica , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Descanso/fisiología , Tibia/cirugía , Tibia/fisiopatología , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Neurofisiología/métodos , Amputados/rehabilitación , Mapeo Encefálico/métodos
3.
BMC Psychiatry ; 24(1): 433, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858652

RESUMEN

BACKGROUND: Objective and quantifiable markers are crucial for developing novel therapeutics for mental disorders by 1) stratifying clinically similar patients with different underlying neurobiological deficits and 2) objectively tracking disease trajectory and treatment response. Schizophrenia is often confounded with other psychiatric disorders, especially bipolar disorder, if based on cross-sectional symptoms. Awake and sleep EEG have shown promise in identifying neurophysiological differences as biomarkers for schizophrenia. However, most previous studies, while useful, were conducted in European and American populations, had small sample sizes, and utilized varying analytic methods, limiting comprehensive analyses or generalizability to diverse human populations. Furthermore, the extent to which wake and sleep neurophysiology metrics correlate with each other and with symptom severity or cognitive impairment remains unresolved. Moreover, how these neurophysiological markers compare across psychiatric conditions is not well characterized. The utility of biomarkers in clinical trials and practice would be significantly advanced by well-powered transdiagnostic studies. The Global Research Initiative on the Neurophysiology of Schizophrenia (GRINS) project aims to address these questions through a large, multi-center cohort study involving East Asian populations. To promote transparency and reproducibility, we describe the protocol for the GRINS project. METHODS: The research procedure consists of an initial screening interview followed by three subsequent sessions: an introductory interview, an evaluation visit, and an overnight neurophysiological recording session. Data from multiple domains, including demographic and clinical characteristics, behavioral performance (cognitive tasks, motor sequence tasks), and neurophysiological metrics (both awake and sleep electroencephalography), are collected by research groups specialized in each domain. CONCLUSION: Pilot results from the GRINS project demonstrate the feasibility of this study protocol and highlight the importance of such research, as well as its potential to study a broader range of patients with psychiatric conditions. Through GRINS, we are generating a valuable dataset across multiple domains to identify neurophysiological markers of schizophrenia individually and in combination. By applying this protocol to related mental disorders often confounded with each other, we can gather information that offers insight into the neurophysiological characteristics and underlying mechanisms of these severe conditions, informing objective diagnosis, stratification for clinical research, and ultimately, the development of better-targeted treatment matching in the clinic.


Asunto(s)
Electroencefalografía , Esquizofrenia , Adulto , Femenino , Humanos , Masculino , Biomarcadores , Estudios de Cohortes , Electroencefalografía/métodos , Neurofisiología/métodos , Proyectos de Investigación , Esquizofrenia/fisiopatología , Esquizofrenia/diagnóstico , Sueño/fisiología , Estudios Transversales , Persona de Mediana Edad , Anciano
4.
Nature ; 630(8017): 587-595, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898291

RESUMEN

Advances in large-scale single-unit human neurophysiology, single-cell RNA sequencing, spatial transcriptomics and long-term ex vivo tissue culture of surgically resected human brain tissue have provided an unprecedented opportunity to study human neuroscience. In this Perspective, we describe the development of these paradigms, including Neuropixels and recent brain-cell atlas efforts, and discuss how their convergence will further investigations into the cellular underpinnings of network-level activity in the human brain. Specifically, we introduce a workflow in which functionally mapped samples of human brain tissue resected during awake brain surgery can be cultured ex vivo for multi-modal cellular and functional profiling. We then explore how advances in human neuroscience will affect clinical practice, and conclude by discussing societal and ethical implications to consider. Potential findings from the field of human neuroscience will be vast, ranging from insights into human neurodiversity and evolution to providing cell-type-specific access to study and manipulate diseased circuits in pathology. This Perspective aims to provide a unifying framework for the field of human neuroscience as we welcome an exciting era for understanding the functional cytoarchitecture of the human brain.


Asunto(s)
Encéfalo , Neurofisiología , Neurociencias , Análisis de la Célula Individual , Humanos , Encéfalo/citología , Encéfalo/fisiología , Neuropatología/métodos , Neuropatología/tendencias , Neurofisiología/métodos , Neurofisiología/tendencias , Neurociencias/métodos , Neurociencias/tendencias , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/tendencias , Análisis de Expresión Génica de una Sola Célula , Transcriptoma , Flujo de Trabajo , Animales
5.
J Neurophysiol ; 132(1): 308-315, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38865216

RESUMEN

Neurophysiological recording with a new probe often yields better signal quality than with a used probe. Why does the signal quality degrade after only a few experiments? Here, we considered silicon probes in which the contacts are densely packed, and each contact is coated with a conductive polymer that increases its surface area. We tested 12 Cambridge Neurotech silicon probes during 61 recording sessions from the brain of three marmosets. Out of the box, each probe arrived with an electrodeposited polymer coating on 64 gold contacts and an impedance of around 50 kΩ. With repeated use, the impedance increased and there was a corresponding decrease in the number of well-isolated neurons. Imaging of the probes suggested that the reduction in signal quality was due to a gradual loss of the polymer coating. To rejuvenate the probes, we first stripped the contacts, completely removing their polymer coating, and then recoated them in a solution of 10 mM 3,4-Ethylenedioxythiophene (EDOT) monomer with 11 mM Poly(sodium 4-styrenesulfonate) (PSS) using a current density of about 3 mA/cm2 for 30 s. This recoating process not only returned probe impedance to around 50 kΩ but also yielded significantly improved signal quality during neurophysiological recordings. Thus, insertion into the brain promoted the loss of the polymer that coated the contacts of the silicon probes. This led to degradation of signal quality, but recoating rejuvenated the probes.NEW & NOTEWORTHY With repeated use, a silicon probe's ability to isolate neurons degrades. As a result, the probe is often discarded after only a handful of uses. Here, we demonstrate a major source of this problem and then produce a solution to rejuvenate the probes.


Asunto(s)
Callithrix , Neuronas , Silicio , Animales , Silicio/farmacología , Neuronas/fisiología , Neuronas/efectos de los fármacos , Impedancia Eléctrica , Electrodos Implantados , Encéfalo/fisiología , Encéfalo/efectos de los fármacos , Polímeros/farmacología , Masculino , Neurofisiología/instrumentación , Neurofisiología/métodos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Microelectrodos
7.
Neuron ; 112(13): 2086-2090, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38781973

RESUMEN

Neurophysiology and neuromodulation strive to understand the neural basis of behavior through a one-to-one correspondence between a particular brain and its behavioral output. Within this framework, studies with few subjects but sufficient sample sizes can be both rigorous and impactful.


Asunto(s)
Encéfalo , Neurofisiología , Humanos , Encéfalo/fisiología , Neurofisiología/métodos , Tamaño de la Muestra , Animales , Neurotransmisores/metabolismo , Conducta/fisiología
8.
Int Rev Neurobiol ; 176: 87-118, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38802184

RESUMEN

This chapter describes the role of neurophysiological techniques in diagnosing and monitoring amyotrophic lateral sclerosis (ALS). Despite many advances, electromyography (EMG) remains a keystone investigation from which to build support for a diagnosis of ALS, demonstrating the pathophysiological processes of motor unit hyperexcitability, denervation and reinnervation. We consider development of the different diagnostic criteria and the role of EMG therein. While not formally recognised by established diagnostic criteria, we discuss the pioneering studies that have demonstrated the diagnostic potential of transcranial magnetic stimulation (TMS) of the motor cortex and highlight the growing evidence for TMS in the diagnostic process. Finally, accurately monitoring disease progression is crucial for the successful implementation of clinical trials. Neurophysiological measures of disease state have been incorporated into clinical trials for over 20 years and we review prominent techniques for assessing disease progression.


Asunto(s)
Esclerosis Amiotrófica Lateral , Electromiografía , Neurofisiología , Estimulación Magnética Transcraneal , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/fisiopatología , Humanos , Estimulación Magnética Transcraneal/métodos , Electromiografía/métodos , Neurofisiología/métodos , Progresión de la Enfermedad , Corteza Motora/fisiopatología
9.
Sci Rep ; 14(1): 10785, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734712

RESUMEN

Large language models (LLMs), like ChatGPT, Google's Bard, and Anthropic's Claude, showcase remarkable natural language processing capabilities. Evaluating their proficiency in specialized domains such as neurophysiology is crucial in understanding their utility in research, education, and clinical applications. This study aims to assess and compare the effectiveness of Large Language Models (LLMs) in answering neurophysiology questions in both English and Persian (Farsi) covering a range of topics and cognitive levels. Twenty questions covering four topics (general, sensory system, motor system, and integrative) and two cognitive levels (lower-order and higher-order) were posed to the LLMs. Physiologists scored the essay-style answers on a scale of 0-5 points. Statistical analysis compared the scores across different levels such as model, language, topic, and cognitive levels. Performing qualitative analysis identified reasoning gaps. In general, the models demonstrated good performance (mean score = 3.87/5), with no significant difference between language or cognitive levels. The performance was the strongest in the motor system (mean = 4.41) while the weakest was observed in integrative topics (mean = 3.35). Detailed qualitative analysis uncovered deficiencies in reasoning, discerning priorities, and knowledge integrating. This study offers valuable insights into LLMs' capabilities and limitations in the field of neurophysiology. The models demonstrate proficiency in general questions but face challenges in advanced reasoning and knowledge integration. Targeted training could address gaps in knowledge and causal reasoning. As LLMs evolve, rigorous domain-specific assessments will be crucial for evaluating advancements in their performance.


Asunto(s)
Lenguaje , Neurofisiología , Humanos , Neurofisiología/métodos , Procesamiento de Lenguaje Natural , Cognición/fisiología
11.
Clin Neurophysiol ; 156: 76-85, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37897906

RESUMEN

There are significant differences in duration and intensity of clinical neurophysiology specialty training within the countries of the Europe, Middle East and Africa Chapter of the International Federation of Clinical Neurophysiology. We address these differences by proposing recommendations which may facilitate harmonisation of training and education within the Chapter. They arose from two workshops whose recommendations were then circulated widely within national societies in the Chapter for feedback and for consensus. The recommendations are applicable to clinical neurophysiology as a medical monospecialty and/or as a subspecialty (usually of neurology). We make a number of recommendations on governance and regulation of training, on the requirements for competence and the numbers of various examinations and tests performed by trainees, some under supervision. We also recommend a modular approach considering primary and complementary modules. Primary modules are electroencephalography, electromyography, nerve conduction studies and evoked potentials, while complementary ones include sleep analysis, intraoperative monitoring, small fibre testing, peripheral nerve and muscle ultrasound, intracortical recordings, and analysis of movement disorders. It is recommended that national examinations should include a variety of techniques to assess knowledge and judgement, practical skills, teamwork, communication skills, as well as safety and quality. The aim of the suggested recommendations is to harmonize clinical neurophysiology training in the member societies throughout the Chapter. It is realised that this may mean that the numbers for competence are aspirational for some, though ways to mitigate this, for instance through supranational training centres, are also discussed.


Asunto(s)
Electroencefalografía , Neurofisiología , Humanos , Neurofisiología/métodos , Europa (Continente) , Medio Oriente , África
12.
Sci Adv ; 9(40): eadh0974, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37801492

RESUMEN

Recording and modulating neural activity in vivo enables investigations of the neurophysiology underlying behavior and disease. However, there is a dearth of translational tools for simultaneous recording and localized receptor-specific modulation. We address this limitation by translating multifunctional fiber neurotechnology previously only available for rodent studies to enable cortical and subcortical neural recording and modulation in macaques. We record single-neuron and broader oscillatory activity during intracranial GABA infusions in the premotor cortex and putamen. By applying state-space models to characterize changes in electrophysiology, we uncover that neural activity evoked by a working memory task is reshaped by even a modest local inhibition. The recordings provide detailed insight into the electrophysiological effect of neurotransmitter receptor modulation in both cortical and subcortical structures in an awake macaque. Our results demonstrate a first-time application of multifunctional fibers for causal studies of neuronal activity in behaving nonhuman primates and pave the way for clinical translation of fiber-based neurotechnology.


Asunto(s)
Neurofisiología , Vigilia , Animales , Neurofisiología/métodos , Macaca mulatta , Encéfalo/fisiología , Cognición
13.
J Neural Eng ; 20(4)2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37279730

RESUMEN

Peripheral neuroregeneration research and therapeutic options are expanding exponentially. With this expansion comes an increasing need to reliably evaluate and quantify nerve health. Valid and responsive measures that can serve as biomarkers of the nerve status are essential for both clinical and research purposes for diagnosis, longitudinal follow-up, and monitoring the impact of any intervention. Furthermore, such biomarkers can elucidate regeneration mechanisms and open new avenues for research. Without these measures, clinical decision-making falls short, and research becomes more costly, time-consuming, and sometimes infeasible. As a companion to Part 2, which is focused on non-invasive imaging, Part 1 of this two-part scoping review systematically identifies and critically examines many current and emerging neurophysiological techniques that have the potential to evaluate peripheral nerve health, particularly from the perspective of regenerative therapies and research.


Asunto(s)
Tejido Nervioso , Neurofisiología , Neurofisiología/métodos , Nervios Periféricos , Regeneración Nerviosa
14.
J Neurosci Methods ; 393: 109899, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37230259

RESUMEN

BACKGROUND: Neurophysiological studies with awake macaques typically require chronic cranial implants. Headpost and connector-chamber implants are used to allow head stabilization and to house connectors of chronically implanted electrodes, respectively. NEW METHOD: We present long-lasting, modular, cement-free headpost implants made of titanium that consist of two pieces: a baseplate and a top part. The baseplate is implanted first, covered by muscle and skin and allowed to heal and osseointegrate for several weeks to months. The percutaneous part is added in a second, brief surgery. Using a punch tool, a perfectly round skin cut is achieved providing a tight fit around the implant without any sutures. We describe the design, planning and production of manually bent and CNC-milled baseplates. We also developed a remote headposting technique that increases handling safety. Finally, we present a modular, footless connector chamber that is implanted in a similar two-step approach and achieves a minimized footprint on the skull. RESULTS: Twelve adult male macaques were successfully implanted with a headpost and one with the connector chamber. To date, we report no implant failure, great headpost stability and implant condition, in four cases even more than 9 years post-implantation. COMPARISON WITH EXISTING METHODS: The methods presented here build on several related previous methods and provide additional refinements to further increase implant longevity and handling safety. CONCLUSIONS: Optimized implants can remain stable and healthy for at least 9 years and thereby exceed the typical experiment durations. This minimizes implant-related complications and corrective surgeries and thereby significantly improves animal welfare.


Asunto(s)
Macaca , Cráneo , Animales , Masculino , Cráneo/cirugía , Cabeza , Neurofisiología/métodos , Electrodos Implantados , Titanio , Oseointegración
15.
Biol Psychiatry ; 93(8): 661-670, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36641365

RESUMEN

Computational psychiatry, a relatively new yet prolific field that aims to understand psychiatric disorders with formal theories about the brain, has seen tremendous growth in the past decade. Despite initial excitement, actual progress made by computational psychiatry seems stagnant. Meanwhile, understanding of the human brain has benefited tremendously from recent progress in intracranial neuroscience. Specifically, invasive techniques such as stereotactic electroencephalography, electrocorticography, and deep brain stimulation have provided a unique opportunity to precisely measure and causally modulate neurophysiological activity in the living human brain. In this review, we summarize progress and drawbacks in both computational psychiatry and invasive electrophysiology and propose that their combination presents a highly promising new direction-invasive computational psychiatry. The value of this approach is at least twofold. First, it advances our mechanistic understanding of the neural computations of mental states by providing a spatiotemporally precise depiction of neural activity that is traditionally unattainable using noninvasive techniques with human subjects. Second, it offers a direct and immediate way to modulate brain states through stimulation of algorithmically defined neural regions and circuits (i.e., algorithmic targeting), thus providing both causal and therapeutic insights. We then present depression as a use case where the combination of computational and invasive approaches has already shown initial success. We conclude by outlining future directions as a road map for this exciting new field as well as presenting cautions about issues such as ethical concerns and generalizability of findings.


Asunto(s)
Simulación por Computador , Neurociencias , Psiquiatría , Psiquiatría/instrumentación , Psiquiatría/métodos , Psiquiatría/tendencias , Humanos , Neurociencias/instrumentación , Neurociencias/métodos , Neurociencias/tendencias , Cráneo , Neurofisiología/instrumentación , Neurofisiología/métodos , Neurofisiología/tendencias , Depresión/fisiopatología , Depresión/terapia , Modelos Neurológicos , Electrofisiología/instrumentación , Algoritmos
16.
Front Neural Circuits ; 16: 940989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213207

RESUMEN

Animal-borne sensors that can record and transmit data ("biologgers") are becoming smaller and more capable at a rapid pace. Biologgers have provided enormous insight into the covert lives of many free-ranging animals by characterizing behavioral motifs, estimating energy expenditure, and tracking movement over vast distances, thereby serving both scientific and conservational endpoints. However, given that biologgers are usually attached externally, access to the brain and neurophysiological data has been largely unexplored outside of the laboratory, limiting our understanding of how the brain adapts to, interacts with, or addresses challenges of the natural world. For example, there are only a handful of studies in free-living animals examining the role of sleep, resulting in a wake-centric view of behavior despite the fact that sleep often encompasses a large portion of an animal's day and plays a vital role in maintaining homeostasis. The growing need to understand sleep from a mechanistic viewpoint and probe its function led us to design an implantable neurophysiology platform that can record brain activity and inertial data, while utilizing a wireless link to enable a suite of forward-looking capabilities. Here, we describe our design approach and demonstrate our device's capability in a standard laboratory rat as well as a captive fox squirrel. We also discuss the methodological and ethical implications of deploying this new class of device "into the wild" to fill outstanding knowledge gaps.


Asunto(s)
Neurofisiología , Sueño , Animales , Encéfalo/fisiología , Movimiento , Neurofisiología/métodos , Ratas
17.
J Vis Exp ; (185)2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35913135

RESUMEN

Ex vivo preparations enable the study of many neurophysiological processes in isolation from the rest of the body while preserving local tissue structure. This work describes the preparation of rat sciatic nerves for ex vivo neurophysiology, including buffer preparation, animal procedures, equipment setup and neurophysiological recording. This work provides an overview of the different types of experiments possible with this method. The outlined method aims to provide 6 h of stimulation and recording on extracted peripheral nerve tissue in tightly controlled conditions for optimal consistency in results. Results obtained using this method are A-fibre compound action potentials (CAP) with peak-to-peak amplitudes in the millivolt range over the entire duration of the experiment. CAP amplitudes and shapes are consistent and reliable, making them useful to test and compare new electrodes to existing models, or the effects of interventions on the tissue, such as the use of chemicals, surgical alterations, or neuromodulatory stimulation techniques. Both conventional commercially available cuff electrodes with platinum-iridium contacts and custom-made conductive elastomer electrodes were tested and gave similar results in terms of nerve stimulus strength-duration response.


Asunto(s)
Neurofisiología , Nervio Ciático , Potenciales de Acción/fisiología , Animales , Conductividad Eléctrica , Estimulación Eléctrica/métodos , Electrodos , Neurofisiología/métodos , Ratas , Nervio Ciático/fisiología
18.
Clin Neurophysiol ; 137: 132-141, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35313253

RESUMEN

OBJECTIVE: We collated all interventional clinical trials in amyotrophic lateral sclerosis (ALS), which utilised at least one neurophysiological technique as a primary or secondary outcome measure. By identifying the strengths and limitations of these studies, we aim to guide study design in future trials. METHODS: We conducted and reported this systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Eight databases were searched from inception. In total, 703 studies were retrieved for screening and eligibility assessment. RESULTS: Dating back to 1986, 32 eligible interventional clinical trials were identified, recruiting a median of 30 patients per completed trial. The most widely employed neurophysiological techniques were electromyography, motor unit number estimation (including motor unit number index), neurophysiological index and transcranial magnetic stimulation (including resting motor threshold and short-interval intracortical inhibition). Almost 40% of trials reported a positive outcome with respect to at least one neurophysiological measure. The interventions targeted either ion channels, immune mechanisms or neuronal metabolic pathways. CONCLUSIONS: Neurophysiology offers many promising biomarkers that can be utilised as outcome measures in interventional clinical trials in ALS. When selecting the most appropriate technique, key considerations include methodological standardisation, target engagement and logistical burden. SIGNIFICANCE: Future trial design in ALS would benefit from a standardised, updated and easily accessible repository of neurophysiological outcome measures.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/terapia , Electromiografía , Humanos , Neurofisiología/métodos , Evaluación de Resultado en la Atención de Salud , Estimulación Magnética Transcraneal
19.
Arq. neuropsiquiatr ; 80(2): 208-210, Feb. 2022. graf
Artículo en Inglés | LILACS | ID: biblio-1364371

RESUMEN

ABSTRACT In 1951, the physiologist George Duncan Dawson presented his work with the averaging of the signal in the evoked potentials (EPs), opening a new stage in the development of clinical neurophysiology. The authors present aspects of Professor Dawson's biography and a review of his work on the EPs and, mainly, the article reveals the new technique in detail that would allow the growth of the clinical application of the visual, auditory, and somatosensory EPs.


RESUMO Em 1951 o fisiologista George Duncan Dawson apresentou seu trabalho com a promediação de sinal nos potenciais evocados, abrindo uma nova etapa no desenvolvimento da neurofisiologia clínica. Os autores apresentam aspectos da biografia do professor Dawson e uma revisão de seus trabalhos sobre os potenciais evocados, principalmente do artigo que mostrava a nova técnica, que viria a permitir o crescimento da aplicação clínica dos potenciais evocados visual, auditivo e somatossensitivo.


Asunto(s)
Humanos , Historia del Siglo XX , Invenciones , Neurofisiología/métodos , Potenciales Evocados , Potenciales Evocados Somatosensoriales , Potenciales Evocados Visuales
20.
Nat Protoc ; 17(1): 15-35, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34992269

RESUMEN

The development of neural circuits involves wiring of neurons locally following their generation and migration, as well as establishing long-distance connections between brain regions. Studying these developmental processes in the human nervous system remains difficult because of limited access to tissue that can be maintained as functional over time in vitro. We have previously developed a method to convert human pluripotent stem cells into brain region-specific organoids that can be fused and integrated to form assembloids and study neuronal migration. In contrast to approaches that mix cell lineages in 2D cultures or engineer microchips, assembloids leverage self-organization to enable complex cell-cell interactions, circuit formation and maturation in long-term cultures. In this protocol, we describe approaches to model long-range neuronal connectivity in human brain assembloids. We present how to generate 3D spheroids resembling specific domains of the nervous system and then how to integrate them physically to allow axonal projections and synaptic assembly. In addition, we describe a series of assays including viral labeling and retrograde tracing, 3D live imaging of axon projection and optogenetics combined with calcium imaging and electrophysiological recordings to probe and manipulate the circuits in assembloids. The assays take 3-4 months to complete and require expertise in stem cell culture, imaging and electrophysiology. We anticipate that these approaches will be useful in deciphering human-specific aspects of neural circuit assembly and in modeling neurodevelopmental disorders with patient-derived cells.


Asunto(s)
Encéfalo/citología , Red Nerviosa , Neurofisiología/métodos , Organoides , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Humanos , Imagen Molecular , Red Nerviosa/citología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Optogenética , Técnicas de Cultivo de Órganos/métodos , Organoides/citología , Organoides/diagnóstico por imagen , Organoides/fisiología , Células Madre Pluripotentes/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...