Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(3): 102860, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596362

RESUMEN

Parasitic diseases result in considerable human morbidity and mortality. The continuous emergence and spread of new drug-resistant parasite strains is an obstacle to controlling and eliminating many parasitic diseases. Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous enzymes essential for protein synthesis. The design and development of diverse small molecule, drug-like inhibitors against parasite-encoded and expressed aaRSs have validated this enzyme family as druggable. In this work, we have compiled the progress to date towards establishing the druggability of aaRSs in terms of their biochemical characterization, validation as targets, inhibitor development, and structural interpretation from parasites responsible for malaria (Plasmodium), lymphatic filariasis (Brugia,Wuchereria bancrofti), giardiasis (Giardia), toxoplasmosis (Toxoplasma gondii), leishmaniasis (Leishmania), cryptosporidiosis (Cryptosporidium), and trypanosomiasis (Trypanosoma). This work thus provides a robust framework for the systematic dissection of aaRSs from these pathogens and will facilitate the cross-usage of potential inhibitors to jump-start anti-parasite drug development.


Asunto(s)
Aminoacil-ARNt Sintetasas , Desarrollo de Medicamentos , Parásitos , Enfermedades Parasitarias , Animales , Humanos , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Criptosporidiosis , Cryptosporidium/genética , Cryptosporidium/metabolismo , Eucariontes/clasificación , Eucariontes/metabolismo , Parásitos/clasificación , Parásitos/enzimología , Parásitos/fisiología , ARN de Transferencia , Enfermedades Parasitarias/tratamiento farmacológico
2.
Biomed Res Int ; 2021: 9913625, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660804

RESUMEN

Entamoeba histolytica (Eh) is a pathogenic eukaryote that often resides silently in humans under asymptomatic stages. Upon indeterminate stimulus, it develops into fulminant amoebiasis that causes severe hepatic abscesses with 50% mortality. This neglected tropical pathogen relies massively on membrane modulation to flourish and cause disease; these modulations range from the phagocytic mode for food acquisition to a complex trogocytosis mechanism for tissue invasion. Rab GTPases form the largest branch of the Ras-like small GTPases, with a diverse set of roles across the eukaryotic kingdom. Rab GTPases are vital for the orchestration of membrane transport and the secretory pathway responsible for transporting the pathogenic effectors, such as cysteine proteases (EhCPs) which help in tissue invasion. Rab GTPases thus play a crucial role in executing the cytolytic effect of E. histolytica. First, they interact with Gal/Nac lectins required for adhering to the host cells, and then, they assist in the secretion of EhCPs. Additionally, amoebic Rab GTPases are vital for encystation because substantial vesicular trafficking is required to create dormant amoebic cysts. These cysts are the infective agent and help to spread the disease. The absence of a "bonafide" vesicular transport machinery in Eh and the existence of a diverse repertoire of amoebic Rab GTPases (EhRab) hint at their contribution in supporting this atypical machinery. Here, we provide insights into a pseudoRab GTPase, EhRabX10, by performing physicochemical analysis, predictive 3D structure modeling, protein-protein interaction studies, and in silico molecular docking. Our group is the first one to classify EhRabX10 as a pseudoRab GTPase with four nonconserved G-motifs. It possesses the basic fold of the P-loop containing nucleotide hydrolases. Through this in silico study, we provide an introduction to the characterization of the atypical EhRabX10 and set the stage for future explorations into the mechanisms of nucleotide recognition, binding, and hydrolysis employed by the pseudoEhRab GTPase family.


Asunto(s)
Entamoeba histolytica/enzimología , Simulación del Acoplamiento Molecular , Parásitos/enzimología , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/metabolismo , Secuencia de Aminoácidos , Animales , Mapas de Interacción de Proteínas , Homología Estructural de Proteína
3.
Nat Commun ; 12(1): 343, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436639

RESUMEN

The inhibition of Plasmodium cytosolic phenylalanine tRNA-synthetase (cFRS) by a novel series of bicyclic azetidines has shown the potential to prevent malaria transmission, provide prophylaxis, and offer single-dose cure in animal models of malaria. To date, however, the molecular basis of Plasmodium cFRS inhibition by bicyclic azetidines has remained unknown. Here, we present structural and biochemical evidence that bicyclic azetidines are competitive inhibitors of L-Phe, one of three substrates required for the cFRS-catalyzed aminoacylation reaction that underpins protein synthesis in the parasite. Critically, our co-crystal structure of a PvcFRS-BRD1389 complex shows that the bicyclic azetidine ligand binds to two distinct sub-sites within the PvcFRS catalytic site. The ligand occupies the L-Phe site along with an auxiliary cavity and traverses past the ATP binding site. Given that BRD1389 recognition residues are conserved amongst apicomplexan FRSs, this work lays a structural framework for the development of drugs against both Plasmodium and related apicomplexans.


Asunto(s)
Azetidinas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Malaria/enzimología , Parásitos/enzimología , Fenilalanina-ARNt Ligasa/antagonistas & inhibidores , Fenilalanina-ARNt Ligasa/química , Plasmodium falciparum/enzimología , Secuencia de Aminoácidos , Aminoacilación , Animales , Dominio Catalítico , Citosol/enzimología , Resistencia a Medicamentos/genética , Modelos Moleculares , Mutación/genética , Fenilalanina/metabolismo , Fenilalanina-ARNt Ligasa/metabolismo , Plasmodium falciparum/efectos de los fármacos
4.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 32(5): 537-541, 2020 Jan 17.
Artículo en Chino | MEDLINE | ID: mdl-33185071

RESUMEN

Protein kinase A (PKA) is an important intracellular substance that regulates substance metabolism and biological functions, which exerts a wide range of biological effects through phosphorylation of specific serine/threonine residues in specific proteins. PKA plays an important role in the cAMP signaling pathway, and is involved in various life activities of parasites. Therefore, investigating the role of PKA in the life activities of parasites may provide insights into the development of novel anti-parasitic targets. The review mainly describes the structure and function of PKA and its role in life activities of parasites.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Parásitos/enzimología , Transducción de Señal , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosforilación
5.
Eur Rev Med Pharmacol Sci ; 24(13): 7412-7419, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32706080

RESUMEN

OBJECTIVE: Vorinostat is a drug used to treat cutaneous T cell lymphoma whose action mechanism is based on Histone Deacetylase inhibition. Histone Deacetylases are a family of enzymes that remove acetyl groups from histone and non-histone proteins that control many crucial processes, such as gene regulation, cell cycle progression, differentiation, and apoptosis. Histone Deacetylase homologues are also expressed in parasites of the genus Plasmodium, Leishmania, Cryptosporidium, Schistosoma, Entamoeba, and others. In this way, antiparasitic properties of Vorinostat have been explored. The aim of this review is to report the current state knowledge of Vorinostat as antiparasitic drug against Plasmodium, Leishmania, Cryptosporidium, Schistosoma and Entamoeba in order to support future investigation in this field. MATERIALS AND METHODS: The authors revised the recent and relevant literature concerning the topic and discussed advances and limitations of studies on Vorinostat as potential drug to treat human parasitic diseases. RESULTS: Vorinostat has been efficient in vitro and, in some cases, in vivo, against parasites that cause parasitic diseases, such as malaria, leishmaniasis, cryptosporidiosis, amoebiasis, and schistosomiasis. CONCLUSIONS: In vitro and in vivo models have demonstrated the antiparasitic activity of Vorinostat, however, the challenge is to assay its activity in animal models and to evaluate if Vorinostat is safe for humans as new alternative to treat human parasitic infections.


Asunto(s)
Antiparasitarios/uso terapéutico , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas , Parásitos/efectos de los fármacos , Enfermedades Parasitarias/tratamiento farmacológico , Proteínas Protozoarias/antagonistas & inhibidores , Vorinostat/uso terapéutico , Animales , Antiparasitarios/efectos adversos , Reposicionamiento de Medicamentos , Inhibidores de Histona Desacetilasas/efectos adversos , Histona Desacetilasas/metabolismo , Interacciones Huésped-Parásitos , Humanos , Parásitos/enzimología , Parásitos/patogenicidad , Enfermedades Parasitarias/diagnóstico , Enfermedades Parasitarias/parasitología , Proteínas Protozoarias/metabolismo , Vorinostat/efectos adversos
6.
Sci Rep ; 10(1): 11930, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681115

RESUMEN

In malaria parasites, male gametogenesis is a proliferative stage essential for parasite transmission to the mosquito vector. It is a rapid process involving three rounds of genome replication alternating with closed endomitoses, and assembly of axonemes to produce eight flagellated motile microgametes. Studies in Plasmodium berghei have highlighted tight regulation of gametogenesis by a network of kinases. The P. berghei MAPK homologue PbMAP-2 is dispensable for asexual development but important at the induction of axoneme motility. However, in P. falciparum, causing the most severe form of human malaria, PfMAP-2 was suggested to be essential for asexual proliferation indicating distinct functions for MAP-2 in these two Plasmodium species. We here show that PfMAP-2 is dispensable for asexual growth but important for male gametogenesis in vitro. Similar to PbMAP-2, PfMAP-2 is required for initiating axonemal beating but not for prior DNA replication or axoneme formation. In addition, single and double null mutants of PfMAP-2 and the second P. falciparum MAPK homologue PfMAP-1 show no defect in asexual proliferation, sexual commitment or gametocytogenesis. Our results suggest that MAPK activity plays no major role in the biology of both asexual and sexual blood stage parasites up until the point of male gametogenesis.


Asunto(s)
Gametogénesis , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Parásitos/enzimología , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Animales , Axonema/metabolismo , Masculino , Fenotipo , Reproducción Asexuada , Transcripción Genética
7.
Trends Parasitol ; 36(4): 382-392, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32191852

RESUMEN

Apicomplexan parasites harbor chimeric proteins embodying P4-type ATPase and guanylate cyclase domains. Such proteins - serving as the actuator of cGMP signaling in this group of important pathogens - are indeed unusual in terms of their sheer size, modus operandi, and evolutionary repurposing. Much like the mythological Sphinx, a human-lion chimeric creature that posed challenging riddles, the P4-type ATPase-guanylate cyclase chimeras present both structural and functional conundrums. Here we review the function, topology, mechanism, and intramolecular coordination of the alveolate-specific chimeras in apicomplexan parasites. The steep technological challenge to understand these molecular Sphinxes will surely keep many interdisciplinary researchers busy in the next decades.


Asunto(s)
Adenosina Trifosfatasas , Apicomplexa/enzimología , Apicomplexa/genética , Guanilato Ciclasa , Interacciones Huésped-Parásitos/fisiología , Parásitos , Proteínas Protozoarias , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Parásitos/enzimología , Parásitos/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Transducción de Señal/genética
8.
Int J Biol Macromol ; 142: 125-141, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31521661

RESUMEN

Understanding and elucidating the mechanism of host-pathogen interactions are the major area of interest among the Parasitologists all around the globe. Starting from the origin on mother earth parasites have searched for successful strategies to invade their respective host for the sake of survivability and eventually succeeded to manage in the unfriendly environment inside the host's body. Parasite-generated antioxidants are potent enough to combat the oxidative challenges inside the host body and within its own as well. Antioxidant enzymes are tremendously important as they are directly related to the survival of the parasites. The thiol-based antioxidant enzymes (glutathione reductase and thioredoxin reductase) have dragged much attention of the researchers to date. In this regard, among the thiol-based antioxidants, particularly the Thioredoxin reductase (TrxR), is known to be present in a number of parasitic organisms have pulled the researchers. Therefore, selective targeting of TrxR can emerge as a novel capital for developing suitable adulticidal candidate for treating filariasis and other helminth infections. This review tries to assemble the existing knowledge of the parasitic TrxR and how these can be utilized as a druggable target in cases of filariasis and other helminth infections has been discussed.


Asunto(s)
Antioxidantes/farmacología , Filariasis/tratamiento farmacológico , Enfermedades Parasitarias/tratamiento farmacológico , Reductasa de Tiorredoxina-Disulfuro/efectos de los fármacos , Animales , Antioxidantes/química , Glutatión Reductasa/efectos de los fármacos , Helmintos/efectos de los fármacos , Helmintos/enzimología , Humanos , Oxidación-Reducción , Estrés Oxidativo , Parásitos/efectos de los fármacos , Parásitos/enzimología , Especificidad por Sustrato , Compuestos de Sulfhidrilo , Reductasa de Tiorredoxina-Disulfuro/química , Tiorredoxinas/farmacología
9.
Sci Transl Med ; 11(521)2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31801884

RESUMEN

Resistance has developed in Plasmodium malaria parasites to every antimalarial drug in clinical use, prompting the need to characterize the pathways mediating resistance. Here, we report a framework for assessing development of resistance of Plasmodium falciparum to new antimalarial therapeutics. We investigated development of resistance by P. falciparum to the dihydroorotate dehydrogenase (DHODH) inhibitors DSM265 and DSM267 in tissue culture and in a mouse model of P. falciparum infection. We found that resistance to these drugs arose rapidly both in vitro and in vivo. We identified 13 point mutations mediating resistance in the parasite DHODH in vitro that overlapped with the DHODH mutations that arose in the mouse infection model. Mutations in DHODH conferred increased resistance (ranging from 2- to ~400-fold) to DHODH inhibitors in P. falciparum in vitro and in vivo. We further demonstrated that the drug-resistant parasites carrying the C276Y mutation had mitochondrial energetics comparable to the wild-type parasite and also retained their fitness in competitive growth experiments. Our data suggest that in vitro selection of drug-resistant P. falciparum can predict development of resistance in a mouse model of malaria infection.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Parásitos/enzimología , Animales , Dihidroorotato Deshidrogenasa , Modelos Animales de Enfermedad , Resistencia a Medicamentos/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Femenino , Ratones SCID , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Parásitos/efectos de los fármacos , Fenotipo , Plasmodium falciparum , Mutación Puntual/genética , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Triazoles/química , Triazoles/farmacología , Triazoles/uso terapéutico
10.
BMC Evol Biol ; 19(1): 146, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324143

RESUMEN

BACKGROUND: Antioxidative enzymes contribute to a parasite's ability to counteract the host's intracellular killing mechanisms. The facultative intracellular oyster parasite, Perkinsus marinus, a sister taxon to dinoflagellates and apicomplexans, is responsible for mortalities of oysters along the Atlantic coast of North America. Parasite trophozoites enter molluscan hemocytes by subverting the phagocytic response while inhibiting the typical respiratory burst. Because P. marinus lacks catalase, the mechanism(s) by which the parasite evade the toxic effects of hydrogen peroxide had remained unclear. We previously found that P. marinus displays an ascorbate-dependent peroxidase (APX) activity typical of photosynthetic eukaryotes. Like other alveolates, the evolutionary history of P. marinus includes multiple endosymbiotic events. The discovery of APX in P. marinus raised the questions: From which ancestral lineage is this APX derived, and what role does it play in the parasite's life history? RESULTS: Purification of P. marinus cytosolic APX activity identified a 32 kDa protein. Amplification of parasite cDNA with oligonucleotides corresponding to peptides of the purified protein revealed two putative APX-encoding genes, designated PmAPX1 and PmAPX2. The predicted proteins are 93% identical, and PmAPX2 carries a 30 amino acid N-terminal extension relative to PmAPX1. The P. marinus APX proteins are similar to predicted APX proteins of dinoflagellates, and they more closely resemble chloroplastic than cytosolic APX enzymes of plants. Immunofluorescence for PmAPX1 and PmAPX2 shows that PmAPX1 is cytoplasmic, while PmAPX2 is localized to the periphery of the central vacuole. Three-dimensional modeling of the predicted proteins shows pronounced differences in surface charge of PmAPX1 and PmAPX2 in the vicinity of the aperture that provides access to the heme and active site. CONCLUSIONS: PmAPX1 and PmAPX2 phylogenetic analysis suggests that they are derived from a plant ancestor. Plant ancestry is further supported by the presence of ascorbate synthesis genes in the P. marinus genome that are similar to those in plants. The localizations and 3D structures of the two APX isoforms suggest that APX fulfills multiple functions in P. marinus within two compartments. The possible role of APX in free-living and parasitic stages of the life history of P. marinus is discussed.


Asunto(s)
Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Catalasa/metabolismo , Parásitos/enzimología , Fotosíntesis , Secuencia de Aminoácidos , Animales , Ascorbato Peroxidasas/química , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/aislamiento & purificación , Peróxido de Hidrógeno/metabolismo , Cinética , Modelos Moleculares , Parásitos/genética , Filogenia , Homología Estructural de Proteína , Fracciones Subcelulares/metabolismo
11.
Curr Issues Mol Biol ; 31: 45-62, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31165719

RESUMEN

Topoisomerases are a group of enzymes that resolve DNA topological problems and aid in different DNA transaction processes viz. replication, transcription, recombination, etc. inside cells. These proteins accomplish their feats by steps of DNA strand(s) scission, strand passage or rotation and subsequent rejoining activities. Topoisomerases of kinetoplastid parasites have been extensively studied because of their unusual features. The unique presence of heterodimeric Type IB topoisomerase and prokaryotic 'TopA homologue' Type IA topoisomerase in kinetoplastids still generates immense interest among scientists. Moreover, because of their structural dissimilarity with the host enzymes, topoisomerases of kinetoplastid parasites are attractive targets for chemotherapeutic interventions to kill these deadly parasites. In this review, we summarize historical perspectives and recent advances in kinetoplastid topoisomerase research and how these proteins are exploited for drug targeting.


Asunto(s)
ADN-Topoisomerasas/fisiología , Kinetoplastida/enzimología , Parásitos/enzimología , Animales , ADN-Topoisomerasas/química , Sistemas de Liberación de Medicamentos/métodos , Infecciones por Euglenozoos/tratamiento farmacológico , Infecciones por Euglenozoos/parasitología , Interacciones Huésped-Parásitos/fisiología , Humanos , Kinetoplastida/genética , Parásitos/genética , Conformación Proteica , Multimerización de Proteína/fisiología , Especificidad de la Especie
12.
PLoS Biol ; 17(5): e3000264, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31075098

RESUMEN

Cyclic AMP (cAMP) is an important signalling molecule across evolution, but its role in malaria parasites is poorly understood. We have investigated the role of cAMP in asexual blood stage development of Plasmodium falciparum through conditional disruption of adenylyl cyclase beta (ACß) and its downstream effector, cAMP-dependent protein kinase (PKA). We show that both production of cAMP and activity of PKA are critical for erythrocyte invasion, whilst key developmental steps that precede invasion still take place in the absence of cAMP-dependent signalling. We also show that another parasite protein with putative cyclic nucleotide binding sites, Plasmodium falciparum EPAC (PfEpac), does not play an essential role in blood stages. We identify and quantify numerous sites, phosphorylation of which is dependent on cAMP signalling, and we provide mechanistic insight as to how cAMP-dependent phosphorylation of the cytoplasmic domain of the essential invasion adhesin apical membrane antigen 1 (AMA1) regulates erythrocyte invasion.


Asunto(s)
AMP Cíclico/metabolismo , Interacciones Huésped-Parásitos , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Parásitos/metabolismo , Transducción de Señal , Adenilil Ciclasas/metabolismo , Animales , Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Parásitos/enzimología , Parásitos/crecimiento & desarrollo , Parásitos/ultraestructura , Fosfoproteínas/metabolismo , Fosforilación , Fosfoserina/metabolismo , Plasmodium falciparum/enzimología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/patogenicidad , Plasmodium falciparum/ultraestructura , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
13.
IUBMB Life ; 71(6): 749-759, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30941842

RESUMEN

Previous decades have seen an explosion in our understanding of protein kinase function in human health and disease. Hundreds of unique kinase structures have been solved, allowing us to create generalized rules for catalysis, assign roles of communities within the catalytic core, and develop specific drugs for targeting various pathways. Although our understanding of intracellular kinases has developed at a fast rate, our exploration into extracellular kinases has just begun. In this review, we will cover the secreted protein kinase families found in humans, bacteria, and parasites. © 2019 IUBMB Life, 71(6):749-759, 2019.


Asunto(s)
Transporte Biológico/genética , Fosforilación/genética , Proteínas Quinasas/genética , Animales , Bacterias/enzimología , Humanos , Mamíferos/genética , Parásitos/enzimología , Proteínas Quinasas/clasificación , Especificidad por Sustrato
14.
Curr Top Microbiol Immunol ; 420: 155-174, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30105424

RESUMEN

Parasites exist within most ecological niches, often transitioning through biologically and chemically complex host environments over the course of their parasitic life cycles. While the development of technologies for genetic engineering has revolutionised the field of functional genomics, parasites have historically been less amenable to such modification. In light of this, parasitologists have often been at the forefront of adopting new small-molecule technologies, repurposing drugs into biological tools and probes. Over the last decade, activity-based protein profiling (ABPP) has evolved into a powerful and versatile chemical proteomic platform for characterising the function of enzymes. Central to ABPP is the use of activity-based probes (ABPs), which covalently modify the active sites of enzyme classes ranging from serine hydrolases to glycosidases. The application of ABPP to cellular systems has contributed vastly to our knowledge on the fundamental biology of a diverse range of organisms and has facilitated the identification of potential drug targets in many pathogens. In this chapter, we provide a comprehensive review on the different forms of ABPP that have been successfully applied to parasite systems, and highlight key biological insights that have been enabled through their application.


Asunto(s)
Parásitos/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Proteómica/métodos , Infecciones por Protozoos/metabolismo , Infecciones por Protozoos/parasitología , Animales , Dominio Catalítico , Humanos , Parásitos/enzimología , Proteoma/química , Infecciones por Protozoos/enzimología
15.
Int J Mol Sci ; 19(12)2018 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-30544836

RESUMEN

Proteins associated to the PI3K/AKT/mTOR signaling pathway are widely used targets for cancer treatment, and in recent years they have also been evaluated as putative targets in trypanosomatids parasites, such as Trypanosoma cruzi. Here, we performed a virtual screening approach to find candidates that can bind regions on or near the Pleckstrin homology domain of an AKT-like protein in T. cruzi. The compounds were also evaluated in vitro. The in silico and experimental results allowed us to identify a set of compounds that can potentially alter the intracellular signaling pathway through the AKT-like kinase of the parasite; among them, a derivative of the pyrazolopyridine nucleus with an IC50 of 14.25 ± 1.00 µM against amastigotes of T. cruzi. In addition, we built a protein⁻protein interaction network of T. cruzi to understand the role of the AKT-like protein in the parasite, and look for additional proteins that can be postulated as possible novel molecular targets for the rational design of compounds against T. cruzi.


Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Trypanosoma cruzi/enzimología , Regulación Alostérica/efectos de los fármacos , Animales , Ligandos , Modelos Moleculares , Parásitos/enzimología , Mapas de Interacción de Proteínas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/toxicidad , Proteínas Protozoarias/metabolismo , Factores de Riesgo
16.
PLoS Biol ; 16(9): e2005642, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30208022

RESUMEN

The phylum Apicomplexa comprises a group of obligate intracellular parasites that alternate between intracellular replicating stages and actively motile extracellular forms that move through tissue. Parasite cytosolic Ca2+ signalling activates motility, but how this is switched off after invasion is complete to allow for replication to begin is not understood. Here, we show that the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A catalytic subunit 1 (PKAc1) of Toxoplasma is responsible for suppression of Ca2+ signalling upon host cell invasion. We demonstrate that PKAc1 is sequestered to the parasite periphery by dual acylation of PKA regulatory subunit 1 (PKAr1). Upon genetic depletion of PKAc1 we show that newly invaded parasites exit host cells shortly thereafter, in a perforin-like protein 1 (PLP-1)-dependent fashion. Furthermore, we demonstrate that loss of PKAc1 prevents rapid down-regulation of cytosolic [Ca2+] levels shortly after invasion. We also provide evidence that loss of PKAc1 sensitises parasites to cyclic GMP (cGMP)-induced Ca2+ signalling, thus demonstrating a functional link between cAMP and these other signalling modalities. Together, this work provides a new paradigm in understanding how Toxoplasma and related apicomplexan parasites regulate infectivity.


Asunto(s)
Señalización del Calcio , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Toxoplasma/enzimología , Acilación , Animales , Calcio/metabolismo , AMP Cíclico/metabolismo , Citosol/metabolismo , Fibroblastos/parasitología , Interacciones Huésped-Parásitos , Humanos , Estadios del Ciclo de Vida , Ratones , Parásitos/enzimología , Parásitos/crecimiento & desarrollo , Subunidades de Proteína/metabolismo , Proteínas Protozoarias , Transducción de Señal , Toxoplasma/crecimiento & desarrollo
17.
Int J Mol Sci ; 19(8)2018 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115897

RESUMEN

To further investigate the importance of Schistosoma japonicum acetylcholinesterase (SjAChE) in cholinergic signaling for parasite growth and development, we used RNA interference (RNAi) to knock-down its expression in adults and eggs in vitro. This resulted in its reduced transcription but also expression of other important genes involved both in cholinergic signaling and glucose uptake were impacted substantially. Significant decreases in AChE protein expression, AChE enzymatic activity, and glucose uptake were observed in the SjAChE-knockdown parasites compared with luciferase controls. In vaccine/challenge experiments, we found that immunization of mice with recombinant SjAChE (rSjAChE) expressed in Escherichia coli elicited reductions in male worm numbers (33%), liver granuloma density (41%), and reduced numbers of mature intestinal eggs (73%) in the vaccinated group compared with the control group. These results indicate AChE plays an important role in the metabolism of male worms, and impacts indirectly on female fecundity leading to increased numbers of immature eggs being released and reduced sizes of liver granulomas. Furthermore, cytokine analysis showed that immunization of mice with rSjAChE elicited a predominantly Th1-type immune response characterized by increased production of IFNγ in splenic CD4⁺ T cells of vaccinated mice. The study confirms the potential of SjAChE as a vaccine/drug candidate against zoonotic schistosomiasis japonica.


Asunto(s)
Acetilcolinesterasa/metabolismo , Parásitos/enzimología , Parásitos/crecimiento & desarrollo , Schistosoma japonicum/enzimología , Schistosoma japonicum/crecimiento & desarrollo , Animales , Formación de Anticuerpos , Citocinas/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Hígado/parasitología , Hígado/patología , Ratones Endogámicos CBA , Óvulo/metabolismo , Parásitos/genética , Interferencia de ARN , ARN Bicatenario/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Schistosoma japonicum/genética , Esquistosomiasis Japónica/inmunología , Esquistosomiasis Japónica/parasitología , Bazo/metabolismo , Transcripción Genética , Resultado del Tratamiento , Vacunación , Vacunas/inmunología
20.
PLoS Negl Trop Dis ; 12(8): e0005840, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30138310

RESUMEN

We briefly review cysteine proteases (orthologs of mammalian cathepsins B, L, F, and C) that are expressed in flatworm and nematode parasites. Emphasis is placed on enzyme activities that have been functionally characterized, are associated with the parasite gut, and putatively contribute to degrading host proteins to absorbable nutrients [1-4]. Often, gut proteases are expressed as multigene families, as is the case with Fasciola [5] and Haemonchus [6], presumably expanding the range of substrates that can be degraded, not least during parasite migration through host tissues [5]. The application of the free-living planarian and Caenorhabditis elegans as investigative models for parasite cysteine proteases is discussed. Finally, because of their central nutritive contribution, targeting the component gut proteases with small-molecule chemical inhibitors and understanding their utility as vaccine candidates are active areas of research [7].


Asunto(s)
Proteasas de Cisteína/metabolismo , Digestión/fisiología , Helmintos/enzimología , Parásitos/enzimología , Animales , Helmintos/metabolismo , Parásitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...