Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753488

RESUMEN

Chloride ion-pumping rhodopsin (ClR) in some marine bacteria utilizes light energy to actively transport Cl- into cells. How the ClR initiates the transport is elusive. Here, we show the dynamics of ion transport observed with time-resolved serial femtosecond (fs) crystallography using the Linac Coherent Light Source. X-ray pulses captured structural changes in ClR upon flash illumination with a 550 nm fs-pumping laser. High-resolution structures for five time points (dark to 100 ps after flashing) reveal complex and coordinated dynamics comprising retinal isomerization, water molecule rearrangement, and conformational changes of various residues. Combining data from time-resolved spectroscopy experiments and molecular dynamics simulations, this study reveals that the chloride ion close to the Schiff base undergoes a dissociation-diffusion process upon light-triggered retinal isomerization.


Asunto(s)
Canales de Cloruro/metabolismo , Cloruros/metabolismo , Rodopsinas Microbianas/metabolismo , Cationes Monovalentes/metabolismo , Canales de Cloruro/aislamiento & purificación , Canales de Cloruro/efectos de la radiación , Canales de Cloruro/ultraestructura , Cristalografía/métodos , Radiación Electromagnética , Rayos Láser , Simulación de Dinámica Molecular , Nocardioides , Conformación Proteica en Hélice alfa/efectos de la radiación , Estructura Terciaria de Proteína/efectos de la radiación , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/efectos de la radiación , Proteínas Recombinantes/ultraestructura , Retinaldehído/metabolismo , Retinaldehído/efectos de la radiación , Rodopsinas Microbianas/aislamiento & purificación , Rodopsinas Microbianas/efectos de la radiación , Rodopsinas Microbianas/ultraestructura , Agua/metabolismo
2.
Protoplasma ; 257(6): 1531-1541, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32617685

RESUMEN

At least 7 proteorhodopsin sequences of Oxyrrhis marina were recently proven in bands obtained by sucrose density gradient centrifugation, and MS analyses revealed that the bands consisted almost of pure, native proteorhodopsins (Rhiel et al. 2020). The proteorhodopsin fractions, i.e., bands B2, B3, and B4 were subjected to transmission electron microscopy. Negative staining revealed that band B2 consisted most likely of monomeric/oligomeric proteorhodopsins with particle dimensions of about 6 nm. Negative staining, freeze-fracture, and cryo-transmission electron microscopy revealed that bands B3 and B4 consisted of vesicular, sheet-like, and cup-shaped structures which all seemed to be composed of protein. Frequently, ring-like protein aggregates were registered at higher magnifications. They measured about 4 nm in diameter with a tiny hole of 1.5 nm in the middle. The bands B2, B3, and B4 were pooled and used to raise an antiserum. Immunoelectron microscopy resulted in intense labeling of the isolated structures. Immunofluorescence light microscopy of formaldehyde-fixed Oxyrrhis cells resulted in intense labeling of the cell periphery. Some cell internal structures became labeled, too. Immunoelectron microscopy of freeze-fractured cells revealed that most likely the membranes of the amphiesmal vesicles were labeled at the cell periphery, while the cell internal label seemed to originate from the food vacuoles.


Asunto(s)
Dinoflagelados/química , Dinoflagelados/ultraestructura , Microscopía Electrónica de Transmisión/métodos , Microscopía Fluorescente/métodos , Rodopsinas Microbianas/química , Rodopsinas Microbianas/ultraestructura
3.
Nat Commun ; 10(1): 4939, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666521

RESUMEN

Recently, two groups of rhodopsin genes were identified in large double-stranded DNA viruses. The structure and function of viral rhodopsins are unknown. We present functional characterization and high-resolution structure of an Organic Lake Phycodnavirus rhodopsin II (OLPVRII) of group 2. It forms a pentamer, with a symmetrical, bottle-like central channel with the narrow vestibule in the cytoplasmic part covered by a ring of 5 arginines, whereas 5 phenylalanines form a hydrophobic barrier in its exit. The proton donor E42 is placed in the helix B. The structure is unique among the known rhodopsins. Structural and functional data and molecular dynamics suggest that OLPVRII might be a light-gated pentameric ion channel analogous to pentameric ligand-gated ion channels, however, future patch clamp experiments should prove this directly. The data shed light on a fundamentally distinct branch of rhodopsins and may contribute to the understanding of virus-host interactions in ecologically important marine protists.


Asunto(s)
Phycodnaviridae/metabolismo , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/ultraestructura , Bacteriorodopsinas , Cristalografía por Rayos X , Halobacterium salinarum , Activación del Canal Iónico , Canales Iónicos , Luz , Simulación de Dinámica Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Rodopsinas Microbianas/fisiología
4.
Nature ; 574(7776): 132-136, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31554965

RESUMEN

Heliorhodopsins (HeRs) are a family of rhodopsins that was recently discovered using functional metagenomics1. They are widely present in bacteria, archaea, algae and algal viruses2,3. Although HeRs have seven predicted transmembrane helices and an all-trans retinal chromophore as in the type-1 (microbial) rhodopsin, they display less than 15% sequence identity with type-1 and type-2 (animal) rhodopsins. HeRs also exhibit the reverse orientation in the membrane compared with the other rhodopsins. Owing to the lack of structural information, little is known about the overall fold and the photoactivation mechanism of HeRs. Here we present the 2.4-Å-resolution structure of HeR from an uncultured Thermoplasmatales archaeon SG8-52-1 (GenBank sequence ID LSSD01000000). Structural and biophysical analyses reveal the similarities and differences between HeRs and type-1 microbial rhodopsins. The overall fold of HeR is similar to that of bacteriorhodopsin. A linear hydrophobic pocket in HeR accommodates a retinal configuration and isomerization as in the type-1 rhodopsin, although most of the residues constituting the pocket are divergent. Hydrophobic residues fill the space in the extracellular half of HeR, preventing the permeation of protons and ions. The structure reveals an unexpected lateral fenestration above the ß-ionone ring of the retinal chromophore, which has a critical role in capturing retinal from environment sources. Our study increases the understanding of the functions of HeRs, and the structural similarity and diversity among the microbial rhodopsins.


Asunto(s)
Rodopsinas Microbianas/química , Thermoplasmales/química , Bacteriorodopsinas/química , Sitios de Unión , Cristalografía por Rayos X , Microscopía de Fuerza Atómica , Modelos Moleculares , Pliegue de Proteína , Multimerización de Proteína , Retinaldehído/química , Rodopsinas Microbianas/ultraestructura
5.
Sci Rep ; 9(1): 11283, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375689

RESUMEN

Gloeobacter rhodopsin (GR) is a cyanobacterial proton pump which can be potentially applied to optogenetics. We solved the crystal structure of GR and found that it has overall similarity to the homologous proton pump from Salinibacter ruber, xanthorhodopsin (XR). We identified distinct structural characteristics of GR's hydrogen bonding network in the transmembrane domain as well as the displacement of extracellular sides of the transmembrane helices relative to those of XR. Employing Raman spectroscopy and flash-photolysis, we found that GR in the crystals exists in a state which displays retinal conformation and photochemical cycle similar to the functional form observed in lipids. Based on the crystal structure of GR, we selected a site for spin labeling to determine GR's oligomerization state using double electron-electron resonance (DEER) spectroscopy and demonstrated the pH-dependent pentamer formation of GR. Determination of the structure of GR as well as its pentamerizing propensity enabled us to reveal the role of structural motifs (extended helices, 3-omega motif and flipped B-C loop) commonly found among light-driven bacterial pumps in oligomer formation. Here we propose a new concept to classify these pumps based on the relationship between their oligomerization propensities and these structural determinants.


Asunto(s)
Bacteroidetes/ultraestructura , Conformación Proteica , Bombas de Protones/ultraestructura , Rodopsina/ultraestructura , Secuencia de Aminoácidos/genética , Proteínas Bacterianas/ultraestructura , Bacteroidetes/química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Enlace de Hidrógeno , Multimerización de Proteína/genética , Bombas de Protones/síntesis química , Bombas de Protones/química , Rodopsina/química , Rodopsina/genética , Rodopsinas Microbianas/ultraestructura , Espectrometría Raman
6.
Proc Natl Acad Sci U S A ; 116(17): 8342-8349, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30948633

RESUMEN

Proteorhodopsin (PR) is a highly abundant, pentameric, light-driven proton pump. Proton transfer is linked to a canonical photocycle typical for microbial ion pumps. Although the PR monomer is able to undergo a full photocycle, the question arises whether the pentameric complex formed in the membrane via specific cross-protomer interactions plays a role in its functional mechanism. Here, we use dynamic nuclear polarization (DNP)-enhanced solid-state magic-angle spinning (MAS) NMR in combination with light-induced cryotrapping of photointermediates to address this topic. The highly conserved residue H75 is located at the protomer interface. We show that it switches from the (τ)- to the (π)-tautomer and changes its ring orientation in the M state. It couples to W34 across the oligomerization interface based on specific His/Trp ring orientations while stabilizing the pKa of the primary proton acceptor D97 within the same protomer. We further show that specific W34 mutations have a drastic effect on D97 and proton transfer mediated through H75. The residue H75 defines a cross-protomer Asp-His-Trp triad, which potentially serves as a pH-dependent regulator for proton transfer. Our data represent light-dependent, functionally relevant cross talk between protomers of a microbial rhodopsin homo-oligomer.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular/métodos , Rodopsinas Microbianas , Histidina/química , Histidina/metabolismo , Isomerismo , Modelos Moleculares , Subunidades de Proteína/química , Secuencias Repetitivas de Aminoácido , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/ultraestructura , Triptófano/química , Triptófano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...