Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(27): 11368-11379, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38896134

RESUMO

The design of multimodal cancer therapy was focused on reaching an efficient process and minimizing harmful effects on patients. In the present study, the Au-MnO2 nanostructures have been successfully constructed and produced as novel multipurpose photosensitive agents simultaneously for photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT). The prepared AuNPs were conjugated with MnO2 NPs by its participation in the thermal decomposition process of KMnO4 confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy (FT-IR). The 16.5 nm Au-MnO2 nanostructure exhibited an absorbance at 438 nm, which is beneficial for application in light induction therapy due to the NIR band, as well as its properties of generating reactive oxygen species (ROS) associated with the 808 nm laser light for PDT. The photothermal transduction efficiency was calculated and compared with that of the non-irradiated nanostructure, in which it was found that the 808 nm laser induced a high efficiency of 83%, 41.5%, and 37.5% for PDT, PTT, and CDT, respectively. The results of DPBF and TMB assays showed that the efficiency of PDT and PTT was higher than that of CDT. The nanostructure also confirmed the time-dependent peroxidase properties at different H2O2, TMB, and H2TMB concentrations, promising good potency in applying nanomedicine in clinical cancer therapy.


Assuntos
Antineoplásicos , Ouro , Compostos de Manganês , Óxidos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Terapia Fototérmica , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Ouro/química , Ouro/farmacologia , Óxidos/química , Óxidos/farmacologia , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Nanoestruturas/química , Sobrevivência Celular/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/terapia , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral
2.
ACS Omega ; 9(19): 20720-20727, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764670

RESUMO

Carbon nanodots (CNDs) are nanomaterials with ubiquitous applications in health for diagnosis and treatments. The key to enhancing the applications of carbon nanodots in various fields lies on how deep its structure is understood. Here, we review the mass spectroscopy (MS) techniques employed for carbon nanodot analysis. We aimed to revive the use of MS to support the structural elucidation of carbon nanodots. General techniques used in nanomaterials characterization include laser desorption/ionization (LDI), matrix-assisted LDI (MALDI), inductively coupled plasma (ICP), and electrospray ionization (ESI) MS. For CNDs characterization, LDI-MS, MALDI-MS, and ESI-MS were employed. The techniques required further instrumentations of time-of-flight (TOF), for MALDI, and TOF, quadrupole (Q), and tandem (MS/MS) for ESI. LDI-MS could be applied to prove the surface and core structural composition of carbon nanodots. Meanwhile, MALDI-MS was used to elucidate the surface structures of CNDs. Finally, ESI-MS could provide significant insight into the carbon nanodots' structural composition and bonding patterns. In summary, MS could be combined with other techniques to unambiguously elucidate the structure of carbon nanodots.

3.
Int J Biol Macromol ; 257(Pt 2): 128696, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072349

RESUMO

This study focuses on the preparation of mangosteen rind-derived nanocellulose via green ascorbic acid hydrolysis. Subsequently, milk protein-grafted nanocellulose particles were developed as a renewable Pickering emulsifier for water-oil stabilization. The stabilizing efficiency of modified nanocellulose (NC-S) at different caseinate (milk protein) concentrations (1.5, 3.0, and 4.0 % w/v) was tested in a water-in-oil emulsion (W/O ratio of 40:60). At a concentration 3.0 % w/v of caseinate (3.0NC-S), the emulsion exhibited a stronger network of adsorption between water, Pickering emulsifier, and oil. This resulted in reduced oil droplet flocculation, increased stability over a longer period, and favorable emulsifying properties, as depicted in the creaming index profile, oil droplet distribution, and rheology analysis. Since 3.0NC-S demonstrated the best colloidal stability, further focus will be placed on its microstructural properties, comparing them with those of mangosteen rind (MG), cellulose, and nanocellulose (NC-L). The XRD profile indicated that both NC-L and NC-S possessed a cellulose nanocrystal structure characterized as type I beta with a high crystallinity index above 60 %. Morphology investigation shown that the NC-L present in the spherical shape of particles with nanosized ranging at diameters of 11.27 ± 0.50 nm and length 11.76 ± 0.46 nm, while modified NC-S showed increase sized at 14.26 ± 4.60 nm and length 14.96 ± 4.94 nm. The increment of particle sizes from NC-L to NC-S indicated 2.82 × 10-15 mg/m2 of surface protein coverage by caseinate functional groups.


Assuntos
Garcinia mangostana , Nanopartículas , Emulsões/química , Caseínas/química , Celulose/química , Emulsificantes/química , Nanopartículas/química , Reologia , Água/química
4.
Gels ; 9(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37754415

RESUMO

An environmentally friendly Pickering stabilizer was developed by upcycling sugarcane bagasse (SCB) into a cellulose nanocrystal (CNC), which was subjected to surface modification by using quaternary ammonium compound to enhance its amphiphilic characteristics. The changes in microstructural properties of modified cellulose nanocrystal (m-CNC), such as surface functional group, thermal stability, surface morphology, elemental composition, and particle size distribution were investigated. Results indicated the success of quaternary ammonium compound grafting with the presence of a trimethyl-alkyl chain on the cellulose structure, while the m-CNC preserves the needle-like nanoparticles in length of ~534 nm and width of ~20 nm. The colloidal profile of m-CNC-stabilized oil-water emulsion gels with different concentrations of m-CNC (1-5 wt%), and oil:water (O:W) ratios (3:7, 5:5, 7:3) were examined. The emulsion gel stability study indicated that the optimal concentration of m-CNC (3 wt%) was able to stabilize all the emulsion gels at different O:W ratios with an emulsion index of >80% for 3 months. It is the minimum concentration of m-CNC to form a robust colloidal network around the small oil droplets, leading to the formation of stable emulsion gels. The emulsion gel with O:W ratio (3:7) with 3 wt% of m-CNC rendered the best m-CNC-oil-droplets dispersion. The m-CNC effectively retained the size of oil droplets (<10 µm for 3 months storage) against coalescence and creaming by creating a steric barrier between the two immiscible phases. Furthermore, the emulsion gel exhibited the highest viscosity and storage modulus which was able to prevent creaming or sedimentation of the emulsion gels.

5.
Int J Nanomedicine ; 18: 4471-4484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37555190

RESUMO

Background: Breast cancer is one of the main causes of death in women. Uncaria gambir is an Indonesian herbal plant that can be used as an anti-cancer. However, herbal medicines have low bioavailability, which affects their bioactivity. Nanoencapsulation can increase bioavailability and stability of bioactive compounds in herbal medicines. Purpose: This recent finding tried to unravel anti-cancer and chemopreventive of U. gambir nano-encapsulated by Na-alginate. Study Design: U. gambir bioactive compounds were isolated and characterized using UV-Vis spectrometer, FTIR, NMR and HR-MS. U. gambir extract was nanoencapsulated using Na-alginate. Anti-cancer effect was assessed by MTT assay towards T47D cell. Meanwhile, a chemopreventive analysis was carried out in breast cancer mice-induced benzo[α]pyrene. The healthy mice were divided into 8 groups comprising control and treatment. Results: Elucidation of U. gambir ethyl acetate extract confirmed high catechin content, 89.34% (w/w). Successful nanoencapsulation of U. gambir (G-NPs) was indicated. The particle size of G-NPs was 78.40 ± 12.25 nm. Loading efficiency (LE) and loading amount (LA) of G-NPs were 97.56 ± 0.04% and 32.52 ± 0.01%, respectively. G-NPs had an EC50 value of 10.39 ± 3.50 µg/mL, which was more toxic than the EC50 value of extract towards the T47D cell line. Administration of 200 mg/kg BW G-NPs to mice induced by benzo[α]pyrene exhibited SOD and GSH levels of 13.69 ng/mL and 455.6 ng/mL. In addition, the lowest TNF-α level was 27.96 ng/mL. A dose of 100 mg/kg BW G-NPs could best increase CAT levels by 7.18 ng/mL. There was no damage or histological abnormalities found in histological analysis of the breast tissue in the group given 200 mg/kg BW G-NPs.


Assuntos
Catequina , Neoplasias , Plantas Medicinais , Feminino , Animais , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Benzo(a)pireno , Plantas Medicinais/química , Alginatos
6.
Nanotheranostics ; 7(3): 281-298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064612

RESUMO

The fluorescent imaging and drug delivery utilizing carbon dots nanomaterials (CDs) have attracted tremendously due to their unique optical ability and outstanding biocompatibility. Herein, we reported a new design of chalcone-loaded carbon dots (Chalcone-APBA-CDs) to serve chalcone transport onto cancer cells and enhance the CDs bioimaging and antitumor activity. The boronic acid was directly introduced to carbon dots (CDs) via pyrolysis process to drive CDs specifically to the cancer cell, and chalcone was mediated on CDs by ultrasonication to perform facile release of the drug delivery model. The successfully synthesized Chalcone-APBA-CDs were proved by their chemical structure, fluorescent activities, in vitro and in vivo analyses, and drug release systems using different pH. In addition, flow cytometry and confocal fluorescent imaging proved CDs' cellular uptake and imaging performance. In vitro analyses further proved that the Chalcone-APBA-CDs exhibited a higher toxicity value than bare CDs and efficiently inhibited the proliferation of the HeLa cells depending on their dose-response. Finally, the performance of Chalcone-APBA-CDs on cancer healing capability was examined in vivo with fibrosarcoma cancer-bearing mice, which showed a remarkable ability to reduce the tumor volume compared with saline (control). This result strongly suggested that the Chalcone-APBA-CDs appear promising simultaneously as cancer cell imaging and drug delivery.


Assuntos
Chalconas , Nanoestruturas , Humanos , Animais , Camundongos , Células HeLa , Carbono/química , Carbono/farmacologia , Sistemas de Liberação de Medicamentos/métodos
7.
RSC Adv ; 13(5): 2972-2983, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36756405

RESUMO

The adequacy in uremic toxin removal upon hemodialysis treatment is essential in patients with kidney failure diseases as poor removal leads to heart failure, hypertension, and stroke. The combination of adsorption and diffusion processes has become very advantageous for hemodialysis membranes. By this mechanism, water-soluble uremic toxins (WSUTs) and protein-bounded uremic toxins (PBUTs) could be removed at one time. Therefore, this study aimed to develop a novel imprinted zeolite by p-cresol (IZC) and then incorporated it into polyethersulfone (PES) and poly(vinyl pyrrolidone) (PVP) to produce hollow fiber mixed matrix membrane (HF-MMM). The IZC proved to be sensitive in attracting the adsorbate, classifying it as having a strong adsorption behavior. Accordingly, IZC is very promising to be applied as an adsorbent in the hemodialysis treatment. In this study, IZC as p-cresol's adsorbent was incorporated into a PES-based polymeric membrane with a small addition of PVP to produce HF-MMM using a dry/wet spinning process. The effect of air gap distance between the spinneret and coagulant bath and percentage loading for PES, PVP, and IZC were studied and optimized to obtain the best performance of HF-MMM. The 40 cm of air gap distance, 16 wt% of PES, 2 wt% of PVP, and 1 wt% of IZC loading were able to produce a superior hemodialysis membrane. These optimized parameters showed sufficient uremic toxin removal, i.e., 60.74% of urea, 52.35% of p-cresol in the phosphate buffer saline solution, and 66.29% of p-cresol in bovine serum albumin solution for 4 h permeation using the dialysis system. These HF-MMMs also achieved pure water flux of 67.57 L m-2 h-1 bar-1 and bovine serum albumin rejection of 95.05%. Therefore, this membrane has proven to be able to clean up WSUT and PBUT through a one-step process. Moreover, as compared to the neat PES membrane, MMM was able to remove p-cresol at 186.22 times higher capability.

8.
Nanotheranostics ; 7(2): 187-201, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793348

RESUMO

Fluorescent Carbon dots (CDs) derived from biologically active sources have shown enhanced activities compared to their precursors. With their prominent potentiality, these small-sized (<10nm) nanomaterials could be easily synthesized from organic sources either by bottom-up or green approach. Their sources could influence the functional groups present on the CDs surfaces. A crude source of organic molecules has been used to develop fluorescent CDs. In addition, pure organic molecules were also valuable in developing practical CDs. Physiologically responsive interaction of CDs with various cellular receptors is possible due to the robust functionalization on their surface. In this review, we studied various literatures from the past ten years that reported the potential application of carbon dots as alternatives in cancer chemotherapy. The selective cytotoxic nature of some of the CDs towards cancer cell lines suggests the role of surface functional groups towards selective interaction, which results in over-expressed proteins characteristic of cancer cell lines. It could be inferred that cheaply sourced CDs could selectively bind to overexpressed proteins in cancer cells with the ultimate effect of cell death induced by apoptosis. In most cases, CDs-induced apoptosis directly or indirectly follows the mitochondrial pathway. Therefore, these nanosized CDs could serve as alternatives to the current kinds of cancer treatments that are expensive and have numerous side effects.


Assuntos
Neoplasias , Pontos Quânticos , Humanos , Carbono , Linhagem Celular , Corantes Fluorescentes , Neoplasias/tratamento farmacológico
9.
RSC Adv ; 12(46): 29884-29891, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36321100

RESUMO

We report a natural product compound isolated from Syzygium polycephalum known as 3,4,3'-tri-O-methylellagic acid (T-EA) as a candidate drug for cancer treatment. The characterization of the isolated T-EA compound was carried out using various spectroscopic methods. The in vitro evaluation showcased the inhibition activity of T-EA towards the T47D and HeLa cell lines with EC50 values of 55.35 ± 6.28 µg mL-1 and 12.57 ± 2.22 µg mL-1, respectively. Meanwhile, the in silico evaluation aimed to understand the interaction of T-EA with enzymes responsible for cancer regulation at the molecular level by targeting the hindrance of cyclin-dependent kinase 9 (CDK9) and sirtuin 1 (SIRT1) enzymes. T-EA showed a binding free energy towards the SIRT1 protein of ΔG bind (MM-GBSA): -30.98 ± 0.25 kcal mol-1 and ΔG bind (MM-PBSA): -24.07 ± 0.30 kcal mol-1, while that of CDK9 was ΔG bind (MM-GBSA): -29.50 ± 0.22 kcal mol-1 and ΔG bind (MM-PBSA): -25.87 ± 0.40 kcal mol-1. The obtained results from this research could be considered as important information on 3,4,3'-tri-O-methylellagic acid as a drug to treat cervical and breast cancers.

10.
Molecules ; 27(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36363998

RESUMO

In the past few years, the research on particle-stabilized emulsion (Pickering emulsion) has mainly focused on the usage of inorganic particles with well-defined shapes, narrow size distributions, and chemical tunability of the surfaces such as silica, alumina, and clay. However, the presence of incompatibility of some inorganic particles that are non-safe to humans and the ecosystem and their poor sustainability has led to a shift towards the development of materials of biological origin. For this reason, nano-dimensional cellulose (nanocellulose) derived from natural plants is suitable for use as a Pickering material for liquid interface stabilization for various non-toxic product formulations (e.g., the food and beverage, cosmetic, personal care, hygiene, pharmaceutical, and biomedical fields). However, the current understanding of nanocellulose-stabilized Pickering emulsion still lacks consistency in terms of the structural, self-assembly, and physio-chemical properties of nanocellulose towards the stabilization between liquid and oil interfaces. Thus, this review aims to provide a comprehensive study of the behavior of nanocellulose-based particles and their ability as a Pickering functionality to stabilize emulsion droplets. Extensive discussion on the characteristics of nanocelluloses, morphology, and preparation methods that can potentially be applied as Pickering emulsifiers in a different range of emulsions is provided. Nanocellulose's surface modification for the purpose of altering its characteristics and provoking multifunctional roles for high-grade non-toxic applications is discussed. Subsequently, the water-oil stabilization mechanism and the criteria for effective emulsion stabilization are summarized in this review. Lastly, we discuss the toxicity profile and risk assessment guidelines for the whole life cycle of nanocellulose from the fresh feedstock to the end-life of the product.


Assuntos
Ecossistema , Emulsificantes , Humanos , Emulsões/química , Emulsificantes/química , Celulose/química , Água/química
11.
Nanotheranostics ; 6(4): 436-450, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051856

RESUMO

Viral infection is a globally leading health issue. Annually, new lethal RNA viruses unexpectedly emerged and mutated threatening health and safety. Meanwhile, it is urgent to explore novel antiviral agents, which, however, takes years to be clinically available. Nonetheless, the development of carbon dots (CDs) in the past 20 years has exhibited their vast application potentials and revealed their promising capacity as future antiviral agents considering their versatile properties and significant antiviral responses. Thus, CDs have been widely investigated as an alternative of traditional chemotherapy for inhibiting viral infection and replication in vitro. Meanwhile, attempts to apply CDs to in vivo systems are in high demand. In this review, recent developments of CDs-based antiviral therapies are systematically summarized. Furthermore, the role of CDs in photodynamic inactivation to kill viruses or bacteria is briefly discussed.


Assuntos
Pontos Quânticos , Infecções por Vírus de RNA , Viroses , Antivirais/farmacologia , Carbono/farmacologia , Humanos
12.
RSC Adv ; 12(13): 8019-8029, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35424767

RESUMO

The present study investigated the effect of graphene oxide in cellulose acetate-based composite nanofibers on the transdermal delivery of naproxen. The composite nanofibers were successfully produced via the electrospinning process by directly mixing cellulose acetate, graphene oxide, and naproxen solution with varied compositions. The formation of the nanofibers was confirmed by electron microscopy and other characterization techniques to prove the existence of graphene oxide and naproxen itself. Surprisingly, graphene oxide encourages the production of nanofibers with smaller average diameter, higher conductivity, higher mechanical strength, and higher naproxen release from the cellulose acetate nanofibers. Once combined with naproxen, the composite nanofiber exhibited antibacterial activity with an inhibitory zone of 9.15 mm. The cytotoxicity evaluation also showed that the addition of naproxen increased the death of HeLa cells with a CC50 of up to 29.33 µg mL-1. The kinetic model of naproxen release follows the Korsmeyer-Peppas and Higuchi models with acceleration at neutral pH. These results are promising for further applications for wound healing purposes.

13.
Membranes (Basel) ; 12(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35323800

RESUMO

Mortality and morbidity rates among critically ill septic patients having acute kidney injury (AKI) are very high, considering the total number of deaths after their admission. Inappropriate selection of the type of continuous renal replacement therapy and inadequate therapy become the immediate causes of these issues. Dialysis is a commonly used treatment intended to prolong the life of AKI patients. Dialysis membranes, which are the core of dialysis treatment, must be properly selected to ensure fair treatment to the patients. The accumulation of certain types of molecules must be dealt with using the right membrane. Whether it is low-flux, high-flux, or adsorptive type, the dialysis membrane should be chosen depending on the condition of the patients. The selection of dialysis membranes should also be based on their effect on the treatment outcomes and well-being. All these options are needed to serve the patients of different clinical settings. The use of dialysis membranes is not restricted to conventional haemodialysis, but rather they can be employed in haemoperfusion, haemofiltration, haemodiafiltration, or a combination of any two of them. This review focuses in-depth on different types of dialysis membranes, their characteristics, and approaches in addressing the issues encountered in patients having AKI with sepsis and/or multiorgan failure in intensive care units.

14.
ACS Omega ; 6(28): 17750-17765, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34308011

RESUMO

Boronic-acid-modified nanomaterials have inspired significant research interest owing to their unique biocompatibility and excellent reversible interaction with diol groups containing saccharides, protein, DNA, and other related glucose compounds. However, the different sources and methods change the application of nanomaterials. Thus, surface-functionalized nanomaterials are of interest as one of the best ways to improve the application of the biomedical field. In this mini-review, we summarize recent studies on boronic-acid-modified nanomaterials, based on the carbon dot group and graphene oxides, which have been used in the fields of bioimaging, biosensing, antiviral inhibitors, etc. Moreover, the multivalent interaction on boronic-acid-modified materials has become the main key improvement for targeting treatment in the future. We mainly focused on any previously reported papers for synergistic future opportunities of superior biomedical applications of carbon dots (CDs) in the management and diagnostics of nanomedicine fields.

15.
ACS Biomater Sci Eng ; 6(8): 4490-4501, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-33455181

RESUMO

Current antiretroviral HIV therapies continue to have problems related to procedural complications, toxicity, and uncontrolled side effects. In this study, amino phenylboronic acid-modified carbon dots (APBA-CDs) were introduced as a new nanoparticle-based on gp120 targeting that inhibits HIV-1 entry processes. Prolonged by simple pyrolysis for preparing carbon dots, this report further explores attributing amino phenylboronic acid on carbon dots, which prove the formation of graphene-like structures on carbon dots and boronic acid sites, thereby enabling the enhancement of positive optical properties through photoluminescent detection. Aside from performing well in terms of biocompatibility and low cytotoxicity (the CC50 reach up to 11.2 mg/mL), APBA-CDs exhibited superior capabilities in terms of prohibiting HIV-1 entry onto targeted MOLT-4 cells recognized by the delimitations of syncitia formation and higher ATP signal rather than bare carbon dots. The modified carbon dots also promote dual-action on HIV-1 treatment by both intracellularly and extracellularly viral blocking by combining with the Duviral drug, along with compressing p24 antigen signals that are better than APBA-CDs and Duviral itself.


Assuntos
Infecções por HIV , HIV-1 , Nanopartículas , Aminoácidos , Carbono , Infecções por HIV/tratamento farmacológico , Humanos
16.
RSC Adv ; 8(67): 38376-38383, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-35559085

RESUMO

In this study, carbon dots synthesized from bamboo leaf cellulose were used simultaneously as a staining agent and for doxorubicin delivery to target cancer cells. Owing to their nontoxic properties, the production of carbon dots from bamboo leaves is a green approach involving optimized application of bamboo tree waste. For multifunctional applications, the carbon dots were modified with 4-carboxybenzylboronic acid and doxorubicin to improve target specificity and drug delivery to HeLa tumor cells. The resulting modified carbon dots were characterized using different analytical techniques, which showed that they were biocompatible, nontoxic, and highly stable over a wide range of pH values and at high ionic strengths. Furthermore, in vitro confocal microscopy studies demonstrated their blue fluorescence and cellular pathway for entering HeLa cells via folate receptor-mediated endocytosis. Cell viability data and flow cytometry results also confirmed the selective uptake of the carbon dots by HeLa cells, which significantly enhanced cell cytotoxicity.

17.
J Mater Chem B ; 5(31): 6193-6216, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32264434

RESUMO

Surface modified and bioconjugated quantum dots (QDs) are of central importance in biomedical applications. In this regard, particularly I-III-VI QDs are of specific interest for biosensors, multimodal imaging, chemotherapy and for phototherapy in theranostic applications. Surface modification allows management of the physico-chemical properties, biocompatibility, and pharmacological properties. This review is anticipated to provide an introduction to new researchers about I-III-VI type QDs relating to their synthesis, optical properties, surface modification, bioconjugation, and their applications in biosensors, biological imaging, drug delivery, photothermal therapy and photodynamic therapy. We also highlight introducing magnetic metals and nanoparticles to these QDs for multimodal imaging applications and have addressed toxicity related issues. Finally, we summarize the results obtained and give a short outlook on future directions of I-III-VI based QDs for biomedical applications.

18.
J Mater Chem B ; 3(27): 5532-5543, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32262524

RESUMO

We describe the preparation of phenylboronic acid-modified magnetofluorescent nanoparticles (NPs) consisting of MnFe2O4 magnetic NPs conjugated to fluorescent carbon dots (Cdots). These NPs are useful for both optical and magnetic resonance imaging (MRI) modalities and could also be used to deliver the water-insoluble chemotherapy drug, doxorubicin (Dox). In this study, hydrophobic MnFe2O4 NPs were transferred from organic media to water by coordinating with 4-carboxyphenylboronic acid ligands, which also act as a cancer cell-specific targeting ligand and a site for conjugation to fluorescent Cdots, allowing the preparation of phenylboronic acid-modified magnetofluorescent NPs. The NPs displayed colloidal stability at different pH values and salt concentrations, and exhibited negligible cytotoxicity against HeLa cancer cells with >85% cell viability at concentrations of up to 500 µg mL-1. Confocal laser scanning microscopy showed the specificity of the magnetofluorescent NPs in HeLa cells. MRI experiments showed that the magnetofluorescent NPs were effective contrast enhancement agents in T2-weighted MRI. Moreover, the NPs were also found to be effective fluorescent markers in an in vivo experiment in zebrafish embryos. Dox was attached to the NPs by π-π stacking interactions, and was delivered in a targeted manner. The results indicated that these magnetofluorescent NPs could deliver Dox efficiently and induce an anticancer effect in HeLa cells, as confirmed by confocal laser scanning microscopy and in vitro cytotoxicity assays.

19.
Nanoscale ; 5(4): 1517-28, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23314757

RESUMO

We report a simple and effective approach for the preparation of double layer-encapsulated quantum dots (DL-Qdots) composed of alkyl-capping ligands to interdigitate with hydrophobic, protective agents on the surface of AgInS(2)/ZnS quantum dots (Qdots), which allow phase transfer of hydrophobic Qdots from the organic phase into the aqueous phase. The alkyl-capping ligands consist of a hydrophobic, aliphatic chain and different functional terminal groups (e.g., carboxyl, amine, hydroxyl, and thiol groups) that can serve as reactive sites to chemically couple with other materials. The resulting DL-Qdots bearing various functional groups retain good fluorescence properties and show excellent solubility as well as stability over a range of pH in the aqueous phase. Cytotoxicity studies of DL-Qdots bearing carboxyl groups (DL-Qdots-COOH) were carried out against human cervical (HeLa) cancer cells to elicit no apparent toxicity even at high concentrations of 300 µg mL(-1) and 24 h of incubation. To demonstrate their potential biomedical application, DL-Qdots-COOH were further conjugated with folate for staining in HeLa, human liver carcinoma (HepG2), and human breast (MCF-7) cancer cells. Confocal imaging characterization revealed that folate-conjugated DL-Qdots could target most specifically and effectively HeLa cells via folate receptor-mediated targeted delivery compared to HepG2 and MCF-7 cells. The generality and simplicity of this newly developed strategy can possibly be extended to a large variety of hydrophobic Qdots and nanocrystals whose surface protective agents have a long aliphatic chain.


Assuntos
Rastreamento de Células/métodos , Microscopia de Fluorescência/métodos , Pontos Quânticos , Células HeLa , Humanos , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...