Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 738: 150547, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39178580

RESUMO

Bacteroides fragilis resides in mammals and human intestines and secrete series of proteins and molecules outside that cause various diseases such as colon cancer and chronic colitis in the host. B. fragilis has been shown to produce numerous proteins to the infected cell surface which are involved in host colonization, microbial interactions, and pathogenicity. Among secreted proteins, a B. fragilis toxin (BFT) is a metalloprotease and disintegrates the epithelial cell layer and causes colon cancers. Except the BFT, information of secreted proteases from B. fragilis is limited and no structure is available. Aspartic proteinase cleaves a peptide bond using two aspartate residues in a catalytic site in acidic conditions, pH ranges from 3 to 6. Aspartic proteinase have been characterized mostly from eukaryotes and retroviruses but rare from bacteria including B. fragilis. A putative aspartic proteinase is identified from the B. fragilis genome and prepared recombinantly as a Bacteroides aspartic proteinase (BAPtase). The crystal structure of BAPtase was determined at 2.6 Å. Structure-based comparative and endopeptidase analyses demonstrated that BAPtase presents a two-domain structure and is a functional aspartic proteinase in unusually weak basic pHs, which would propose to be a critical in bacterial pathogenesis and in host immunity. Our observations on the distinct structural and catalytic properties of BAPtase would benefit the future development of B. fragilis-specific drugs or preventatives.

2.
Biochem Biophys Res Commun ; 532(2): 251-257, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32868077

RESUMO

Since the first discovery of phenolic acid decarboxylase transcriptional regulator (PadR), its homologs have been identified mostly in bacterial species and constitute the PadR family. PadR family members commonly contain a winged helix-turn-helix (wHTH) motif and function as a transcription factor. However, the PadR family members are varied in terms of molecular size and structure. As a result, they are divided into PadR subfamily-1 and PadR subfamily-2. PadR subfamily-2 proteins have been reported in some pathogenic bacteria, including Listeria monocytogenes and Streptococcus pneumoniae, and implicated in drug resistance processes. Despite the growing numbers of known PadR family proteins and their critical functions in bacteria survival, biochemical and biophysical studies of the PadR subfamily-2 are limited. Here, we report the crystal structure of a PadR subfamily-2 member from Streptococcus pneumoniae (SpPadR) at a 2.40 Å resolution. SpPadR forms a dimer using its N-terminal and C-terminal helices. The two wHTH motifs of a SpPadR dimer expose their positively charged residues presumably to interact with DNA. Our structure-based mutational and biochemical study indicates that SpPadR specifically recognizes a palindromic nucleotide sequence upstream of its encoding region as a transcriptional regulator. Furthermore, comparative structural analysis of diverse PadR family members combined with a modeling study highlights the structural and regulatory features of SpPadR that are canonical to the PadR family or specific to the PadR subfamily-2.


Assuntos
Proteínas de Bactérias/química , Streptococcus pneumoniae/química , Fatores de Transcrição/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Conservada , Cristalografia por Raios X , DNA Bacteriano/metabolismo , Polarização de Fluorescência , Modelos Moleculares , Família Multigênica , Mutação , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tirosina/genética , Tirosina/metabolismo
3.
Metab Eng ; 60: 138-147, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32330653

RESUMO

Chinese hamster ovary (CHO) cells are most prevalently used for producing recombinant therapeutics in biomanufacturing. Recently, more rational and systems approaches have been increasingly exploited to identify key metabolic bottlenecks and engineering targets for cell line engineering and process development based on the CHO genome-scale metabolic model which mechanistically characterizes cell culture behaviours. However, it is still challenging to quantify plausible intracellular fluxes and discern metabolic pathway usages considering various clonal traits and bioprocessing conditions. Thus, we newly incorporated enzyme kinetic information into the updated CHO genome-scale model (iCHO2291) and added enzyme capacity constraints within the flux balance analysis framework (ecFBA) to significantly reduce the flux variability in biologically meaningful manner, as such improving the accuracy of intracellular flux prediction. Interestingly, ecFBA could capture the overflow metabolism under the glucose excess condition where the usage of oxidative phosphorylation is limited by the enzyme capacity. In addition, its applicability was successfully demonstrated via a case study where the clone- and media-specific lactate metabolism was deciphered, suggesting that the lactate-pyruvate cycling could be beneficial for CHO cells to efficiently utilize the mitochondrial redox capacity. In summary, iCHO2296 with ecFBA can be used to confidently elucidate cell cultures and effectively identify key engineering targets, thus guiding bioprocess optimization and cell engineering efforts as a part of digital twin model for advanced biomanufacturing in future.


Assuntos
Células CHO/metabolismo , Enzimas/genética , Enzimas/metabolismo , Animais , Cricetinae , Cricetulus , Tamanho do Genoma , Glucose/metabolismo , Cinética , Ácido Láctico/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Modelos Genéticos , Oxirredução , Ácido Pirúvico/metabolismo
4.
Biotechnol Bioeng ; 116(9): 2117-2129, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31066037

RESUMO

Chinese hamster ovary (CHO) cells are the most prevalent mammalian cell factories for producing recombinant therapeutic proteins due to their ability to synthesize human-like post-translational modifications and ease of maintenance in suspension cultures. Currently, a wide variety of CHO host cell lines has been developed; substantial differences exist in their phenotypes even when transfected with the same target vector. However, relatively less is known about the influence of their inherited genetic heterogeneity on phenotypic traits and production potential from the bioprocessing point of view. Herein, we present a global transcriptome and proteome profiling of three commonly used parental cell lines (CHO-K1, CHO-DXB11, and CHO-DG44) in suspension cultures and further report their growth-related characteristics, and N- and O-glycosylation patterns of host cell proteins (HCPs). The comparative multi-omics and subsequent genome-scale metabolic network model-based enrichment analyses indicated that some physiological variations of CHO cells grown in the same media are possibly originated from the genetic deficits, particularly in the cell-cycle progression. Moreover, the dihydrofolate reductase deficient DG44 and DXB11 possess relatively less active metabolism when compared to K1 cells. The protein processing abilities and the N- and O-glycosylation profiles also differ significantly across the host cell lines, suggesting the need to select host cells in a rational manner for the cell line development on the basis of recombinant protein being produced.


Assuntos
Proteoma/genética , Proteoma/metabolismo , Transcriptoma , Animais , Células CHO , Cricetulus , Glicosilação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
5.
Sensors (Basel) ; 19(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897792

RESUMO

In action recognition research, two primary types of information are appearance and motion information that is learned from RGB images through visual sensors. However, depending on the action characteristics, contextual information, such as the existence of specific objects or globally-shared information in the image, becomes vital information to define the action. For example, the existence of the ball is vital information distinguishing "kicking" from "running". Furthermore, some actions share typical global abstract poses, which can be used as a key to classify actions. Based on these observations, we propose the multi-stream network model, which incorporates spatial, temporal, and contextual cues in the image for action recognition. We experimented on the proposed method using C3D or inflated 3D ConvNet (I3D) as a backbone network, regarding two different action recognition datasets. As a result, we observed overall improvement in accuracy, demonstrating the effectiveness of our proposed method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...