RESUMEN
BACKGROUND: Non-photosensitive trichothiodystrophies (TTDs) are a diverse group of genodermatoses within the subset of conditions known as "sulphur-deficient brittle hair" syndromes. A part of them has only recently been identified, revealing novel causative genes and very rare phenotypes of these genetic skin disorders. At the same time, the molecular basis of previously published and unresolved cases has been revealed through the introduction of innovative genetic techniques. We have previously described the facial phenotype of patients with the Photosensitive form of TTD during childhood. This study marks the beginning of an effort to expand the analysis to include individuals of the same age who do not have photosensitivity. METHODS: A total of 26 facial portraits of TTD paediatric patients with Non-photosensitivity from the literature were analysed using computer-aided technologies, and their facial features were examined through a detailed clinical review. RESULTS: Distinct facial features were identified in both Photosensitive and Non-photosensitive TTDs. CONCLUSION: The present study has comprehensively elucidated the facial features in TTDs, encompassing the Non-photosensitive clinical spectrum.
Asunto(s)
Fenotipo , Síndromes de Tricotiodistrofia , Humanos , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/patología , Niño , Masculino , Femenino , Preescolar , Adolescente , Cara/anomalías , Cara/patología , LactanteRESUMEN
Background: Trichothiodystrophy-1 (TTD1) is an autosomal-recessive disease and caused by mutations in ERCC2, a gene coding for a subunit of the TFIIH transcription and nucleotide-excision repair (NER) factor. In almost half of these patients infectious susceptibility has been reported but the underlying molecular mechanism leading to immunodeficiency is largely unknown. Objective: The aim of this study was to perform extended molecular and immunological phenotyping in patients suffering from TTD1. Methods: Cellular immune phenotype was investigated using multicolor flow cytometry. DNA repair efficiency was evaluated in UV-irradiation assays. Furthermore, early BCR activation events and proliferation of TTD1 lymphocytes following DNA damage induction was tested. In addition, we performed differential gene expression analysis in peripheral lymphocytes of TTD1 patients. Results: We investigated three unrelated TTD1 patients who presented with recurrent infections early in life of whom two harbored novel ERCC2 mutations and the third patient is a carrier of previously described pathogenic ERCC2 mutations. Hypogammaglobulinemia and decreased antibody responses following vaccination were found. TTD1 B-cells showed accumulation of γ-H2AX levels, decreased proliferation activity and reduced cell viability following UV-irradiation. mRNA sequencing analysis revealed significantly downregulated genes needed for B-cell development and activation. Analysis of B-cell subpopulations showed low numbers of naïve and transitional B-cells in TTD1 patients, indicating abnormal B-cell differentiation in vivo. Conclusion: In summary, our analyses confirmed the pathogenicity of novel ERCC2 mutations and show that ERCC2 deficiency is associated with antibody deficiency most likely due to altered B-cell differentiation resulting from impaired BCR-mediated B-cell activation and activation-induced gene transcription.
Asunto(s)
Linfocitos B , Mutación , Proteína de la Xerodermia Pigmentosa del Grupo D , Humanos , Linfocitos B/inmunología , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/deficiencia , Masculino , Femenino , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/inmunología , Reparación del ADN , Niño , Activación de Linfocitos/genética , Preescolar , AdolescenteRESUMEN
Trichothiodystrophy (TTD) is a rare congenital disorder caused by genetic mutations, leading to hair and skin abnormalities. We report successful treatment of a TTD case using dupilumab, a monoclonal antibody targeting IL-4Rα. The patient, a 7-year-old boy, exhibited significant improvement in skin and hair conditions, suggesting the potential of dupilumab as a therapeutic option for TTD. Further research is needed to elucidate its mechanism and efficacy in TTD treatment.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Síndromes de Tricotiodistrofia , Humanos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Niño , Masculino , Síndromes de Tricotiodistrofia/tratamiento farmacológico , Resultado del TratamientoRESUMEN
The brittle hair syndrome Trichothiodystrophy (TTD) is characterized by variable clinical features, including photosensitivity, ichthyosis, growth retardation, microcephaly, intellectual disability, hypogonadism, and anaemia. TTD-associated mutations typically cause unstable mutant proteins involved in various steps of gene expression, severely reducing steady-state mutant protein levels. However, to date, no such link to instability of gene-expression factors for TTD-associated mutations in MPLKIP/TTDN1 has been established. Here, we present seven additional TTD individuals with MPLKIP mutations from five consanguineous families, with a newly identified MPLKIP variant in one family. By mass spectrometry-based interaction proteomics, we demonstrate that MPLKIP interacts with core splicing factors and the lariat debranching protein DBR1. MPLKIP-deficient primary fibroblasts have reduced steady-state DBR1 protein levels. Using Human Skin Equivalents (HSEs), we observed impaired keratinocyte differentiation associated with compromised splicing and eventually, an imbalanced proteome affecting skin development and, interestingly, also the immune system. Our data show that MPLKIP, through its DBR1 stabilizing role, is implicated in mRNA splicing, which is of particular importance in highly differentiated tissue.
Asunto(s)
Síndromes de Tricotiodistrofia , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Consanguinidad , Mutación , Fenotipo , Empalme del ARN , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/metabolismoRESUMEN
Mutations in a broad variety of genes can provoke the severe childhood disorder trichothiodystrophy (TTD) that is classified as a DNA repair disease or a transcription syndrome of RNA polymerase II. In an attempt to identify the common underlying pathomechanism of TTD we performed a knockout/knockdown of the two unrelated TTD factors TTDN1 and RNF113A and investigated the consequences on ribosomal biogenesis and performance. Interestingly, interference with these TTD factors created a nearly uniform impact on RNA polymerase I transcription with downregulation of UBF, disturbed rRNA processing and reduction of the backbone of the small ribosomal subunit rRNA 18S. This was accompanied by a reduced quality of decoding in protein translation and the accumulation of misfolded and carbonylated proteins, indicating a loss of protein homeostasis (proteostasis). As the loss of proteostasis by the ribosome has been identified in the other forms of TTD, here we postulate that ribosomal dysfunction is a common underlying pathomechanism of TTD.
Asunto(s)
Síndromes de Tricotiodistrofia , Humanos , Niño , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Mutación/genética , ARN Polimerasa I/metabolismo , Proteínas/metabolismo , Proteínas de Unión al ADN/metabolismoRESUMEN
The pre-mRNA life cycle requires intron processing; yet, how intron-processing defects influence splicing and gene expression is unclear. Here, we find that TTDN1/MPLKIP, which is encoded by a gene implicated in non-photosensitive trichothiodystrophy (NP-TTD), functionally links intron lariat processing to spliceosomal function. The conserved TTDN1 C-terminal region directly binds lariat debranching enzyme DBR1, whereas its N-terminal intrinsically disordered region (IDR) binds the intron-binding complex (IBC). TTDN1 loss, or a mutated IDR, causes significant intron lariat accumulation, as well as splicing and gene expression defects, mirroring phenotypes observed in NP-TTD patient cells. A Ttdn1-deficient mouse model recapitulates intron-processing defects and certain neurodevelopmental phenotypes seen in NP-TTD. Fusing DBR1 to the TTDN1 IDR is sufficient to recruit DBR1 to the IBC and circumvents the functional requirement for TTDN1. Collectively, our findings link RNA lariat processing with splicing outcomes by revealing the molecular function of TTDN1.
Asunto(s)
Síndromes de Tricotiodistrofia , Animales , Ratones , Intrones/genética , Síndromes de Tricotiodistrofia/genética , ARN Nucleotidiltransferasas/genética , Empalme del ARNRESUMEN
This case report describes an infant with frizzy, coarse, and fragile hair and low-set ears, blepharophimosis, and osteopenia.
Asunto(s)
Enfermedades del Cabello , Síndromes de Tricotiodistrofia , Humanos , Síndromes de Tricotiodistrofia/diagnóstico , Síndromes de Tricotiodistrofia/genética , Cabello , Azufre , Enfermedades del Cabello/diagnósticoRESUMEN
We report a newborn patient with trichothiodystrophy-3 (TTD3) caused by a novel homozygous variant in the GTF2H5 gene. His severe phenotype included congenital ichthyosis, complex posterior cranial fossa anomaly, life-threatening infections, bilateral cryptorchidism, and, notably, a complex cardiac malformation, which is unprecedented in TTD3 patients.
Asunto(s)
Síndromes de Tricotiodistrofia , Humanos , Recién Nacido , Masculino , Homocigoto , Fenotipo , Factores de Transcripción/genética , Síndromes de Tricotiodistrofia/genéticaRESUMEN
Among genodermatoses, trichothiodystrophies (TTDs) are a rare genetically heterogeneous group of syndromic conditions, presenting with skin, hair, and nail abnormalities. An extra-cutaneous involvement (craniofacial district and neurodevelopment) can be also a part of the clinical picture. The presence of photosensitivity describes three forms of TTDs: MIM#601675 (TTD1), MIM#616390 (TTD2) and MIM#616395 (TTD3), that are caused by variants afflicting some components of the DNA Nucleotide Excision Repair (NER) complex and with more marked clinical consequences. In the present research, 24 frontal images of paediatric patients with photosensitive TTDs suitable for facial analysis through the next-generation phenotyping (NGP) technology were obtained from the medical literature. The pictures were compared to age and sex-matched to unaffected controls using 2 distinct deep-learning algorithms: DeepGestalt and GestaltMatcher (Face2Gene, FDNA Inc., USA). To give further support to the observed results, a careful clinical revision was undertaken for each facial feature in paediatric patients with TTD1 or TTD2 or TTD3. Interestingly, a distinctive facial phenotype emerged by the NGP analysis delineating a specific craniofacial dysmorphic spectrum. In addition, we tabulated every single detail within the observed cohort. The novelty of the present research includes the facial characterization in children with the photosensitive types of TTDs through the 2 different algorithms. This result can become additional criteria for early diagnosis, and for subsequent targeted molecular investigations as well as a possible tailored multidisciplinary personalized management.
Asunto(s)
Trastornos por Fotosensibilidad , Síndromes de Tricotiodistrofia , Humanos , Síndromes de Tricotiodistrofia/diagnóstico , Síndromes de Tricotiodistrofia/genética , Trastornos por Fotosensibilidad/diagnóstico , Trastornos por Fotosensibilidad/genética , Cara , Cabello , Fenotipo , Reparación del ADNRESUMEN
TFIIH is a complex essential for transcription of protein-coding genes by RNA polymerase II, DNA repair of UV-lesions and transcription of rRNA by RNA polymerase I. Mutations in TFIIH cause the cancer prone DNA-repair disorder xeroderma pigmentosum (XP) and the developmental and premature aging disorders trichothiodystrophy (TTD) and Cockayne syndrome. A total of 50% of the TTD cases are caused by TFIIH mutations. Using TFIIH mutant patient cells from TTD and XP subjects we can show that the stress-sensitivity of the proteome is reduced in TTD, but not in XP. Using three different methods to investigate the accuracy of protein synthesis by the ribosome, we demonstrate that translational fidelity of the ribosomes of TTD, but not XP cells, is decreased. The process of ribosomal synthesis and maturation is affected in TTD cells and can lead to instable ribosomes. Isolated ribosomes from TTD patients show an elevated error rate when challenged with oxidized mRNA, explaining the oxidative hypersensitivity of TTD cells. Treatment of TTD cells with N-acetyl cysteine normalized the increased translational error-rate and restored translational fidelity. Here we describe a pathomechanism that might be relevant for our understanding of impaired development and aging-associated neurodegeneration.
Asunto(s)
Síndromes de Tricotiodistrofia , Xerodermia Pigmentosa , Humanos , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo , Reparación del ADN/genética , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/patología , Mutación , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/patología , Ribosomas/genética , Ribosomas/metabolismoRESUMEN
Trichothiodystrophy (TTD) is a rare hereditary disease whose prominent feature is brittle hair. Additional clinical signs are physical and neurodevelopmental abnormalities and in about half of the cases hypersensitivity to UV radiation. The photosensitive form of TTD (PS-TTD) is most commonly caused by mutations in the ERCC2/XPD gene encoding a subunit of the transcription/DNA repair complex TFIIH. Here we report novel ERCC2/XPD mutations affecting proper protein folding, which generate thermo-labile forms of XPD associated with thermo-sensitive phenotypes characterized by reversible aggravation of TTD clinical signs during episodes of fever. In patient cells, the newly identified XPD variants result in thermo-instability of the whole TFIIH complex and consequent temperature-dependent defects in DNA repair and transcription. Improving the protein folding process by exposing patient cells to low temperature or to the chemical chaperone glycerol allowed rescue of TFIIH thermo-instability and a concomitant recovery of the complex activities. Besides providing a rationale for the peculiar thermo-sensitive clinical features of these new cases, the present findings demonstrate how variations in the cellular concentration of mutated TFIIH impact the cellular functions of the complex and underlie how both quantitative and qualitative TFIIH alterations contribute to TTD clinical features.
Asunto(s)
Enfermedades del Cabello , Enfermedades de la Piel , Síndromes de Tricotiodistrofia , Xerodermia Pigmentosa , Humanos , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/complicaciones , Reparación del ADN , Enfermedades del Cabello/genética , Transcripción Genética , Xerodermia Pigmentosa/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismoRESUMEN
Trichothiodystrophy (TTD) is a rare, autosomal recessive, multisystem disorder of DNA repair and transcription with developmental delay and abnormalities in brain, eye, skin, nervous, and musculoskeletal systems. We followed a cohort of 37 patients with TTD at the National Institutes of Health (NIH) from 2001 to 2019 with a median age at last observation of 12 years (range 2-36). Some children with TTD developed rapidly debilitating hip degeneration (DHD): a distinctive pattern of hip pain, inability to walk, and avascular necrosis on imaging. Ten (27%) of the 37 patients had DHD at median age 8 years (range 5-12), followed by onset of imaging findings at median age 9 years (range 5-13). All 10 had mutations in the ERCC2/XPD gene. In 7 of the 10 affected patients, DHD rapidly became bilateral. DHD was associated with coxa valga, central osteosclerosis with peripheral osteopenia of the skeleton, and contractures/tightness of the lower limbs. Except for one patient, surgical interventions were generally not effective at preventing DHD. Four patients with DHD died at a median age of 11 years (range 9-15). TTD patients with ERCC2/XPD gene mutations have a high risk of musculoskeletal abnormalities and DHD leading to poor outcomes. Monitoring by history, physical examination, imaging, and by physical medicine and rehabilitation specialists may be warranted.
Asunto(s)
Enfermedades Óseas Metabólicas , Contractura , Coxa Valga , Osteonecrosis , Osteosclerosis , Síndromes de Tricotiodistrofia , Niño , Humanos , Preescolar , Adolescente , Adulto Joven , Adulto , Síndromes de Tricotiodistrofia/diagnóstico , Síndromes de Tricotiodistrofia/genética , Coxa Valga/complicaciones , Mutación , Contractura/genética , Contractura/complicaciones , Enfermedades Óseas Metabólicas/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/genéticaRESUMEN
Trichothiodystrophy 1 (TTD1) is a rare, autosomal recessive, multisystem disorder characterized by the sulfur-deficient brittle hair, cutaneous photosensitivity, high risk of skin cancer, psychomotor retardation. TTD1 is caused by homozygous or compound heterozygous mutation in ERCC2 gene. The peripheral blood mononuclear cells (PBMCs) from a patient carrying two heterozygous missense mutations of the ERCC2 gene were reprogrammed using the CytoTune-iPS2.0 Sendai Reprogramming Kit. The putative compound heterozygous mutation in ERCC2 will cause the abnormal protein, which is known to associated with TTD1. The established human induced pluripotent cell (hiPSC) line will enable proper in vitro disease modelling of TTD1.
Asunto(s)
Células Madre Pluripotentes Inducidas , Síndromes de Tricotiodistrofia , Humanos , Síndromes de Tricotiodistrofia/genética , Mutación Missense , Leucocitos Mononucleares , Azufre , Proteína de la Xerodermia Pigmentosa del Grupo D/genéticaRESUMEN
Hair shafts from three trichothiodystrophy (TTD) patients with mutations in the ERCC2 (XPD) gene were examined by transmission electron microscopy. TTD is a rare, recessive disorder with mutations in several genes in the DNA repair/transcription pathway, including ERCC2. Unlike previous studies, the hair shafts were examined after relaxation of their structure by partial disulphide bond reduction in the presence of sodium dodecyl sulphate, permitting improved visualization. Compared with hair shafts of normal phenotype, TTD cuticle cells displayed aberrant marginal bands and exocuticle layers. Clusters of cells stained differently (light versus dark) in the cortex of aberrant shafts, and the keratin macrofibrils appeared much shorter in the cytoplasm. Considerable heterogeneity in these properties was evident among samples and even along the length of single hair shafts. The results are consistent with not only a paucity of high sulphur components, such as keratin-associated proteins, but also a profound imbalance in protein content and organization.
Asunto(s)
Enfermedades del Cabello , Síndromes de Tricotiodistrofia , Reparación del ADN , Cabello/metabolismo , Enfermedades del Cabello/genética , Enfermedades del Cabello/metabolismo , Humanos , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/metabolismo , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismoRESUMEN
A teenage girl had the rare combined phenotype of xeroderma pigmentosum and trichothiodystrophy, resulting from mutations in the XPD (ERCC2) gene involved in nucleotide excision repair (NER). After treatment with antibiotics, including metronidazole for recurrent infections, she showed signs of acute and severe hepatotoxicity, which gradually resolved after withdrawal of the treatment. Cultured skin fibroblasts from the patient revealed cellular sensitivity to killing by metronidazole compared with cells from a range of other donors. This reveals that the metronidazole sensitivity was an intrinsic property of her cells. It is well recognized that patients with Cockayne syndrome, another NER disorder, are at high risk of metronidazole-induced hepatotoxicity, but this had not been reported in individuals with other NER disorders. We would urge extreme caution in the use of metronidazole in the management of individuals with the xeroderma pigmentosum and trichothiodystrophy overlap or trichothiodystrophy phenotypes.
Asunto(s)
Antibacterianos/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Metronidazol/efectos adversos , Síndromes de Tricotiodistrofia/complicaciones , Xerodermia Pigmentosa/complicaciones , Adolescente , Femenino , Fibroblastos/efectos de los fármacos , Humanos , Mutación , Síndromes de Tricotiodistrofia/genética , Xerodermia Pigmentosa/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/genéticaRESUMEN
Ribosome biogenesis is a highly energy-demanding process in eukaryotes which requires the concerted action of all three RNA polymerases. In RNA polymerase II transcription, the general transcription factor TFIIH is recruited by TFIIE to the initiation site of protein-coding genes. Distinct mutations in TFIIH and TFIIE give rise to the degenerative disorder trichothiodystrophy (TTD). Here, we uncovered an unexpected role of TFIIE in ribosomal RNA synthesis by RNA polymerase I. With high resolution microscopy we detected TFIIE in the nucleolus where TFIIE binds to actively transcribed rDNA. Mutations in TFIIE affects gene-occupancy of RNA polymerase I, rRNA maturation, ribosomal assembly and performance. In consequence, the elevated translational error rate with imbalanced protein synthesis and turnover results in an increase in heat-sensitive proteins. Collectively, mutations in TFIIE-due to impaired ribosomal biogenesis and translational accuracy-lead to a loss of protein homeostasis (proteostasis) which can partly explain the clinical phenotype in TTD.