Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38946967

RESUMO

We investigated the impact of antiviral treatment on the emergence of SARS-CoV-2 resistance during persistent infections in immunocompromised patients (n=15). All patients received remdesivir and some also received nirmatrelvir-ritonavir or monoclonal antibodies. Sequence analysis showed that nine patients carried viruses with mutations in the nsp12 (RNA dependent RNA polymerase), while four had viruses with nsp5 (3C protease) mutations. Infectious SARS-CoV-2 with a double mutation in nsp5 (T169I) and nsp12 (V792I) was recovered from respiratory secretions 77 days after initial COVID-19 diagnosis from a patient treated with remdesivir and nirmatrelvir-ritonavir. In vitro characterization confirmed its decreased sensitivity to remdesivir and nirmatrelvir, which was overcome by combined antiviral treatment. Studies in golden Syrian hamsters demonstrated efficient transmission to contact animals. This study documents the isolation of SARS-CoV-2 carrying resistance mutations to both nirmatrelvir and remdesivir from a patient and demonstrates its transmissibility in vivo.

2.
J Virol ; 98(6): e0177823, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38785423

RESUMO

Obesity is well established as a risk factor for many noncommunicable diseases; however, its consequences for infectious disease are poorly understood. Here, we investigated the impact of host obesity on influenza A virus (IAV) genetic variation using a diet-induced obesity ferret model and the A/Hong Kong/1073/1999 (H9N2) strain. Using a co-caging study design, we investigated the maintenance, generation, and transmission of intrahost IAV genetic variation by sequencing viral genomic RNA obtained from nasal wash samples over multiple days of infection. We found evidence for an enhanced role of positive selection acting on de novo mutations in obese hosts that led to nonsynonymous changes that rose to high frequency. In addition, we identified numerous cases of mutations throughout the genome that were specific to obese hosts and that were preserved during transmission between hosts. Despite detection of obese-specific variants, the overall viral genetic diversity did not differ significantly between obese and lean hosts. This is likely due to the high supply rate of de novo variation and common evolutionary adaptations to the ferret host regardless of obesity status, which we show are mediated by variation in the hemagglutinin and polymerase genes (PB2 and PB1). We also identified defective viral genomes (DVGs) that were found uniquely in either obese or lean hosts, but the overall DVG diversity and dynamics did not differ between the two groups. Our study suggests that obesity may result in a unique selective environment impacting intrahost IAV evolution, highlighting the need for additional genetic and functional studies to confirm these effects.IMPORTANCEObesity is a chronic health condition characterized by excess adiposity leading to a systemic increase in inflammation and dysregulation of metabolic hormones and immune cell populations. Influenza A virus (IAV) is a highly infectious pathogen responsible for seasonal and pandemic influenza. Host risk factors, including compromised immunity and pre-existing health conditions, can contribute to increased infection susceptibility and disease severity. During viral replication in a host, the negative-sense single-stranded RNA genome of IAV accumulates genetic diversity that may have important consequences for viral evolution and transmission. Our study provides the first insight into the consequences of host obesity on viral genetic diversity and adaptation, suggesting that host factors associated with obesity alter the selective environment experienced by a viral population, thereby impacting the spectrum of genetic variation.


Assuntos
Furões , Variação Genética , Vírus da Influenza A , Obesidade , Infecções por Orthomyxoviridae , Animais , Obesidade/genética , Obesidade/virologia , Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/virologia , Furões/virologia , Genoma Viral , Mutação , RNA Viral/genética , Modelos Animais de Doenças
3.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38410446

RESUMO

SARS-CoV-2 is the causative agent of COVID-19 and continues to pose a significant public health threat throughout the world. Following SARS-CoV-2 infection, virus-specific CD4+ and CD8+ T cells are rapidly generated to form effector and memory cells and persist in the blood for several months. However, the contribution of T cells in controlling SARS-CoV-2 infection within the respiratory tract are not well understood. Using C57BL/6 mice infected with a naturally occurring SARS-CoV-2 variant (B.1.351), we evaluated the role of T cells in the upper and lower respiratory tract. Following infection, SARS-CoV-2-specific CD4+ and CD8+ T cells are recruited to the respiratory tract and a vast proportion secrete the cytotoxic molecule Granzyme B. Using antibodies to deplete T cells prior to infection, we found that CD4+ and CD8+ T cells play distinct roles in the upper and lower respiratory tract. In the lungs, T cells play a minimal role in viral control with viral clearance occurring in the absence of both CD4+ and CD8+ T cells through 28 days post-infection. In the nasal compartment, depletion of both CD4+ and CD8+ T cells, but not individually, results in persistent and culturable virus replicating in the nasal compartment through 28 days post-infection. Using in situ hybridization, we found that SARS-CoV-2 infection persisted in the nasal epithelial layer of tandem CD4+ and CD8+ T cell-depleted mice. Sequence analysis of virus isolates from persistently infected mice revealed mutations spanning across the genome, including a deletion in ORF6. Overall, our findings highlight the importance of T cells in controlling virus replication within the respiratory tract during SARS-CoV-2 infection.

4.
Virus Evol ; 9(1): vead027, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207002

RESUMO

Influenza A virus (IAV) circulation patterns differ in North America and South America, with influenza seasons often characterized by different subtypes and strains. However, South America is relatively undersampled considering the size of its population. To address this gap, we sequenced the complete genomes of 220 IAVs collected between 2009 and 2016 from hospitalized patients in southern Brazil. New genetic drift variants were introduced into southern Brazil each season from a global gene pool, including four H3N2 clades (3c, 3c2, 3c3, and 3c2a) and five H1N1pdm clades (clades 6, 7, 6b, 6c, and 6b1). In 2016, H1N1pdm viruses belonging to a new 6b1 clade caused a severe influenza epidemic in southern Brazil that arrived early and spread rapidly, peaking mid-autumn. Inhibition assays showed that the A/California/07/2009(H1N1) vaccine strain did not protect well against 6b1 viruses. Phylogenetically, most 6b1 sequences that circulated in southern Brazil belong to a single transmission cluster that rapidly diffused across susceptible populations, leading to the highest levels of influenza hospitalization and mortality seen since the 2009 pandemic. Continuous genomic surveillance is needed to monitor rapidly evolving IAVs for vaccine strain selection and understand their epidemiological impact in understudied regions.

5.
mBio ; 13(6): e0254022, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36300929

RESUMO

Airborne transmission in ferrets is a key component of pandemic risk assessment. However, some emerging avian influenza viruses transmit between ferrets but do not spread in humans. Therefore, we evaluated sequential rounds of airborne transmission as an approach to enhance the predictive accuracy of the ferret model. We reasoned that infection of ferrets via the respiratory route and onward transmission would more closely model transmission in humans. We hypothesized that pandemic and seasonal viruses would transmit efficiently over two rounds of transmission, while emerging avian viruses would fail to transmit in a second round. The 2009 pandemic H1N1 (pdm09) and seasonal H3N2 viruses were compared to avian-origin H7N9 and H3N8 viruses. Depending on the virus strain, transmission efficiency varied from 50 to 100% during the first round of transmission; the efficiency for each virus did not change during the second round, and viral replication kinetics in both rounds of transmission were similar. Both the H1N1pdm09 and H7N9 viruses acquired specific mutations during sequential transmission, while the H3N2 and H3N8 viruses did not; however, a global analysis of host-adaptive mutations revealed that minimal changes were associated with transmission of H1N1 and H3N2 viruses, while a greater number of changes occurred in the avian H3N8 and H7N9 viruses. Thus, influenza viruses that transmit in ferrets maintain their transmission efficiency through serial rounds of transmission. This answers the question of whether ferrets can propagate viruses through more than one round of airborne transmission and emphasizes that transmission in ferrets is necessary but not sufficient to infer transmissibility in humans. IMPORTANCE Airborne transmission in ferrets is used to gauge the pandemic potential of emerging influenza viruses; however, some emerging influenza viruses that transmit between ferrets do not spread between humans. Therefore, we evaluated sequential rounds of airborne transmission in ferrets as a strategy to enhance the predictive accuracy of the ferret model. Human influenza viruses transmitted efficiently (>83%) over two rounds of airborne transmission, demonstrating that, like humans, ferrets infected by the respiratory route can propagate the infection onward through the air. However, emerging avian influenza viruses with associated host-adaptive mutations also transmitted through sequential transmission. Thus, airborne transmission in ferrets is necessary but not sufficient to infer transmissibility in humans, and sequential transmission did not enhance pandemic risk assessment.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N8 , Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Animais , Furões , Vírus da Influenza A Subtipo H3N2 , Subtipo H7N9 do Vírus da Influenza A/genética , Aves
6.
Intellect Dev Disabil ; 60(3): 199-211, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35640602

RESUMO

The roles and responsibilities of direct support professionals (DSPs) are evolving. This qualitative study explores how DSPs perceive their role and explores those perceptions across DSPs working in traditional, intermediate, and innovative agencies, as defined for the study. Examining 440 DSP survey responses and interviews with 24 DSPs, we found that DSPs working in more individualized settings tended to have expanded role functions (focused on promoting self-determination and community engagement). DSPs working in more traditional settings tended to have more care-focused role functions (concentrated on activities of daily living, medication administration, and health and safety). The role perception of DSPs at intermediate agencies and role conflict due to competing responsibilities demonstrate a need to systemically transform future service delivery.


Assuntos
Deficiência Intelectual , Atividades Cotidianas , Humanos , Pesquisa Qualitativa , Inquéritos e Questionários
7.
J Virol ; 96(2): e0177421, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34757841

RESUMO

Alphaviruses and flaviviruses have class II fusion glycoproteins that are essential for virion assembly and infectivity. Importantly, the tip of domain II is structurally conserved between the alphavirus and flavivirus fusion proteins, yet whether these structural similarities between virus families translate to functional similarities is unclear. Using in vivo evolution of Zika virus (ZIKV), we identified several novel emerging variants, including an envelope glycoprotein variant in ß-strand c (V114M) of domain II. We have previously shown that the analogous ß-strand c and the ij loop, located in the tip of domain II of the alphavirus E1 glycoprotein, are important for infectivity. This led us to hypothesize that flavivirus E ß-strand c also contributes to flavivirus infection. We generated this ZIKV glycoprotein variant and found that while it had little impact on infection in mosquitoes, it reduced replication in human cells and mice and increased virus sensitivity to ammonium chloride, as seen for alphaviruses. In light of these results and given our alphavirus ij loop studies, we mutated a conserved alanine at the tip of the flavivirus ij loop to valine to test its effect on ZIKV infectivity. Interestingly, this mutation inhibited infectious virion production of ZIKV and yellow fever virus, but not West Nile virus. Together, these studies show that shared domains of the alphavirus and flavivirus class II fusion glycoproteins harbor structurally analogous residues that are functionally important and contribute to virus infection in vivo.IMPORTANCE Arboviruses are a significant global public health threat, yet there are no antivirals targeting these viruses. This problem is in part due to our lack of knowledge of the molecular mechanisms involved in the arbovirus life cycle. In particular, virus entry and assembly are essential processes in the virus life cycle and steps that can be targeted for the development of antiviral therapies. Therefore, understanding common, fundamental mechanisms used by different arboviruses for entry and assembly is essential. In this study, we show that flavivirus and alphavirus residues located in structurally conserved and analogous regions of the class II fusion proteins contribute to common mechanisms of entry, dissemination, and infectious-virion production. These studies highlight how class II fusion proteins function and provide novel targets for development of antivirals.


Assuntos
Alphavirus/fisiologia , Flavivirus/fisiologia , Proteínas Virais de Fusão/metabolismo , Vírion/metabolismo , Replicação Viral , Células A549 , Alphavirus/efeitos dos fármacos , Cloreto de Amônio/farmacologia , Animais , Culicidae/virologia , Flavivirus/efeitos dos fármacos , Humanos , Interferon Tipo I/deficiência , Camundongos , Camundongos Mutantes , Mutação , Domínios Proteicos , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Vírion/genética , Montagem de Vírus/genética , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/genética , Zika virus/efeitos dos fármacos , Zika virus/fisiologia , Infecção por Zika virus/virologia
8.
Intellect Dev Disabil ; 59(3): 204-216, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030180

RESUMO

The Direct Support Professional (DSP) workforce has experienced a multidecade period of disinvestment in the field leading to DSPs being in high demand, while efforts to recruit, train, and retain these professionals pose challenges. To gain a better understanding of the needs of DSPs themselves, 440 survey responses and 24 interviews of DSPs were analyzed to understand what would help DSPs do their jobs better and ensure they feel more supported by their agencies. Results revealed six distinct support needs: (a) ensure quality participatory management practices, (b) provide fair compensation and recognition, (c) enhance access to training opportunities, (d) assure reliable and quality staffing, (e) adequately fund basic needs of both programs and people receiving support, and (f) maintain reasonable job expectations.


Assuntos
Deficiência Intelectual , Local de Trabalho , Humanos , Inquéritos e Questionários , Recursos Humanos
9.
Virus Evol ; 6(2): veaa092, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33408879

RESUMO

The fundamental basis of how arboviruses evolve in nature and what regulates the adaptive process remain unclear. To address this problem, we established a Zika virus (ZIKV) vector-borne transmission system in immunocompromised mice to study the evolutionary characteristics of ZIKV infection. Using this system, we defined factors that influence the evolutionary landscape of ZIKV infection and show that transmission route and specific organ microenvironments impact viral diversity and defective viral genome production. In addition, we identified in mice the emergence of ZIKV mutants previously seen in natural infections, including variants present in currently circulating Asian and American strains, as well as mutations unique to the mouse infections. With these studies, we have established an insect-to-mouse transmission model to study ZIKV evolution in vivo. We also defined how organ microenvironments and infection route impact the ZIKV evolutionary landscape, providing a deeper understanding of the factors that regulate arbovirus evolution and emergence.

10.
Artigo em Inglês | MEDLINE | ID: mdl-31871239

RESUMO

The error-prone replication and life cycle of influenza virus generate a diverse set of genetic variants. Transmission between hosts strictly limits both the number of virus particles and the genetic diversity of virus variants that reach a new host and establish an infection. This sharp reduction in the virus population at transmission--the transmission bottleneck--is significant to the evolution of influenza virus and to its epidemic and pandemic potential. This review describes transmission bottlenecks and their effect on the diversity and evolution of influenza virus. It also reviews the methods for calculating and predicting bottleneck sizes and highlights the host and viral determinants of influenza transmissibility.


Assuntos
Influenza Humana/transmissão , Influenza Humana/virologia , Orthomyxoviridae/genética , Replicação Viral/fisiologia , Animais , Genoma Viral , Humanos , Mutação , Zoonoses Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...