RESUMO
Fish skin has been gaining attention due to its efficacy as a human-wound-treatment product and to identify factors promoting its enhanced action. Skin fibroblasts have a central role in maintaining skin integrity and secrete extra cellular matrix (ECM) proteins, growth factors and cytokines to rapidly repair lesions and prevent further damage or infection. The effects on scratch repair of the ubiquitous but poorly characterized ECM protein, cartilage acidic protein 1 (CRTAC1), from piscine and human sources were compared using a zebrafish SJD.1 primary fibroblast cell line. A classic in vitro cell scratch assay, immunofluorescence, biosensor and gene expression analysis were used. Our results demonstrated that the duplicate sea bass Crtac1a and Crtac1b proteins and human CRTAC-1A all promoted SJD.1 primary fibroblast migration in a classic scratch assay and in an electric cell impedance sensing assay. The immunofluorescence analysis revealed that CRTAC1 enhanced cell migration was most likely caused by actin-driven cytoskeletal changes and the cellular transcriptional response was most affected in the early stage (6 h) of scratch repair. In summary, our results suggest that CRTAC1 may be an important factor in fish skin promoting damage repair.
Assuntos
Proteínas de Ligação ao Cálcio/farmacologia , Fibroblastos/efeitos dos fármacos , Peixe-Zebra , Animais , Organismos Aquáticos , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/uso terapêutico , Humanos , Modelos Animais , Cicatrização/efeitos dos fármacosRESUMO
Varying salinities of coastal waters are likely to affect the physiology and ion transport capabilities of calcifying marine organisms such as bivalves. To investigate the physiological effect of decreased environmental salinity in bivalves, adult oysters (Crassostrea gigas) were exposed for 14 days to 50% seawater (14) and the effects on mantle ion transport, electrophysiology and the expression of Ca2+ transporters and channels relative to animals maintained in full strength sea water (28) was evaluated. Exposure of oysters to a salinity of 14 decreased the active mantle transepithelial ion transport and specifically affected Ca2+ transfer. Gene expression of the Na+/K+-ATPase and the sarco(endo)plasmic reticulum Ca2+-ATPase was decreased whereas the expression of the T-type voltage-gated Ca channel and the Na+/Ca2+-exchanger increased compared to animals maintained in full SW. The results indicate that decreased environmental salinities will most likely affect not only osmoregulation but also bivalve biomineralization and shell formation.
RESUMO
Prostate cancer (PCa) is one of the most prevalent male tumours. Stanniocalcin-1 (STC1) is a glycoprotein and, although the role of STC1 in human cancer is poorly understood, it is suggested to be involved in the development and progression of different neoplasms. This study investigated the protein expression profile of STC1 in PCa and benign prostatic hyperplasia (BPH) samples and STC1 signalling during cell proliferation and cell death in vitro using cell lines. We found higher levels of STC1 in PCa when compared to BPH tissue and that STC1 inhibited forskolin stimulation of cAMP in PC-3 cells. A monoclonal antibody against STC1 was effective in reducing cell proliferation, in promoting cell cycle arrest, and in increasing apoptosis in the same cells. Since STC1 acts as a regulator of prostatic tissue signalling, we suggest that this protein is a novel candidate biomarker for prostate tumour clinical progression and a potential therapeutic target.