Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(2): 025121, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648100

RESUMO

We describe design, implementation, and performance of an ultra-high vacuum (UHV) package for superconducting qubit chips or other surface sensitive quantum devices. The UHV loading procedure allows for annealing, ultra-violet light irradiation, ion milling, and surface passivation of quantum devices before sealing them into a measurement package. The package retains vacuum during the transfer to cryogenic temperatures by active pumping with a titanium getter layer. We characterize the treatment capabilities of the system and present measurements of flux tunable qubits with an average T1 = 84 µs and T2 echo=134µs after vacuum-loading these samples into a bottom loading dilution refrigerator in the UHV-package.

2.
Rev Sci Instrum ; 82(10): 104905, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22047321

RESUMO

We demonstrate a method to excite locally a controllable, non-thermal distribution of acoustic phonon modes ranging from 0 to ~200 GHz in a silicon microstructure, by decay of excited quasiparticle states in an attached superconducting tunnel junction (STJ). The phonons transiting the structure ballistically are detected by a second STJ, allowing comparison of direct with indirect transport pathways. This method may be applied to study how different phonon modes contribute to the thermal conductivity of nanostructures.

3.
Nature ; 463(7277): 72-5, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20010604

RESUMO

Cold, macroscopic mechanical systems are expected to behave contrary to our usual classical understanding of reality; the most striking and counterintuitive predictions involve the existence of states in which the mechanical system is located in two places simultaneously. Various schemes have been proposed to generate and detect such states, and all require starting from mechanical states that are close to the lowest energy eigenstate, the mechanical ground state. Here we report the cooling of the motion of a radio-frequency nanomechanical resonator by parametric coupling to a driven, microwave-frequency superconducting resonator. Starting from a thermal occupation of 480 quanta, we have observed occupation factors as low as 3.8 +/- 1.3 and expect the mechanical resonator to be found with probability 0.21 in the quantum ground state of motion. Further cooling is limited by random excitation of the microwave resonator and heating of the dissipative mechanical bath. This level of cooling is expected to make possible a series of fundamental quantum mechanical observations including direct measurement of the Heisenberg uncertainty principle and quantum entanglement with qubits.

4.
Nature ; 444(7115): 67-70, 2006 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17080084

RESUMO

Cooling of mechanical resonators is currently a popular topic in many fields of physics including ultra-high precision measurements, detection of gravitational waves and the study of the transition between classical and quantum behaviour of a mechanical system. Here we report the observation of self-cooling of a micromirror by radiation pressure inside a high-finesse optical cavity. In essence, changes in intensity in a detuned cavity, as caused by the thermal vibration of the mirror, provide the mechanism for entropy flow from the mirror's oscillatory motion to the low-entropy cavity field. The crucial coupling between radiation and mechanical motion was made possible by producing free-standing micromirrors of low mass (m approximately 400 ng), high reflectance (more than 99.6%) and high mechanical quality (Q approximately 10,000). We observe cooling of the mechanical oscillator by a factor of more than 30; that is, from room temperature to below 10 K. In addition to purely photothermal effects we identify radiation pressure as a relevant mechanism responsible for the cooling. In contrast with earlier experiments, our technique does not need any active feedback. We expect that improvements of our method will permit cooling ratios beyond 1,000 and will thus possibly enable cooling all the way down to the quantum mechanical ground state of the micromirror.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...