Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 83(15): 2673-2691.e7, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37506700

RESUMEN

Cell cycle progression is linked to transcriptome dynamics and variations in the response of pluripotent cells to differentiation cues, mostly through unknown determinants. Here, we characterized the cell-cycle-associated transcriptome and proteome of mouse embryonic stem cells (mESCs) in naive ground state. We found that the thymine DNA glycosylase (TDG) is a cell-cycle-regulated co-factor of the tumor suppressor p53. Furthermore, TDG and p53 co-bind ESC-specific cis-regulatory elements and thereby control transcription of p53-dependent genes during self-renewal. We determined that the dynamic expression of TDG is required to promote the cell-cycle-associated transcriptional heterogeneity. Moreover, we demonstrated that transient depletion of TDG influences cell fate decisions during the early differentiation of mESCs. Our findings reveal an unanticipated role of TDG in promoting molecular heterogeneity during the cell cycle and highlight the central role of protein dynamics for the temporal control of cell fate during development.


Asunto(s)
Timina ADN Glicosilasa , Proteína p53 Supresora de Tumor , Animales , Ratones , Ciclo Celular/genética , Línea Celular , Regulación de la Expresión Génica , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
2.
J Biol Chem ; 299(7): 104907, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37307918

RESUMEN

Thymine DNA glycosylase (TDG) is an essential enzyme involved in numerous biological pathways, including DNA repair, DNA demethylation, and transcriptional activation. Despite these important functions, the mechanisms surrounding the actions and regulation of TDG are poorly understood. In this study, we demonstrate that TDG induces phase separation of DNA and nucleosome arrays under physiologically relevant conditions in vitro and show that the resulting chromatin droplets exhibited behaviors typical of phase-separated liquids, supporting a liquid-liquid phase separation model. We also provide evidence that TDG has the capacity to form phase-separated condensates in the cell nucleus. The ability of TDG to induce chromatin phase separation is dependent on its intrinsically disordered N- and C-terminal domains, which in isolation, promote the formation of chromatin-containing droplets having distinct physical properties, consistent with their unique mechanistic roles in the phase separation process. Interestingly, DNA methylation alters the phase behavior of the disordered domains of TDG and compromises formation of chromatin condensates by full-length TDG, indicating that DNA methylation regulates the assembly and coalescence of TDG-mediated condensates. Overall, our results shed new light on the formation and physical nature of TDG-mediated chromatin condensates, which have broad implications for the mechanism and regulation of TDG and its associated genomic processes.


Asunto(s)
Cromatina , Metilación de ADN , ADN , Timina ADN Glicosilasa , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , ADN/química , ADN/metabolismo , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo
3.
Cell Cycle ; 22(12): 1478-1495, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37224078

RESUMEN

Epigenetics plays an important role in the malignant progression of tumors, in which DNA methylation can alter genetic performance without altering the DNA sequence. As a key regulator demethylation, thymine-DNA glycosylase (TDG) has been reported to participate in malignant progression of multiple tumors. In this study, we demonstrate that TDG is highly expressed in hepatocellular carcinoma (HCC) and its high expression is closely related to the poor prognosis of patients. Decreasing TDG expression can significantly inhibit the malignant biological behavior of HCC cells. ABL proto-oncogene 1(ABL1) was identified as a downstream gene regulated by TDG demethylation. In addition, TDG can affect the Hippo signaling pathway through ABL1 to regulate HCC cell proliferation, apoptosis, invasion and migration. Overall, our study demonstrated that TDG reduces DNA methylation of ABL1, increases ABL1 protein expression, and affects the Hippo signaling pathway to regulate the malignant progression of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Timina ADN Glicosilasa , Humanos , Carcinoma Hepatocelular/genética , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo , Pronóstico , Neoplasias Hepáticas/genética , Línea Celular , Metilación de ADN/genética
4.
J Biol Chem ; 299(4): 104590, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36889585

RESUMEN

Thymine DNA glycosylase (TDG) is a multifaceted enzyme involved in several critical biological pathways, including transcriptional activation, DNA demethylation, and DNA repair. Recent studies have established regulatory relationships between TDG and RNA, but the molecular interactions underlying these relationships are poorly understood. Herein, we now demonstrate that TDG binds directly to RNA with nanomolar affinity. Using synthetic oligonucleotides of defined length and sequence, we show that TDG has a strong preference for binding G-rich sequences in single-stranded RNA but binds weakly to single-stranded DNA and duplex RNA. TDG also binds tightly to endogenous RNA sequences. Studies with truncated proteins indicate that TDG binds RNA primarily through its structured catalytic domain and that its disordered C-terminal domain plays a key role in regulating TDG's affinity and selectivity for RNA. Finally, we show that RNA competes with DNA for binding to TDG, resulting in the inhibition of TDG-mediated excision in the presence of RNA. Together, this work provides support for and insights into a mechanism wherein TDG-mediated processes (e.g., DNA demethylation) are regulated through the direct interactions of TDG with RNA.


Asunto(s)
Timina ADN Glicosilasa , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo , Reparación del ADN , ADN/metabolismo , ARN , Proteínas de Unión al ARN/metabolismo , Timina
5.
Chem Res Toxicol ; 36(2): 162-176, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36647573

RESUMEN

Recently, we constructed a hybrid thymine DNA glycosylase (hyTDG) by linking a 29-amino acid sequence from the human thymine DNA glycosylase with the catalytic domain of DNA mismatch glycosylase (MIG) from M. thermoautotrophicum, increasing the overall activity of the glycosylase. Previously, it was shown that a tyrosine to lysine (Y126K) mutation in the catalytic site of MIG could convert the glycosylase activity to a lyase activity. We made the corresponding mutation to our hyTDG to create a hyTDG-lyase (Y163K). Here, we report that the hybrid mutant has robust lyase activity, has activity over a broad temperature range, and is active under multiple buffer conditions. The hyTDG-lyase cleaves an abasic site similar to endonuclease III (Endo III). In the presence of ß-mercaptoethanol (ß-ME), the abasic site unsaturated aldehyde forms a ß-ME adduct. The hyTDG-lyase maintains its preference for cleaving opposite G, as with the hyTDG glycosylase, and the hyTDG-lyase and hyTDG glycosylase can function in tandem to cleave T:G mismatches. The hyTDG-lyase described here should be a valuable tool in studies examining DNA damage and repair. Future studies will utilize these enzymes to quantify T:G mispairs in cells, tissues, and genomic DNA using next-generation sequencing.


Asunto(s)
ADN Glicosilasas , Liasas , Timina ADN Glicosilasa , Humanos , Liasas/genética , Timina ADN Glicosilasa/genética , ADN/química , ADN Glicosilasas/metabolismo , Reparación del ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad por Sustrato
6.
DNA Repair (Amst) ; 119: 103408, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36179537

RESUMEN

5-Methylcytosine (mC) is an epigenetic mark that impacts transcription, development, diseases including cancer and aging. The demethylation process involves Tet-mediated stepwise oxidation of mC to hmC, fC, or caC, excision of fC or caC by thymine-DNA glycosylase (TDG), and subsequent base excision repair. Thymine-DNA glycosylase (TDG) belongs to uracil-DNA glycosylase (UDG) superfamily, which is a group of enzymes that are initially found to be responsible for excising the deaminated bases from DNA and generating apurinic/apyrimidinic (AP) sites. mC oxidative derivatives may also be generated from Fenton chemistry and γ-irradiation. In screening DNA glycosylase activity in UDG superfamily, we identified new activity on fC- and caC-containing DNA in family 2 MUG/TDG and family 6 HDG enzymes. Surprisingly, we found a glycosylase SMUG2 from bacterium Pedobacter heparinus (Phe), a subfamily of family 3 SMUG1 DNA glycosylase, displayed catalytic activity towards not only DNA containing uracil, but also fC and caC. Given the sequence and structural differences between the family 3 and other family enzymes, we investigated the catalytic mechanism using mutational, enzyme kinetics and molecular modeling approaches. Mutational analysis and kinetics measurements identified I62, N63 and F76 of motif 1, and H205 of motif 2 in Phe SMUG2 as important catalytic residues, of which H205 of motif 2 played a critical role in catalyzing the removal of fC and caC. A catalytic model underlying the roles of these residues was proposed. The structural and catalytic differences between Phe SMUG2 and human TDG were compared by molecular modeling and molecular dynamics simulations. This study expands our understanding of DNA glycosylase capacity in UDG superfamily and provides insights into the molecular mechanism of fC and caC excision in Phe SMUG2.


Asunto(s)
Timina ADN Glicosilasa , Uracil-ADN Glicosidasa , 5-Metilcitosina , Citosina , ADN/metabolismo , Reparación del ADN , Humanos , Estrés Oxidativo , Pedobacter , Timina , Timina ADN Glicosilasa/genética , Uracilo , Uracil-ADN Glicosidasa/metabolismo
7.
PLoS One ; 17(8): e0273509, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36037209

RESUMEN

The DNA of all living organisms is persistently damaged by endogenous reactions including deamination and oxidation. Such damage, if not repaired correctly, can result in mutations that drive tumor development. In addition to chemical damage, recent studies have established that DNA bases can be enzymatically modified, generating many of the same modified bases. Irrespective of the mechanism of formation, modified bases can alter DNA-protein interactions and therefore modulate epigenetic control of gene transcription. The simultaneous presence of both chemically and enzymatically modified bases in DNA suggests a potential intersection, or collision, between DNA repair and epigenetic reprogramming. In this paper, we have prepared defined sequence oligonucleotides containing the complete set of oxidized and deaminated bases that could arise from 5-methylcytosine. We have probed these substrates with human glycosylases implicated in DNA repair and epigenetic reprogramming. New observations reported here include: SMUG1 excises 5-carboxyuracil (5caU) when paired with A or G. Both TDG and MBD4 cleave 5-formyluracil and 5caU when mispaired with G. Further, TDG not only removes 5-formylcytosine and 5-carboxycytosine when paired with G, but also when mispaired with A. Surprisingly, 5caU is one of the best substrates for human TDG, SMUG1 and MBD4, and a much better substrate than T. The data presented here introduces some unexpected findings that pose new questions on the interactions between endogenous DNA damage, repair, and epigenetic reprogramming pathways.


Asunto(s)
5-Metilcitosina , Timina ADN Glicosilasa , 5-Metilcitosina/metabolismo , ADN/genética , Daño del ADN , Reparación del ADN , Epigénesis Genética , Humanos , Timina ADN Glicosilasa/química , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo
8.
Biophys J ; 121(9): 1691-1703, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35367235

RESUMEN

T:G mismatches in DNA result in humans primarily from deamination of methylated CpG sites. They are repaired by redundant systems, such as thymine DNA glycosylase (TDG) and methyl-binding domain enzyme (MBD4), and maintenance of these sites has been implicated in epigenetic processes. The process by which these enzymes identify a canonical DNA base in the incorrect basepairing context remains a mystery. However, the conserved contacts of the repair enzymes with the DNA backbone suggests a role for protein-phosphate interaction in the recognition and repair processes. We have used 31P NMR to investigate the energetics of DNA backbone BI-BII interconversion, and for this work have focused on alterations to the activation barriers to interconversion and the effect of a mismatch compared with canonical DNA. We have found that alterations to the ΔG of interconversion for T:G basepairs are remarkably similar to U:G basepairs in the form of stepwise differences in ΔG of 1-2 kcal/mol greater than equivalent steps in unmodified DNA, suggesting a universality of this result for TDG substrates. Likewise, we see perturbations to the free energy (∼1 kcal/mol) and enthalpy (2-5 kcal/mol) of activation for the BI-BII interconversion localized to the phosphates flanking the mismatch. Overall our results strongly suggest that the perturbed backbone energetics in T:G basepairs play a significant role in the recognition process of DNA repair enzymes.


Asunto(s)
Timina ADN Glicosilasa , ADN/química , Reparación del ADN , Epigénesis Genética , Humanos , Cinética , Termodinámica , Timina ADN Glicosilasa/química , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo
9.
Int J Biol Sci ; 18(6): 2527-2539, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35414793

RESUMEN

Background: Colorectal cancer (CRC) is one of the most common malignant tumors with high rates of recurrence and mortality. Thymine DNA glycosylase (TDG) is a key molecule in the base excision repair pathway. Recently, increasing attention has been paid to the role of TDG in tumor development. However, the specific functions of TDG in CRC remain unclear. Methods: The biological functions of TDG and DNA methyltransferase 3 alpha (DNMT3A) in CRC were evaluated using migration and invasion assays, respectively. A tumor metastasis assay was performed in nude mice to determine the in vivo role of TDG. The interaction between TDG and DNMT3A was determined via co-immunoprecipitation (Co-IP). Chromatin immunoprecipitation analysis (ChIP) was used to predict the DNA-binding site of DNMT3A. We also performed methylation-specific PCR (MSP) to detect changes in TIMP2 methylation. Results: TDG inhibited the migration and invasion of human colon cancer cells both in vitro and in vivo. TDG promoted the ubiquitination and degradation of DNMT3A by binding to it. Its interference with siDNMT3A also inhibits the migration and invasion of human colon cancer cells. Furthermore, the ChIP, MSP, and rescue experiments results confirmed that TDG accelerated the degradation of DNMT3A and significantly regulated the transcription and expression of TIMP2, thereby affecting the migration and invasion of human colon cancer cells. Conclusion: Our findings reveal that TDG inhibits the migration and invasion of human colon cancer cells through the DNMT3A-TIMP2 axis, which may be a potential therapeutic strategy for the development and treatment of CRC.


Asunto(s)
Neoplasias del Colon , Timina ADN Glicosilasa , Animales , Neoplasias del Colon/genética , ADN/metabolismo , Metilación de ADN/genética , ADN Metiltransferasa 3A , Humanos , Ratones , Ratones Desnudos , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo
10.
Environ Res ; 211: 113078, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35248566

RESUMEN

Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) is an organophosphate ester-based flame retardant widely used within the United States. Within zebrafish, initiation of TDCIPP exposure at 0.75 h post-fertilization (hpf) reliably disrupts cytosine methylation from cleavage (2 hpf) through early-gastrulation (6 hpf). Therefore, the objective of this study was to determine whether TDCIPP-induced effects on cytosine methylation persist beyond 6 hpf. First, we exposed embryos to vehicle or TDCIPP from 0.75 hpf to 6, 24, or 48 hpf, and then conducted bisulfite amplicon sequencing of a target locus (lmo7b) using genomic DNA derived from whole embryos. Within both vehicle- and TDCIPP-treated embryos, CpG methylation was similar at 6 hpf and CHG/CHH methylation were similar at 24 and 48 hpf (relative to 6 hpf). However, relative to 6 hpf within the same treatment, CpG methylation was lower within vehicle-treated embryos at 48 hpf and TDCIPP-treated embryos at 24 and 48 hpf - an effect that was driven by acceleration of CpG hypomethylation. Similar to our previous findings with DNA methyltransferase, we found that, even at high µM concentrations, TDCIPP had no effect on zebrafish and human thymine DNA glycosylase activity (a key enzyme that decreases CpG methylation), suggesting that TDCIPP-induced effects on CpG methylation are not driven by direct interaction with thymine DNA glycosylase. Finally, using 5-methylcytosine (5-mC)-specific whole-mount immunochemistry and automated imaging, we found that exposure to TDCIPP increased 5-mC abundance within the yolk of blastula-stage embryos, suggesting that TDCIPP may impact cytosine methylation of maternally loaded mRNAs during the maternal-to-zygotic transition. Overall, our findings suggest that TDCIPP disrupts the trajectory of cytosine methylation during zebrafish embryogenesis, effects which do not appear to be driven by direct interaction of TDCIPP with key enzymes that regulate cytosine methylation.


Asunto(s)
Retardadores de Llama , Timina ADN Glicosilasa , Animales , Citosina/toxicidad , Metilación de ADN , Retardadores de Llama/toxicidad , Organofosfatos/toxicidad , Compuestos Organofosforados , Fosfatos , Timina ADN Glicosilasa/genética , Pez Cebra/genética
11.
J Biol Chem ; 298(3): 101638, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35085553

RESUMEN

The hydrolytic deamination of cytosine and 5-methylcytosine drives many of the transition mutations observed in human cancer. The deamination-induced mutagenic intermediates include either uracil or thymine adducts mispaired with guanine. While a substantial array of methods exist to measure other types of DNA adducts, the cytosine deamination adducts pose unusual analytical problems, and adequate methods to measure them have not yet been developed. We describe here a novel hybrid thymine DNA glycosylase (TDG) that is comprised of a 29-amino acid sequence from human TDG linked to the catalytic domain of a thymine glycosylase found in an archaeal thermophilic bacterium. Using defined-sequence oligonucleotides, we show that hybrid TDG has robust mispair-selective activity against deaminated U:G and T:G mispairs. We have further developed a method for separating glycosylase-released free bases from oligonucleotides and DNA followed by GC-MS/MS quantification. Using this approach, we have measured for the first time the levels of total uracil, U:G, and T:G pairs in calf thymus DNA. The method presented here will allow the measurement of the formation, persistence, and repair of a biologically important class of deaminated cytosine adducts.


Asunto(s)
ADN , Timina ADN Glicosilasa , Citosina/química , Citosina/metabolismo , ADN/análisis , ADN/genética , ADN/metabolismo , Reparación del ADN , Humanos , Oligonucleótidos , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Timina/metabolismo , Timina ADN Glicosilasa/análisis , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo , Uracilo/química
12.
Stem Cell Reports ; 16(11): 2674-2689, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34678203

RESUMEN

Pig cloning by somatic cell nuclear transfer (SCNT) frequently undergoes incomplete epigenetic remodeling during the maternal-to-zygotic transition, which leads to a significant embryonic loss before implantation. Here, we generated the first genome-wide landscapes of histone methylation in pig SCNT embryos. Excessive H3K9me3 and H3K27me3, but not H3K4me3, were observed in the genomic regions with unfaithful embryonic genome activation and donor-cell-specific gene silencing. A combination of H3K9 demethylase KDM4A and GSK126, an inhibitor of H3K27me3 writer, were able to remove these epigenetic barriers and restore the global transcriptome in SCNT embryos. More importantly, thymine DNA glycosylase (TDG) was defined as a pig-specific epigenetic regulator for nuclear reprogramming, which was not reactivated by H3K9me3 and H3K27me3 removal. Both combined treatment and transient TDG overexpression promoted DNA demethylation and enhanced the blastocyst-forming rates of SCNT embryos, thus offering valuable methods to increase the cloning efficiency of genome-edited pigs for agricultural and biomedical purposes.


Asunto(s)
Embrión de Mamíferos/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Histonas/metabolismo , Técnicas de Transferencia Nuclear , Timina ADN Glicosilasa/genética , Animales , Blastocisto/citología , Blastocisto/metabolismo , Metilación de ADN , Desmetilación , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/embriología , Perfilación de la Expresión Génica/métodos , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Indoles/farmacología , Lisina/metabolismo , Metilación , Piridonas/farmacología , Porcinos , Timina ADN Glicosilasa/metabolismo
13.
Genome Biol ; 22(1): 186, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158086

RESUMEN

BACKGROUND: TET enzymes mediate DNA demethylation by oxidizing 5-methylcytosine (5mC) in DNA to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Since these oxidized methylcytosines (oxi-mCs) are not recognized by the maintenance methyltransferase DNMT1, DNA demethylation can occur through "passive," replication-dependent dilution when cells divide. A distinct, replication-independent ("active") mechanism of DNA demethylation involves excision of 5fC and 5caC by the DNA repair enzyme thymine DNA glycosylase (TDG), followed by base excision repair. RESULTS: Here by analyzing inducible gene-disrupted mice, we show that DNA demethylation during primary T cell differentiation occurs mainly through passive replication-dependent dilution of all three oxi-mCs, with only a negligible contribution from TDG. In addition, by pyridine borane sequencing (PB-seq), a simple recently developed method that directly maps 5fC/5caC at single-base resolution, we detect the accumulation of 5fC/5caC in TDG-deleted T cells. We also quantify the occurrence of concordant demethylation within and near enhancer regions in the Il4 locus. In an independent system that does not involve cell division, macrophages treated with liposaccharide accumulate 5hmC at enhancers and show altered gene expression without DNA demethylation; loss of TET enzymes disrupts gene expression, but loss of TDG has no effect. We also observe that mice with long-term (1 year) deletion of Tdg are healthy and show normal survival and hematopoiesis. CONCLUSIONS: We have quantified the relative contributions of TET and TDG to cell differentiation and DNA demethylation at representative loci in proliferating T cells. We find that TET enzymes regulate T cell differentiation and DNA demethylation primarily through passive dilution of oxi-mCs. In contrast, while we observe a low level of active, replication-independent DNA demethylation mediated by TDG, this process does not appear to be essential for immune cell activation or differentiation.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/genética , Dioxigenasas/genética , Macrófagos/enzimología , Linfocitos T/enzimología , Timina ADN Glicosilasa/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Citosina/análogos & derivados , Citosina/metabolismo , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/deficiencia , Dioxigenasas/deficiencia , Elementos de Facilitación Genéticos , Expresión Génica , Sitios Genéticos , Hematopoyesis/genética , Interleucina-4/genética , Interleucina-4/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Lipopolisacáridos/farmacología , Longevidad/genética , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Ratones Noqueados , Linfocitos T/citología , Linfocitos T/inmunología , Timina ADN Glicosilasa/deficiencia
14.
J Mol Biol ; 433(8): 166877, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33561435

RESUMEN

In mammalian genomes, cytosine methylation occurs predominantly at CG (or CpG) dinucleotide contexts. As part of dynamic epigenetic regulation, 5-methylcytosine (mC) can be erased by active DNA demethylation, whereby ten-eleven translocation (TET) enzymes catalyze the stepwise oxidation of mC to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxycytosine (caC), thymine DNA glycosylase (TDG) excises fC or caC, and base excision repair yields unmodified cytosine. In certain cell types, mC is also enriched at some non-CG (or CH) dinucleotides, however hmC is not. To provide biochemical context for the distribution of modified cytosines observed in biological systems, we systematically analyzed the activity of human TET2 and TDG for substrates in CG and CH contexts. We find that while TET2 oxidizes mC more efficiently in CG versus CH sites, this context preference can be diminished for hmC oxidation. Remarkably, TDG excision of fC and caC is only modestly dependent on CG context, contrasting its strong context dependence for thymine excision. We show that collaborative TET-TDG oxidation-excision activity is only marginally reduced for CA versus CG contexts. Our findings demonstrate that the TET-TDG-mediated demethylation pathway is not limited to CG sites and suggest a rationale for the depletion of hmCH in genomes rich in mCH.


Asunto(s)
Islas de CpG , Desmetilación del ADN , Timina ADN Glicosilasa/química , Timina ADN Glicosilasa/metabolismo , 5-Metilcitosina/análogos & derivados , Citosina/análogos & derivados , Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Epigénesis Genética , Humanos , Oxidación-Reducción , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Timina ADN Glicosilasa/genética
15.
Gene ; 766: 145092, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32916247

RESUMEN

Cigarette smoking is a major lifestyle factor leading to different human diseases. The DNA repair gene, thymine DNA glycosylase, is important to cell survival because it stops cells from becoming cancerous protecting/preventing DNA. Exposure to CS may induce genetic changes such as single nucleotide polymorphisms in DNA repair genes. Therefore, the purpose of this study was to investigate the genotype and allele distributions of four TDG SNPs with only smoking behavior in normal patients. Four TDG SNPs-rs4135066 (C/T), rs3751209 (A/G), rs1866074 (C/T), and rs1882018 (C/T) were analyzed by genotyping 235 and 239 blood samples collected from cigarette smokers and non-smokers, among the Saudi population. The results showed that TDG rs4135066 has a significant susceptibility effect observed in long-term smokers (>5 years; OR = 4.53; P = 0.0347) but not in short-term smokers (≤5 years) in contrast with non-smokers. Also, in smokers aged less than 29 years, the "CT," "TT," and "CT + TT" alleles of rs1882018 increased the risk of developing all diseases related to smoking by approximately 6, 4, and 5 times, respectively, in contrast with the ancestral "CC" homozygous allele. A comparison of the allele distributions of TDG SNPs in a Saudi population with those in other populations represented in the HapMap project showed that the genetic makeup of the Saudi Arabian population appears to differ from that of other ethnicities. Exceptions include the Yoruba people in Ibadan, Nigeria; those of Mexican ancestry in Los Angeles, California; the Luhya population in Webuye, Kenya; Gujarati Indians in Houston, Texas; and the Tuscan population in Italy, which showed similar allelic frequencies for rs3751209 compared to our Saudi population. In this ethnic, we have found a high variation in the distribution of the alleles and genotype frequencies on TDG gene. This variation on TDG SNP's with smoking could lead to increase the susceptibility to many diseases related to smoking habits in this population.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Fumar/genética , Timina ADN Glicosilasa/genética , Adulto , Alelos , Etnicidad/genética , Femenino , Frecuencia de los Genes/genética , Genotipo , Humanos , Masculino
16.
F1000Res ; 9: 1112, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33082936

RESUMEN

Mechanistic and functional studies by gene disruption or editing approaches often suffer from confounding effects like compensatory cellular adaptations generated by clonal selection. These issues become particularly relevant when studying factors directly involved in genetic or epigenetic maintenance. To provide a genetic tool for functional and mechanistic investigation of DNA-repair mediated active DNA demethylation, we generated experimental models in mice and murine embryonic stem cells (ESCs) based on a minigene of the thymine-DNA glycosylase (TDG). The loxP-flanked miniTdg is rapidly and reliably excised in mice and ESCs by tamoxifen-induced Cre activation, depleting TDG to undetectable levels within 24 hours. We describe the functionality of the engineered miniTdg in mouse and ESCs (TDGiKO ESCs) and validate the pluripotency and differentiation potential of TDGiKO ESCs as well as the phenotype of induced TDG depletion. The controlled and rapid depletion of TDG allows for a precise manipulation at any point in time of multistep experimental procedures as presented here for neuronal differentiation in vitro. Thus, we provide a tested and well-controlled genetic tool for the functional and mechanistic investigation of TDG in active DNA (de)methylation and/or DNA repair with minimal interference from adaptive effects and clonal selection.


Asunto(s)
Timina ADN Glicosilasa , Animales , Metilación de ADN , Reparación del ADN , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Ratones , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo
17.
Int J Mol Sci ; 21(20)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092287

RESUMEN

The neurosteroid allopregnanolone (AL) has many beneficial functions in the brain. This study tested the hypothesis that AL administered for three days into the third brain ventricle would affect the enzymatic activity of the DNA base excision repair (BER) pathway in the hippocampal CA1 and CA3 fields and the central amygdala in luteal-phase sheep under both natural and stressful conditions. Acute stressful stimuli, including isolation and partial movement restriction, were used on the last day of infusion. The results showed that stressful stimuli increased N-methylpurine DNA glycosylase (MPG), thymine DNA glycosylase (TDG), 8-oxoguanine glycosylase (OGG1), and AP-endonuclease 1 (APE1) mRNA expression, as well as repair activities for 1,N6-ethenoadenine (εA), 3,N4-ethenocytosine (εC), and 8-oxoguanine (8-oxoG) compared to controls. The stimulated events were lower in stressed and AL-treated sheep compared to sheep that were only stressed (except MPG mRNA expression in the CA1 and amygdala, as well as TDG mRNA expression in the CA1). AL alone reduced mRNA expression of all DNA repair enzymes (except TDG in the amygdala) relative to controls and other groups. DNA repair activities varied depending on the tissue-AL alone stimulated the excision of εA in the amygdala, εC in the CA3 and amygdala, and 8-oxoG in all tissues studied compared to controls. However, the excision efficiency of lesioned bases in the AL group was lower than in the stressed and stressed and AL-treated groups, with the exception of εA in the amygdala. In conclusion, the presented modulating effect of AL on the synthesis of BER pathway enzymes and their repair capacity, both under natural and stressful conditions, indicates another functional role of this neurosteroid in brain structures.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Región CA1 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/efectos de los fármacos , Reparación del ADN/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Pregnanolona/farmacología , Amígdala del Cerebelo/enzimología , Amígdala del Cerebelo/metabolismo , Animales , Región CA1 Hipocampal/enzimología , Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/enzimología , Región CA3 Hipocampal/metabolismo , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Femenino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ovinos , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo
18.
Cancer Sci ; 111(10): 3613-3625, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32808385

RESUMEN

Radiation resistance is a major cause of esophageal cancer relapse or metastasis. Transcriptional coactivator with PDZ binding domain (TAZ) is a final effector of the Hippo signaling pathway and plays critical roles in several types of cancer, but how it participates in the progression and radiation resistance of esophageal cancer remains unclear. Here, we revealed that TAZ was the strongest prognostic factor among Hippo pathway members. Overexpression of TAZ predicted poor outcome and adverse pathological features. In cell and animal models, TAZ facilitated cell proliferation, motility, and radiation resistance. Additionally, TAZ promoted expression of nonhomologous end joining (NHEJ)-related genes, which are the main contributors to repair irradiation-induced DNA breaks and result in radiation resistance. Amplification of the TAZ gene occurred in 2.5%-3.2% of esophageal cancers. In addition, the CpG islands of the TAZ gene were demethylated in esophageal cancer under thymine DNA glycosylase (TDG) regulation. Knockdown of TDG inhibited cell growth, motility, and radiation resistance, which were overridden by TAZ overexpression. Collectively, these findings suggest that the TDG/TAZ/NHEJ axis is a critical player in esophageal cancer progression and radiation resistance, as well as a potential target for radiotherapy.


Asunto(s)
Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Tolerancia a Radiación/genética , Timina ADN Glicosilasa/genética , Transactivadores/genética , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Islas de CpG/genética , Roturas del ADN , Reparación del ADN por Unión de Extremidades/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Transducción de Señal/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ
19.
Am J Physiol Heart Circ Physiol ; 317(5): H969-H980, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31518169

RESUMEN

Multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multigene family with isoform-specific regulation of vascular smooth muscle (VSM) functions. In previous studies, we found that vascular injury resulted in VSM dedifferentiation and reduced expression of the CaMKIIγ isoform in medial wall VSM. Smooth muscle knockout of CaMKIIγ enhanced injury-induced VSM neointimal hyperplasia, whereas CaMKIIγ overexpression inhibited VSM proliferation and neointimal formation. In this study, we evaluated DNA cytosine methylation/demethylation as a mechanism for regulating CaMKII isoform expression in VSM. Inhibition of cytosine methylation with 5-Aza-2'-deoxycytidine significantly upregulated CaMKIIγ expression in cultured VSM cells and inhibited CaMKIIγ downregulation in organ-cultured aorta ex vivo. With the use of methylated cytosine immunoprecipitation, the rat Camk2g promoter was found hypomethylated in differentiated VSM, whereas injury- or cell culture-induced VSM dedifferentiation coincided with Camk2g promoter methylation and decreased expression. We report for the first time that VSM cell phenotype switching is accompanied by marked induction of thymine DNA glycosylase (TDG) protein and mRNA expression in injured arteries in vivo and in cultured VSM synthetic phenotype cells. Silencing Tdg in VSM promoted expression of CaMKIIγ and differentiation markers, including myocardin, and inhibited VSM cell proliferation and injury-induced neointima formation. This study indicates that CaMKIIγ expression in VSM is regulated by cytosine methylation/demethylation and that TDG is an important determinant of this process and, more broadly, VSM phenotype switching and function.NEW & NOTEWORTHY Expression of the calcium calmodulin-dependent protein kinase II-γ isoform (CaMKIIγ) is associated with differentiated vascular smooth muscle (VSM) and negatively regulates proliferation in VSM synthetic phenotype (VSMSyn) cells. This study demonstrates that thymine DNA glycosylase (TDG) plays a key role in regulating CaMKIIγ expression in VSM through promoter cytosine methylation/demethylation. TDG expression is strongly induced in VSMSyn cells and plays key roles in negatively regulating CaMKIIγ expression and more broadly VSM phenotype switching.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Traumatismos de las Arterias Carótidas/enzimología , Plasticidad de la Célula , Metilación de ADN , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Timina ADN Glicosilasa/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Arteria Carótida Común/enzimología , Arteria Carótida Común/patología , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica , Masculino , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Neointima , Fenotipo , Regiones Promotoras Genéticas , Ratas Sprague-Dawley , Transducción de Señal , Timina ADN Glicosilasa/genética
20.
J Cell Mol Med ; 23(9): 6131-6139, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31282110

RESUMEN

Age-related cataract (ARC) is caused by the exposure of the lens to UVB which promotes oxidative damage and cell death. This study aimed to explore the role of lncRNA H19 in oxidative damage repair in early ARC. lncRNAs sequencing technique was used to identify different lncRNAs in the lens of early ARC patients. Human lens epithelial cells (HLECs) were exposed to ultraviolet irradiation; and 8-OHdG ELISA, Cell counting kit 8 (CCK8), EDU, flow cytometry and TUNEL assays were used to detect DNA damage, cell viability, proliferation and apoptosis. Luciferase assay was used to examine the interaction among H19, miR-29a and thymine DNA glycosylase (TDG) 3'UTR. We found that lncRNA H19 and TDG were highly expressed while miR-29a was down-regulated in the three types of early ARC and HLECs exposed to ultraviolet irradiation, compared to respective controls. lncRNA H19 knockdown aggravated oxidative damage, reduced cell viability and proliferation, and promoted apoptosis in HLECs, while lncRNA H19 overexpression led to opposite effects in HLECs. Mechanistically, miR-29a bound TDG 3'UTR to repress TDG expression. lncRNA H19 up-regulated the expression of TDG by repressing miR-29a because it acted as ceRNA through sponging miR-29a. In conclusion, the interaction among lncRNA H19, miR-29a and TDG is involved in early ARC. lncRNA H19 could be a useful marker of early ARC and oxidative damage repair pathway of lncRNA H19/miR-29a/TDG may be a promising target for the treatment of ARC.


Asunto(s)
Catarata/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Timina ADN Glicosilasa/genética , Envejecimiento/genética , Envejecimiento/patología , Envejecimiento/efectos de la radiación , Apoptosis/genética , Catarata/metabolismo , Catarata/patología , Línea Celular , Proliferación Celular/genética , Supervivencia Celular/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Cristalino/metabolismo , Cristalino/efectos de la radiación , Estrés Oxidativo/genética , Estrés Oxidativo/efectos de la radiación , Transducción de Señal/efectos de la radiación , Rayos Ultravioleta/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...