Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 219-224, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650130

RESUMEN

Mitochondrial DNA damage in retinal ganglion cells (RGCs) may be closely related to lesions of glaucoma. RGCs were cultured with different concentrations of glucose and grouped into 3 groups, namely normal control (NC) group, Low-Glu group, and High-Glu group. Cell viability was measured with cell counting kit-8, and cell apoptosis was measured using flow cytometry. The DNA damage was measured with comet assay, and the morphological changes of damaged mitochondria in RGCs were observed using TEM. Western blot analyzed the expression of MRE11, RAD50, and NBS1 protein. Cell viability of RGCs in Low-Glu and High-Glu groups were lower than that of NC group in 48 and 96 h. The cell apoptosis in NC group was 4.9%, the Low-Glu group was 12.2% and High-Glu group was 24.4%. The comet imaging showed that NC cells did not have tailings, but the low-Glu and high-Glu group cells had tailings, indicating that the DNA of RGCs had been damaged. TEM, mitochondrial membrane potential, ROS, mitochondrial oxygen consumption, and ATP content detection results showed that RGCs cultured with high glucose occurred mitochondrial morphology changes and dysfunction. MRE11, RAD50, and NBS1 protein expression associated with DNA damage repair pathway in High-Glu group declined compared with Low-Glu group. Mitochondrial DNA damage caused by high glucose will result in apoptosis of retinal ganglion cells in glaucoma.


Asunto(s)
Apoptosis , Supervivencia Celular , Daño del ADN , ADN Mitocondrial , Glucosa , Potencial de la Membrana Mitocondrial , Especies Reactivas de Oxígeno , Células Ganglionares de la Retina , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Glucosa/toxicidad , Glucosa/farmacología , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Adenosina Trifosfato/metabolismo , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ácido Anhídrido Hidrolasas/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ensayo Cometa , Animales
2.
Cell Rep ; 43(4): 114024, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38581679

RESUMEN

Mouse embryonic stem cells (mESCs) in the primed pluripotency state, which resembles the post-implantation epiblast, can be de-differentiated in culture to a naive state that resembles the pre-implantation inner cell mass. We report that primed-to-naive mESC transition entails a significant slowdown of DNA replication forks and the compensatory activation of dormant origins. Using isolation of proteins on nascent DNA coupled to mass spectrometry, we identify key changes in replisome composition that are responsible for these effects. Naive mESC forks are enriched in MRE11 nuclease and other DNA repair proteins. MRE11 is recruited to newly synthesized DNA in response to transcription-replication conflicts, and its inhibition or genetic downregulation in naive mESCs is sufficient to restore the fork rate of primed cells. Transcriptomic analyses indicate that MRE11 exonuclease activity is required for the complete primed-to-naive mESC transition, demonstrating a direct link between DNA replication dynamics and the mESC de-differentiation process.


Asunto(s)
Replicación del ADN , Proteína Homóloga de MRE11 , Animales , Ratones , Proteína Homóloga de MRE11/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Desdiferenciación Celular , Proteínas de Unión al ADN/metabolismo
3.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(2): 232-241, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38686720

RESUMEN

DNA is susceptible to various factors in vitro and in vivo and experience different forms of damage,among which double-strand break(DSB)is a deleterious form.To maintain the stability of genetic information,organisms have developed multiple mechanisms to repair DNA damage.Among these mechanisms,homologous recombination(HR)is praised for the high accuracy.The MRE11-RAD50-NBS1(MRN)complex plays an important role in HR and is conserved across different species.The knowledge on the MRN complex mainly came from the previous studies in Saccharomyces cerevisiae and Caenorhabditis elegans,while studies in the last decades have revealed the role of mammalian MRN complex in DNA repair of higher animals.In this review,we first introduces the MRN complex regarding the composition,structure,and roles in HR.In addition,we discuss the human diseases such as ataxia-telangiectasia-like disorder,Nijmegen breakage syndrome,and Nijmegen breakage syndrome-like disorder that are caused by dysfunctions in the MRN complex.Furthermore,we summarize the mouse models established to study the clinical phenotypes of the above diseases.


Asunto(s)
Ácido Anhídrido Hidrolasas , Proteínas de Ciclo Celular , Enzimas Reparadoras del ADN , Proteínas de Unión al ADN , Proteína Homóloga de MRE11 , Proteínas Nucleares , Humanos , Ácido Anhídrido Hidrolasas/metabolismo , Ácido Anhídrido Hidrolasas/genética , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Animales , Reparación del ADN , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Síndrome de Nijmegen/metabolismo , Síndrome de Nijmegen/genética
4.
Nat Commun ; 15(1): 2132, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459011

RESUMEN

Growth factor receptor-bound protein 2 (GRB2) is a cytoplasmic adapter for tyrosine kinase signaling and a nuclear adapter for homology-directed-DNA repair. Here we find nuclear GRB2 protects DNA at stalled replication forks from MRE11-mediated degradation in the BRCA2 replication fork protection axis. Mechanistically, GRB2 binds and inhibits RAD51 ATPase activity to stabilize RAD51 on stalled replication forks. In GRB2-depleted cells, PARP inhibitor (PARPi) treatment releases DNA fragments from stalled forks into the cytoplasm that activate the cGAS-STING pathway to trigger pro-inflammatory cytokine production. Moreover in a syngeneic mouse metastatic ovarian cancer model, GRB2 depletion in the context of PARPi treatment reduced tumor burden and enabled high survival consistent with immune suppression of cancer growth. Collective findings unveil GRB2 function and mechanism for fork protection in the BRCA2-RAD51-MRE11 axis and suggest GRB2 as a potential therapeutic target and an enabling predictive biomarker for patient selection for PARPi and immunotherapy combination.


Asunto(s)
Replicación del ADN , Neoplasias , Animales , Humanos , Ratones , ADN , Inestabilidad Genómica , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Inmunidad Innata , Proteína Homóloga de MRE11/metabolismo , Neoplasias/genética , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
5.
Nucleic Acids Res ; 52(7): 3722-3739, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38321948

RESUMEN

Telomeres protect chromosome ends and are distinguished from DNA double-strand breaks (DSBs) by means of a specialized chromatin composed of DNA repeats bound by a multiprotein complex called shelterin. We investigated the role of telomere-associated proteins in establishing end-protection by studying viable mutants lacking these proteins. Mutants were studied using a Schizosaccharomyces pombe model system that induces cutting of a 'proto-telomere' bearing telomere repeats to rapidly form a new stable chromosomal end, in contrast to the rapid degradation of a control DSB. Cells lacking the telomere-associated proteins Taz1, Rap1, Poz1 or Rif1 formed a chromosome end that was stable. Surprisingly, cells lacking Ccq1, or impaired for recruiting Ccq1 to the telomere, converted the cleaved proto-telomere to a rapidly degraded DSB. Ccq1 recruits telomerase, establishes heterochromatin and affects DNA damage checkpoint activation; however, these functions were separable from protection of the new telomere by Ccq1. In cells lacking Ccq1, telomere degradation was greatly reduced by eliminating the nuclease activity of Mre11 (part of the Mre11-Rad50-Nbs1/Xrs2 DSB processing complex), and higher amounts of nuclease-deficient Mre11 associated with the new telomere. These results demonstrate a novel function for S. pombe Ccq1 to effect end-protection by restraining Mre11-dependent degradation of the DNA end.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Unión a Telómeros , Telómero , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/genética , Telómero/metabolismo , Telómero/genética , Complejo Shelterina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Telomerasa/metabolismo , Telomerasa/genética , Mutación , Proteína Homóloga de MRE11/metabolismo , Proteína Homóloga de MRE11/genética
6.
Nucleic Acids Res ; 52(6): 3146-3163, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38349040

RESUMEN

Sensing and processing of DNA double-strand breaks (DSBs) are vital to genome stability. DSBs are primarily detected by the ATM checkpoint pathway, where the Mre11-Rad50-Nbs1 (MRN) complex serves as the DSB sensor. Subsequent DSB end resection activates the ATR checkpoint pathway, where replication protein A, MRN, and the Rad9-Hus1-Rad1 (9-1-1) clamp serve as the DNA structure sensors. ATR activation depends also on Topbp1, which is loaded onto DNA through multiple mechanisms. While different DNA structures elicit specific ATR-activation subpathways, the regulation and mechanisms of the ATR-activation subpathways are not fully understood. Using DNA substrates that mimic extensively resected DSBs, we show here that MRN and 9-1-1 redundantly stimulate Dna2-dependent long-range end resection and ATR activation in Xenopus egg extracts. MRN serves as the loading platform for ATM, which, in turn, stimulates Dna2- and Topbp1-loading. Nevertheless, MRN promotes Dna2-mediated end processing largely independently of ATM. 9-1-1 is dispensable for bulk Dna2 loading, and Topbp1 loading is interdependent with 9-1-1. ATR facilitates Mre11 phosphorylation and ATM dissociation. These data uncover that long-range end resection activates two redundant pathways that facilitate ATR checkpoint signaling and DNA processing in a vertebrate system.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN , Proteínas de Xenopus , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/genética , ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Xenopus laevis/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Activación Enzimática/genética , Fosforilación/genética
7.
EMBO J ; 43(6): 1043-1064, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360996

RESUMEN

Eukaryotic cells rely on several mechanisms to ensure that the genome is duplicated precisely once in each cell division cycle, preventing DNA over-replication and genomic instability. Most of these mechanisms limit the activity of origin licensing proteins to prevent the reactivation of origins that have already been used. Here, we have investigated whether additional controls restrict the extension of re-replicated DNA in the event of origin re-activation. In a genetic screening in cells forced to re-activate origins, we found that re-replication is limited by RAD51 and enhanced by FBH1, a RAD51 antagonist. In the presence of chromatin-bound RAD51, forks stemming from re-fired origins are slowed down, leading to frequent events of fork reversal. Eventual re-initiation of DNA synthesis mediated by PRIMPOL creates ssDNA gaps that facilitate the partial elimination of re-duplicated DNA by MRE11 exonuclease. In the absence of RAD51, these controls are abrogated and re-replication forks progress much longer than in normal conditions. Our study uncovers a safeguard mechanism to protect genome stability in the event of origin reactivation.


Asunto(s)
Proteínas de Unión al ADN , Recombinasa Rad51 , ADN/genética , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteína Homóloga de MRE11/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Humanos
8.
Nature ; 625(7995): 585-592, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200309

RESUMEN

Oncogene-induced replication stress generates endogenous DNA damage that activates cGAS-STING-mediated signalling and tumour suppression1-3. However, the precise mechanism of cGAS activation by endogenous DNA damage remains enigmatic, particularly given that high-affinity histone acidic patch (AP) binding constitutively inhibits cGAS by sterically hindering its activation by double-stranded DNA (dsDNA)4-10. Here we report that the DNA double-strand break sensor MRE11 suppresses mammary tumorigenesis through a pivotal role in regulating cGAS activation. We demonstrate that binding of the MRE11-RAD50-NBN complex to nucleosome fragments is necessary to displace cGAS from acidic-patch-mediated sequestration, which enables its mobilization and activation by dsDNA. MRE11 is therefore essential for cGAS activation in response to oncogenic stress, cytosolic dsDNA and ionizing radiation. Furthermore, MRE11-dependent cGAS activation promotes ZBP1-RIPK3-MLKL-mediated necroptosis, which is essential to suppress oncogenic proliferation and breast tumorigenesis. Notably, downregulation of ZBP1 in human triple-negative breast cancer is associated with increased genome instability, immune suppression and poor patient prognosis. These findings establish MRE11 as a crucial mediator that links DNA damage and cGAS activation, resulting in tumour suppression through ZBP1-dependent necroptosis.


Asunto(s)
Transformación Celular Neoplásica , Proteína Homóloga de MRE11 , Nucleosomas , Nucleotidiltransferasas , Humanos , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Daño del ADN , Proteína Homóloga de MRE11/metabolismo , Necroptosis , Nucleosomas/metabolismo , Nucleotidiltransferasas/metabolismo , Radiación Ionizante , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Inestabilidad Genómica
9.
Cell ; 187(2): 294-311.e21, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38128537

RESUMEN

Lactylation is a lactate-induced post-translational modification best known for its roles in epigenetic regulation. Herein, we demonstrate that MRE11, a crucial homologous recombination (HR) protein, is lactylated at K673 by the CBP acetyltransferase in response to DNA damage and dependent on ATM phosphorylation of the latter. MRE11 lactylation promotes its binding to DNA, facilitating DNA end resection and HR. Inhibition of CBP or LDH downregulated MRE11 lactylation, impaired HR, and enhanced chemosensitivity of tumor cells in patient-derived xenograft and organoid models. A cell-penetrating peptide that specifically blocks MRE11 lactylation inhibited HR and sensitized cancer cells to cisplatin and PARPi. These findings unveil lactylation as a key regulator of HR, providing fresh insights into the ways in which cellular metabolism is linked to DSB repair. They also imply that the Warburg effect can confer chemoresistance through enhancing HR and suggest a potential therapeutic strategy of targeting MRE11 lactylation to mitigate the effects.


Asunto(s)
Proteínas de Unión al ADN , Proteína Homóloga de MRE11 , Reparación del ADN por Recombinación , Humanos , ADN , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Recombinación Homóloga , Proteína Homóloga de MRE11/metabolismo , Ácido Láctico/metabolismo
10.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119654, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38123020

RESUMEN

The genome is frequently targeted by genotoxic agents, resulting in the formation of DNA scars. However, cells employ diverse repair mechanisms to restore DNA integrity. Among these processes, the Mre11-Rad50-Nbs1 complex detects double-strand breaks (DSBs) and recruits DNA damage response proteins such as ataxia-telangiectasia-mutated (ATM) kinase to DNA damage sites. ATM phosphorylates the transactivation domain (TAD) of the p53 tumor suppressor, which in turn regulates DNA repair, growth arrest, apoptosis, and senescence following DNA damage. The disordered glycine-arginine-rich (GAR) domain of double-strand break protein MRE11 (MRE11GAR) and its methylation are important for DSB repair, and localization to Promyelocytic leukemia nuclear bodies (PML-NBs). There is preliminary evidence that p53, PML protein, and MRE11 might co-localize and interact at DSB sites. To uncover the molecular details of these interactions, we aimed to identify the domains mediating the p53-MRE11 interaction and to elucidate the regulation of the p53-MRE11 interaction by post-translational modifications (PTMs) through a combination of biophysical techniques. We discovered that, in vitro, p53 binds directly to MRE11GAR mainly through p53TAD2 and that phosphorylation further enhances this interaction. Furthermore, we found that MRE11GAR methylation still allows for binding to p53. Overall, we demonstrated that p53 and MRE11 interaction is facilitated by disordered regions. We provide for the first time insight into the molecular details of the p53-MRE11 complex formation and elucidate potential regulatory mechanisms that will promote our understanding of the DNA damage response. Our findings suggest that PTMs regulate the p53-MRE11 interaction and subsequently their colocalization to PML-NBs upon DNA damage.


Asunto(s)
Proteínas de Ciclo Celular , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/genética , Proteínas de Ciclo Celular/metabolismo , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN
11.
J Clin Immunol ; 43(8): 2136-2145, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37794136

RESUMEN

PURPOSE: The MRE11-RAD50-NBN (MRN) complex plays a key role in recognizing and signaling DNA double-strand breaks. Pathogenic variants in NBN and MRE11 give rise to the autosomal-recessive diseases, Nijmegen breakage syndrome (NBS) and ataxia telangiectasia-like disorder, respectively. The clinical consequences of pathogenic variants in RAD50 are incompletely understood. We aimed to characterize a newly identified RAD50 deficiency/NBS-like disorder (NBSLD) patient with bone marrow failure and immunodeficiency. METHODS: We report on a girl with microcephaly, mental retardation, bird-like face, short stature, bone marrow failure and B-cell immunodeficiency. We searched for candidate gene by whole-exome sequencing and analyzed the cellular phenotype of patient-derived fibroblasts using immunoblotting, radiation sensitivity assays and lentiviral complementation experiments. RESULTS: Compound heterozygosity for two variants in the RAD50 gene (p.Arg83His and p.Glu485Ter) was identified in this patient. The expression of RAD50 protein and MRN complex formation was maintained in the cells derived from this patient. DNA damage-induced activation of the ATM kinase was markedly decreased, which was restored by the expression of wild-type (WT) RAD50. Radiosensitivity appeared inconspicuous in the patient-derived cell line as assessed by colony formation assay. The RAD50R83H missense substitution did not rescue the mitotic defect in complementation experiments using RAD50-deficient fibroblasts, whereas RAD50WT did. The RAD50E485X nonsense variant was associated with in-frame skipping of exon 10 (p.Glu485_545del). CONCLUSION: These findings indicate important roles of RAD50 in human bone marrow and immune cells. RAD50 deficiency/NBSLD can manifest as a distinct inborn error of immunity characterized by bone marrow failure and B-cell immunodeficiency.


Asunto(s)
Síndromes de Inmunodeficiencia , Síndrome de Nijmegen , Femenino , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Supresoras de Tumor/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Síndrome de Nijmegen/genética , Síndromes de Inmunodeficiencia/diagnóstico , Síndromes de Inmunodeficiencia/genética , Trastornos de Fallo de la Médula Ósea
12.
Protein Sci ; 32(10): e4782, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37705456

RESUMEN

The repair of double-strand DNA breaks (DSBs) by homologous recombination is crucial in the maintenance of genome integrity. While the key role of the Mre11-Rad50-Nbs1 (MRN) complex in repair is well known, hSSB1 (SOSSB and OBFC2B), one of the main components of the sensor of single-stranded DNA (SOSS) protein complex, has also been shown to rapidly localize to DSB breaks and promote repair. We have previously demonstrated that hSSB1 binds directly to Nbs1, a component of the MRN complex, in a DNA damage-independent manner. However, recruitment of the MRN complex has also been demonstrated by an interaction between Integrator Complex Subunit 3 (INTS3; also known as SOSSA), another member of the SOSS complex, and Nbs1. In this study, we utilize a combined approach of in silico, biochemical, and functional experiments to uncover the molecular details of INTS3 binding to Nbs1. We demonstrate that the forkhead-associated domain of Nbs1 interacts with INTS3 via phosphorylation-dependent binding to INTS3 at Threonine 592, with contributions from Serine 590. Based on these data, we propose a model of MRN recruitment to a DSB via INTS3.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Nucleares , Fosforilación , Proteína Homóloga de MRE11/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN
13.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446144

RESUMEN

The MRE11 nuclease is essential during DNA damage recognition, homologous recombination, and replication. BRCA2 plays important roles during homologous recombination and replication. Here, we show that effecting an MRE11 blockade using a prototypical inhibitor (Mirin) induces synthetic lethality (SL) in BRCA2-deficient ovarian cancer cells, HeLa cells, and 3D spheroids compared to BRCA2-proficient controls. Increased cytotoxicity was associated with double-strand break accumulation, S-phase cell cycle arrest, and increased apoptosis. An in silico analysis revealed Mirin docking onto the active site of MRE11. While Mirin sensitises DT40 MRE11+/- cells to the Top1 poison SN-38, it does not sensitise nuclease-dead MRE11 cells to this compound confirming that Mirin specifically inhibits Mre11 nuclease activity. MRE11 knockdown reduced cell viability in BRCA2-deficient PEO1 cells but not in BRCA2-proficient PEO4 cells. In a Mirin-resistant model, we show the downregulation of 53BP1 and DNA repair upregulation, leading to resistance, including in in vivo xenograft models. In a clinical cohort of human ovarian tumours, low levels of BRCA2 expression with high levels of MRE11 co-expression were linked with worse progression-free survival (PFS) (p = 0.005) and overall survival (OS) (p = 0.001). We conclude that MRE11 is an attractive SL target, and the pharmaceutical development of MRE11 inhibitors for precision oncology therapeutics may be of clinical benefit.


Asunto(s)
Proteínas de Unión al ADN , Neoplasias Ováricas , Humanos , Femenino , Proteínas de Unión al ADN/metabolismo , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Células HeLa , Medicina de Precisión , Proteína BRCA2/metabolismo , Reparación del ADN , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Línea Celular Tumoral
14.
J Virol ; 97(5): e0046123, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37098896

RESUMEN

Parvoviruses are single-stranded DNA viruses that utilize host proteins to vigorously replicate in the nuclei of host cells, leading to cell cycle arrest. The autonomous parvovirus, minute virus of mice (MVM), forms viral replication centers in the nucleus which are adjacent to cellular DNA damage response (DDR) sites, many of which are fragile genomic regions prone to undergoing DDR during the S phase. Since the cellular DDR machinery has evolved to transcriptionally suppress the host epigenome to maintain genomic fidelity, the successful expression and replication of MVM genomes at these cellular sites suggest that MVM interacts with DDR machinery distinctly. Here, we show that efficient replication of MVM requires binding of the host DNA repair protein MRE11 in a manner that is independent of the MRE11-RAD50-NBS1 (MRN) complex. MRE11 binds to the replicating MVM genome at the P4 promoter, remaining distinct from RAD50 and NBS1, which associate with cellular DNA break sites to generate DDR signals in the host genome. Ectopic expression of wild-type MRE11 in CRISPR knockout cells rescues virus replication, revealing a dependence on MRE11 for efficient MVM replication. Our findings suggest a new model utilized by autonomous parvoviruses to usurp local DDR proteins that are crucial for viral pathogenesis and distinct from those of dependoparvoviruses, like adeno-associated virus (AAV), which require a coinfected helper virus to inactivate the local host DDR. IMPORTANCE The cellular DNA damage response (DDR) machinery protects the host genome from the deleterious consequences of DNA breaks and recognizes invading viral pathogens. DNA viruses that replicate in the nucleus have evolved distinct strategies to evade or usurp these DDR proteins. We have discovered that the autonomous parvovirus, MVM, which is used to target cancer cells as an oncolytic agent, depends on the initial DDR sensor protein MRE11 to express and replicate efficiently in host cells. Our studies reveal that the host DDR interacts with replicating MVM molecules in ways that are distinct from viral genomes being recognized as simple broken DNA molecules. These findings suggest that autonomous parvoviruses have evolved distinct mechanisms to usurp DDR proteins, which can be used to design potent DDR-dependent oncolytic agents.


Asunto(s)
Proteína Homóloga de MRE11 , Virus Diminuto del Ratón , Infecciones por Parvoviridae , Animales , Ratones , Proteínas de Ciclo Celular/metabolismo , Receptores con Dominio Discoidina/genética , Receptores con Dominio Discoidina/metabolismo , Daño del ADN , Replicación del ADN , Virus Diminuto del Ratón/genética , Infecciones por Parvoviridae/genética , Replicación Viral/fisiología , Proteína Homóloga de MRE11/metabolismo
15.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982687

RESUMEN

The MRE11, RAD50, and NBN genes encode for the nuclear MRN protein complex, which senses the DNA double strand breaks and initiates the DNA repair. The MRN complex also participates in the activation of ATM kinase, which coordinates DNA repair with the p53-dependent cell cycle checkpoint arrest. Carriers of homozygous germline pathogenic variants in the MRN complex genes or compound heterozygotes develop phenotypically distinct rare autosomal recessive syndromes characterized by chromosomal instability and neurological symptoms. Heterozygous germline alterations in the MRN complex genes have been associated with a poorly-specified predisposition to various cancer types. Somatic alterations in the MRN complex genes may represent valuable predictive and prognostic biomarkers in cancer patients. MRN complex genes have been targeted in several next-generation sequencing panels for cancer and neurological disorders, but interpretation of the identified alterations is challenging due to the complexity of MRN complex function in the DNA damage response. In this review, we outline the structural characteristics of the MRE11, RAD50 and NBN proteins, the assembly and functions of the MRN complex from the perspective of clinical interpretation of germline and somatic alterations in the MRE11, RAD50 and NBN genes.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Supresoras de Tumor , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteínas Supresoras de Tumor/genética , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Reparación del ADN/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
16.
Biochem Soc Trans ; 51(2): 527-538, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36892213

RESUMEN

The Mre11-Rad50-(Nbs1/Xrs2) complex is an evolutionarily conserved factor for the repair of DNA double-strand breaks and other DNA termini in all kingdoms of life. It is an intricate DNA associated molecular machine that cuts, among other functions, a large variety of free and obstructed DNA termini for DNA repair by end joining or homologous recombination, yet leaves undamaged DNA intact. Recent years have brought progress in both the structural and functional analyses of Mre11-Rad50 orthologs, revealing mechanisms of DNA end recognition, endo/exonuclease activities, nuclease regulation and DNA scaffolding. Here, I review our current understanding and recent progress on the functional architecture Mre11-Rad50 and how this chromosome associated coiled-coil ABC ATPase acts as DNA topology specific endo-/exonuclease.


Asunto(s)
Reparación del ADN , Proteína Homóloga de MRE11 , Roturas del ADN de Doble Cadena , Exodesoxirribonucleasas/metabolismo , Proteína Homóloga de MRE11/metabolismo , Humanos , Animales
17.
DNA Repair (Amst) ; 123: 103461, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36738687

RESUMEN

The TOPBP1 and NBS1 proteins are key components of DNA repair and DNA-based signaling systems. TOPBP1 is a multi-BRCT domain containing protein that plays important roles in checkpoint signaling, DNA replication, and DNA repair. Likewise, NBS1, which is a component of the MRE11-RAD50-NBS1 (MRN) complex, functions in both checkpoint signaling and DNA repair. NBS1 also contains BRCT domains, and previous works have shown that TOPBP1 and NBS1 interact with one another. In this work we examine the interaction between TOPBP1 and NBS1 in detail. We report that NBS1 uses its BRCT1 domain to interact with TOPBP1's BRCT1 domain and, separately, with TOPBP1's BRCT2 domain. Thus, NBS1 can make two distinct contacts with TOPBP1. We report that recombinant TOPBP1 and NBS1 proteins bind one another in a purified system, showing that the interaction is direct and does not require post-translational modifications. Surprisingly, we also report that intact BRCT domains are not required for these interactions, as truncated versions of the domains are sufficient to confer binding. For TOPBP1, we find that small 24-29 amino acid sequences within BRCT1 or BRCT2 allow binding to NBS1, in a transferrable manner. These data expand our knowledge of how the crucial DNA damage response proteins TOPBP1 and NBS1 interact with one another and set the stage for functional analysis of the two disparate binding sites for NBS1 on TOPBP1.


Asunto(s)
Enzimas Reparadoras del ADN , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , Núcleo Celular/metabolismo , Replicación del ADN , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteína Homóloga de MRE11/metabolismo , Fosforilación
18.
Adv Sci (Weinh) ; 10(5): e2203884, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563124

RESUMEN

Triple-negative breast cancer (TNBC) has higher molecular heterogeneity and metastatic potential and the poorest prognosis. Because of limited therapeutics against TNBC, irradiation (IR) therapy is still a common treatment option for patients with lymph nodes or brain metastasis. Thus, it is urgent to develop strategies to enhance the sensitivity of TNBC tumors to low-dose IR. Here, the authors report that E3 ubiquitin ligase Ring finger protein 126 (RNF126) is important for IR-induced ATR-CHK1 pathway activation to enhance DNA damage repair (DDR). Mechanistically, RNF126 physically associates with the MRE11-RAD50-NBS1 (MRN) complex and ubiquitinates MRE11 at K339 and K480 to increase its DNA exonuclease activity, subsequent RPA binding, and ATR phosphorylation, promoting sustained DDR in a homologous recombination repair-prone manner. Accordingly, depletion of RNF126 leads to increased genomic instability and radiation sensitivity in both TNBC cells and mice. Furthermore, it is found that RNF126 expression is induced by IR activating the HER2-AKT-NF-κB pathway and targeting RNF126 expression with dihydroartemisinin significantly improves the sensitivity of TNBC tumors in the brain to IR treatment in vivo. Together, these results reveal that RNF126-mediated MRE11 ubiquitination is a critical regulator of the DDR, which provides a promising target for improving the sensitivity of TNBC to radiotherapy.


Asunto(s)
Daño del ADN , Reparación del ADN , Neoplasias de la Mama Triple Negativas , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratones , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Proteína Homóloga de MRE11/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/radioterapia , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
19.
Mol Cell ; 83(2): 167-185.e9, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36577401

RESUMEN

The DNA double-strand break repair complex Mre11-Rad50-Nbs1 (MRN) detects and nucleolytically processes DNA ends, activates the ATM kinase, and tethers DNA at break sites. How MRN can act both as nuclease and scaffold protein is not well understood. The cryo-EM structure of MRN from Chaetomium thermophilum reveals a 2:2:1 complex with a single Nbs1 wrapping around the autoinhibited Mre11 nuclease dimer. MRN has two DNA-binding modes, one ATP-dependent mode for loading onto DNA ends and one ATP-independent mode through Mre11's C terminus, suggesting how it may interact with DSBs and intact DNA. MRNs two 60-nm-long coiled-coil domains form a linear rod structure, the apex of which is assembled by the two joined zinc-hook motifs. Apices from two MRN complexes can further dimerize, forming 120-nm spanning MRN-MRN structures. Our results illustrate the architecture of MRN and suggest how it mechanistically integrates catalytic and tethering functions.


Asunto(s)
Reparación del ADN , ADN , Microscopía por Crioelectrón , ADN/genética , Ácido Anhídrido Hidrolasas/genética , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/metabolismo , Adenosina Trifosfato/metabolismo , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Proteínas de Ciclo Celular/metabolismo
20.
Oncogene ; 42(8): 586-600, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36550358

RESUMEN

The MRE11-RAD50-NBS1 (MRN) complex plays a crucial role in DNA double-strand breaks (DSBs) sensing and initiation of signaling cascades. However, the precise mechanisms by which the recruitment of MRN complex is regulated has yet to be elucidated. Here, we identified TRIpartite motif-containing protein 24 (TRIM24), a protein considered as an oncogene overexpressed in cancers, as a novel signaling molecule in response to DSBs. TRIM24 is essential for DSBs-induced recruitment of MRN complex and activation of downstream signaling. In the absence of TRIM24, MRN mediated DSBs repair is remarkably diminished. Mechanistically, TRIM24 is phosphorylated by ataxia-telangiectasia mutated (ATM) and then recruited to DSBs sites, facilitating the accumulation of the MRN components to chromatin. Depletion of TRIM24 sensitizes human hepatocellular carcinoma cells to cancer therapy agent-induced apoptosis and retards the tumor growth in a subcutaneous xenograft tumor mouse model. Together, our data reveal a novel function of TRIM24 in response to DSBs through regulating the MRN complex, which suggests that TRIM24 may be a potential therapeutic molecular target for tumor treatment.


Asunto(s)
Proteínas Portadoras , Proteínas de Ciclo Celular , Roturas del ADN de Doble Cadena , Animales , Humanos , Ratones , Ácido Anhídrido Hidrolasas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA