Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Meat Sci ; 213: 109510, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38598967

RESUMO

This research aimed to explore the potential influence of mitochondria on the rate of anaerobic glycolysis. We hypothesized that mitochondria could reduce the rate of anaerobic glycolysis and pH decline by metabolizing a portion of glycolytic pyruvate. We utilized an in vitro model and incorporated CPI-613 and Avidin to inhibit pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC), respectively. Four treatments were tested: 400 µM CPI-613, 1.5 U/ml Avidin, 400 µM CPI-613 + 1.5 U/ml Avidin, or control. Glycolytic metabolites and pH of the in vitro model were evaluated throughout a 1440-min incubation period. CPI-613-containing treatments, with or without Avidin, decreased pH levels and increased glycogen degradation and lactate accumulation compared to the control and Avidin treatments (P < 0.05), indicating increased glycolytic flux. In a different experiment, two treatments, 400 µM CPI-613 or control, were employed to track the fates of pyruvate using [13C6]glucose. CPI-613 reduced the contribution of glucose carbon to tricarboxylic acid cycle intermediates compared to control (P < 0.05). To test whether the acceleration of acidification in reactions containing CPI-613 was due to an increase in the activity of key enzymes of glycogenolysis and glycolysis, we evaluated the activities of glycogen phosphorylase, phosphofructokinase, and pyruvate kinase in the presence or absence of 400 µM CPI-613. The CPI-613 treatment did not elicit an alteration in the activity of these three enzymes. These findings indicate that inhibiting PDH increases the rate of anaerobic glycolysis and pH decline, suggesting that mitochondria are potential regulators of postmortem metabolism.


Assuntos
Glicogênio , Glicólise , Complexo Piruvato Desidrogenase , Animais , Anaerobiose , Glucose/metabolismo , Glicogênio/metabolismo , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Mudanças Depois da Morte , Piruvato Carboxilase/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Suínos
2.
Foods ; 11(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35885335

RESUMO

The objective of this study was to compare the Color Muse Spectro 1 sensor to the HunterLab MiniScan XE Plus spectrophotometer for evaluating beef color. Color coordinates (lightness (L*), redness (a*), yellowness (b*), chroma (C*), and hue (h*)), myoglobin redox forms (metmyoglobin (MMb), deoxymyoglobin (DMb), and oxymyoglobin (OMb)), and metmyoglobin reducing ability (MRA) were measured on beef steaks over a 5-days storage period. The results indicated that L*, b*, C*, MMb%, OMb%, and MRA% values obtained with Spectro 1 were comparable to those of MiniScan. However, Spectro 1 values for a* were overestimated compared to MiniScan (p < 0.05), whereas those for h* and DMb% were underestimated (p < 0.05). Regardless, Spectro 1 had the capability to detect changes in color coordinates, myoglobin forms, and MRA throughout the storage period. Bland−Altman plots demonstrated that L*, b*, and C* are interchangeable between the two instruments, but it was not the case for a*, h*, myoglobin forms, and MRA. Color coordinates measured by Spectro 1 exhibited excellent stability over time, evidenced by the low total color difference (ΔE*ab) values. Collectively, these findings indicate that Spectro 1 is a potential alternative spectrophotometer for studying meat color and myoglobin redox forms.

3.
J Anim Sci ; 100(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908782

RESUMO

Two methods that the beef cattle industry can use to improve efficiency, sustainability, and economic viability are growth promotants and crossbreeding cattle of different breed types. In the United States, over 90% of cattle receive an anabolic implant at some point during production resulting in an overall increase in skeletal muscle growth. Recent research suggests that the two main cattle breed types, Bos indicus and Bos taurus, respond differently to anabolic implants. The objective of this study was to characterize changes that occur in skeletal muscle following implanting in Bos indicus influenced steers or Bos taurus steers. Twenty steers were stratified by initial weight in a 2 × 2 factorial design examining two different breeds: Angus (AN; n = 10) or Santa Gertrudis influenced (SG; n = 10), and two implant strategies: no implant (CON; n = 10) or a combined implant containing 120 mg TBA and 24 mg E2 (IMP; n = 10; Revalor-S, Merck Animal Health). Skeletal muscle biopsies were taken from the longissimus thoracis (LT) 2 and 10 d post-implantation. The mRNA abundance of 24 genes associated with skeletal muscle growth were examined, as well as the protein expression of µ-calpain and calpastatin. Succinate dehydrogenase mRNA abundance was impacted (P = 0.05) by a breed × treatment interaction 2 d post-implanting, with SG-CON having a greater increased abundance than all other steers. A tendency for a breed × treatment interaction was observed for calpain-6 mRNA (P = 0.07), with SG-CON having greater abundance than AN-CON and SG-IMP. Additionally, calpastatin protein expression was altered (P = 0.01) by a breed × treatment interaction, with SG-CON and SG-IMP steers having increased expression (P = 0.01) compared with AN-CON steers. At 2 d post-implanting, a breed × treatment interaction was observed with SG-CON steers having greater (P = 0.05) mRNA abundance of mitogen-activated protein kinase compared with AN-CON steers. Furthermore, breed affected (P = 0.05) calpastatin abundance with AN steers having increased (P = 0.05) abundance 2 d post-implanting compared with SG steers. Meanwhile, implants tended to affect (P = 0.09) muscle RING finger protein-1 mRNA abundance, with CON steers having increased (P = 0.09) abundance compared with that of IMP steers. These findings suggest that cattle breed type and anabolic implants impact calpastatin expression and mRNA abundance associated with protein turnover in the LT of feedlot steers 2 and 10 d post-implantation.


Two methods that the beef cattle industry can use to potentially improve efficiency, sustainability, and economic viability are growth promotants and crossbreeding cattle of different breed types. In the United States, over 90% of cattle receive at least one anabolic implant during the production cycle resulting in improvements in production and overall economic and environmental sustainability. Research suggests that the two main cattle breed types, Bos indicus and Bos taurus, respond differently to different anabolic implant strategies. The objective of this study was to characterize changes that occur in the skeletal muscle following implanting in Bos indicus influenced animals and Bos taurus animals. This research measured mRNA abundance of 24 genes associated with skeletal muscle growth, and protein expression of calpain-1 and calpastatin. The findings of this research suggest that anabolic implants and cattle breed type interact to cause changes in mRNA abundance in the longissimus thoracis that are related to protein turnover of skeletal muscle. Furthermore, calpastatin protein abundance was also altered by this breed × treatment interaction. This research demonstrates that anabolic implants cause molecular changes in skeletal muscle of feedlot steers, with some of these changes being breed dependent.


Assuntos
Calpaína , Acetato de Trembolona , Animais , Proteínas de Ligação ao Cálcio/genética , Calpaína/metabolismo , Bovinos , Músculo Esquelético/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
J Anim Sci ; 100(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908783

RESUMO

Tenderness is considered as one of the most important quality attributes dictating consumers' overall satisfaction and future purchasing decisions of fresh beef. However, the ability to predict and manage tenderness has proven very challenging due to the numerous factors that contribute to variation in end-product tenderness. Proteomic profiling allows for global examination of differentially abundant proteins in the meat and can provide new insight into biological mechanisms related to meat tenderness. Hence, the objective of this study was to examine proteomic profiles of beef longissimus lumborum (LL) steaks varying in tenderness, with the intention to identify potential biomarkers related to tenderness. For this purpose, beef LL muscle samples were collected from 99 carcasses at 0 and 384 h postmortem. Based on Warner-Bratzler shear force values at 384 h, 16 samples with the highest (intermediate tender, IT) and lowest (very tender, VT) values were selected to be used for proteomic analysis in this study (n = 8 per category). Using tandem mass tag-based proteomics, a total of 876 proteins were identified, of which 51 proteins were differentially abundant (P < 0.05) between the tenderness categories and aging periods. The differentially identified proteins encompassed a wide array of biological processes related to muscle contraction, calcium signaling, metabolism, extracellular matrix organization, chaperone, and apoptosis. A greater (P < 0.05) relative abundance of proteins associated with carbohydrate metabolism and apoptosis, and a lower (P < 0.05) relative abundance of proteins involved in muscle contraction was observed in the VT steaks after aging compared with the IT steaks, suggesting that more proteolysis occurred in the VT steaks. This may be explained by the greater (P < 0.05) abundance of chaperonin and calcium-binding proteins in the IT steaks, which could have limited the extent of postmortem proteolysis in these steaks. In addition, a greater (P < 0.05) abundance of connective tissue proteins was also observed in the IT steaks, which likely contributed to the difference in tenderness due to added background toughness. The established proteomic database obtained in this study may provide a reference for future research regarding potential protein biomarkers that are associated with meat tenderness.


Among all the eating quality attributes of beef, tenderness is considered an essential factor influencing consumers' overall satisfaction and future purchasing decisions. However, managing and predicting tenderness of meat products is challenging for the meat industry, as many factors can influence this attribute. The goal of this research was to examine variations in protein abundance between two categories of beef strip steaks varying in tenderness, with the intention to identify proteins related to beef tenderness/toughness. Overall, the results from this study suggest that tender steaks experienced greater protein degradation during aging than tougher steaks, which likely contributed to their improved tenderness. Furthermore, a greater abundance of connective tissue proteins, which are associated with meat toughness, was observed in the tougher steaks. Our results collectively indicate that the difference in tenderness between the two groups of steaks may be due to multiple proteins involved in several biological processes.


Assuntos
Proteoma , Proteômica , Animais , Bovinos , Carne/análise , Músculo Esquelético/fisiologia , Fatores de Tempo
5.
Meat Sci ; 189: 108828, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35461106

RESUMO

The roles of energy pathways in postmortem muscles are still debated. In this study, the contributions of different pathways to ATP production and pH variations were analyzed by using a kinetic model based on data from beef longissimus lumborum. Phosphocreatine represents over 92% of the initial ATP production but, after 24 h, glycolysis, phosphocreatine, myokinase reaction, and aerobic respiration contribute, respectively, 89.44%, 5.26%, 4.44%, and 0.86% of the cumulative amount of ATP produced. ATP hydrolysis and glycolysis result in 0.52 and 0.6 units of pH decline, respectively, at 24 h with ATP hydrolysis accounting for most of the early decline. Phosphocreatine, myokinase reaction, and aerobic respiration lead to, respectively, 0.08, 0.07, and 0.004 units of pH increase after 24 h though phosphocreatine is depleted within the first 30 min. Furthermore, electrical stimulation affects pH primarily through ATP hydrolysis and glycolysis. The initial muscle oxygen saturation level and phosphocreatine content affect pH but the influences are small.


Assuntos
Trifosfato de Adenosina , Adenilato Quinase , Animais , Bovinos , Fosfocreatina/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Músculos/metabolismo , Glicólise , Concentração de Íons de Hidrogênio , Metabolismo Energético
6.
Meat Sci ; 183: 108646, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34392092

RESUMO

The objective of this study was to investigate if ultrasonication of bovine longissimus thoracis et lumborum (LTL) steaks increases calpain-1 and caspase-3 activities, and if so, to explore the underlying mechanisms that trigger their activation. Post-rigor bovine LTL steaks were subjected to ultrasonication at 40 kHz and 12 W/cm2 for 40 min and subsequently aged for 14 d at 4 °C. Ultrasonication improved beef tenderness (P < 0.05) without negatively impacting pH, color, or cook loss (P > 0.05). Improved tenderness in the ultrasonicated steaks was associated with greater degradation of titin, desmin, troponin-T, and calpastatin and increased calpain-1 autolysis and caspase-3 activity (P < 0.05). In addition, ultrasonicated steaks had greater levels of cytosolic calcium and reactive oxygen species and lower mitochondrial oxygen consumption rate (P < 0.05). These data indicate that improved beef tenderness following ultrasonication is, in part, a function of increased calpain-1 and caspase-3 activities, potentially by elevating cytosolic calcium and inducing mitochondrial dysfunction, respectively.


Assuntos
Calpaína/metabolismo , Caspase 3/metabolismo , Carne Vermelha/análise , Ondas Ultrassônicas , Animais , Cálcio/metabolismo , Bovinos , Masculino , Mitocôndrias/efeitos da radiação , Resistência ao Cisalhamento
7.
Foods ; 10(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34828989

RESUMO

Preservation of meat through freezing entails the use of low temperatures to extend a product's shelf-life, mainly by reducing the rate of microbial spoilage and deterioration reactions. Characteristics of meat that are important to be preserve include tenderness, water holding capacity, color, and flavor. In general, freezing improves meat tenderness, but negatively impacts other quality attributes. The extent to which these attributes are affected depends on the ice crystalline size and distribution, which itself is governed by freezing rate and storage temperature and duration. Although novel technology has made it possible to mitigate the negative effects of freezing, the complex nature of muscle tissue makes it difficult to accurately and consistently predict outcome of meat quality following freezing. This review provides an overview of the current understanding of energy and heat transfer during freezing and its effect on meat quality. Furthermore, the review provides an overview of the current novel technologies utilized to improve the freezing process.

8.
Meat Sci ; 182: 108634, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34284221

RESUMO

A kinetic model structure was developed to describe the major variations in energy metabolism and to gain further understanding of pH changes in postmortem muscle experimentally observed with an in vitro glycolytic system. Comparison with experiments showed that the model could describe the kinetics of major metabolites and pH under varied conditions. Optimized model parameters definitively and consistently showed the observed effects of mitochondria, indicating a desirable level of model complexity. Simulation and analysis of pH variations based on the model suggested that phosphofructokinase activity has the strongest impact on the rate and extent of postmortem pH decline. Postmortem pH is also influenced by rates of ATP hydrolysis and glycolysis, and to a much lesser extent, pH buffering capacity. Other reactions, including those mediated by creatine kinase, adenylate kinase, and AMP deaminase, have minimal effects on postmortem pH decline.


Assuntos
Metabolismo Energético , Músculo Esquelético/metabolismo , Carne de Porco/análise , Animais , Feminino , Glicólise , Concentração de Íons de Hidrogênio , Cinética , Masculino , Mitocôndrias/metabolismo , Modelos Estatísticos , Músculo Esquelético/química , Sus scrofa
9.
Meat Sci ; 176: 108486, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33711679

RESUMO

The purpose of this study was to develop an in situ model for dark cutting beef. Iodoacetic acid (IAA) was injected at different concentrations (0, 0.625, 1.25, 2.5, 3.75, 5, or 10 µmol/g of muscle) into pre-rigor bovine longissimus thoracis et lumborum (LTL) muscle samples, and pH and color were evaluated over a 48 h period. Injection of IAA blunted muscle pH decline and lowered lightness (L*), redness (a*), and yellowness (b*) values (P ≤ 0.05) in a concentration dependent fashion. In a follow-up study, LTL muscle samples were injected with 5 µmol IAA/g of muscle to test whether IAA maintains its effect over a 336 h post-mortem storage period. In addition to inhibiting pH decline and decreasing color values, IAA increased LTL muscle water holding capacity (WHC) and firmness (P ≤ 0.05) throughout the 336 h post-mortem storage period. Collectively, these data suggest that pre-rigor injection of IAA generates beef with dark cutting-like characteristics.


Assuntos
Ácido Iodoacético/administração & dosagem , Carne Vermelha/análise , Animais , Bovinos , Cor , Inibidores Enzimáticos/administração & dosagem , Concentração de Íons de Hidrogênio , Masculino , Músculo Esquelético/química
10.
Annu Rev Anim Biosci ; 9: 355-377, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33338390

RESUMO

Fresh meat quality is greatly determined through biochemical changes occurring in the muscle during its conversion to meat. These changes are key to imparting a unique set of characteristics on fresh meat, including its appearance, ability to retain moisture, and texture. Skeletal muscle is an extremely heterogeneous tissue composed of different types of fibers that have distinct contractile and metabolic properties. Fiber type composition determines the overall biochemical and functional properties of the muscle tissue and, subsequently, its quality as fresh meat. Therefore, changing muscle fiber profile in living animals through genetic selection or environmental factors has the potential to modulate fresh meat quality. We provide an overview of the biochemical processes responsible for the development of meat quality attributes and an overall understanding of the strong relationship between muscle fiber profile and meat quality in different meat species.


Assuntos
Qualidade dos Alimentos , Carne/análise , Fibras Musculares Esqueléticas/metabolismo , Animais , Fibras Musculares Esqueléticas/química , Músculo Esquelético/fisiologia
11.
Meat Sci ; 172: 108316, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32971310

RESUMO

The purpose of this study was to test mitochondrial functionality under conditions simulating postmortem metabolism. Isolated mitochondria from porcine longissimus lumborum (LLM) and masseter (MM) muscles were incorporated into an in vitro model that mimics postmortem metabolism. pH and 13C-enrichment of glycolytic and tricarboxylic acid (TCA) cycle intermediates were evaluated at 0, 15, 30, 120, 240, and 1440 min. Addition of mitochondria to the in vitro model lowered its pH at 240 min compared with control. Reactions containing mitochondria had lower pyruvate and lactate [M + 2] and [M + 3] isotopomers at 240 and 1440 min than controls. Furthermore, LLM lowered the enrichment of [M + 2], [M + 3], and [M + 4]α-ketoglutarate at 1440 min compared with MM and control. Succinate [M + 2] and [M + 3] were greater in MM than the control and LLM. [M + 3]fumarate was greater in control at 240 and 1440 min than LLM and MM treatments. Our data indicated that mitochondria are capable of mobilizing pyruvate generated though glycolysis under conditions simulating muscle postmortem metabolism.


Assuntos
Ciclo do Ácido Cítrico/fisiologia , Glicólise/fisiologia , Mitocôndrias/metabolismo , Suínos/metabolismo , Animais , Concentração de Íons de Hidrogênio , Músculo Esquelético/metabolismo , Mudanças Depois da Morte
12.
Meat Sci ; 170: 108266, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32739757

RESUMO

Our objective was to investigate possible differences in muscle fiber characteristics of beef longissimus lumborum (LL) steaks varying in tenderness (very tender vs. intermediate tender). Therefore, the relative abundance of myosin heavy chain (MHC) isoforms and activity/abundance of several glycolytic and oxidative enzymes were compared between the two steak groups. Greater (P < 0.05) content of MHC type IIa (MHC-IIa) and activities of phosphofructokinase (PFK) and glycogen phosphorylase (GP) were observed in the very tender steaks. Conversely, intermediate tender steaks had greater (P < 0.05) contents of MHC type I (MHC-I) and succinate dehydrogenase (SDH) and greater citrate synthase (CS) activity. Increased tenderness in the very tender steaks was associated with greater (P < 0.05) proteolysis as evaluated by desmin and troponin-T degradation. Further, mitochondrial calcium uniporter (MCU) was lower (P < 0.05) in the very tender steaks than steaks of intermediate tenderness. Collectively, shifting muscle characteristics toward a more glycolytic type appears to positively impact postmortem proteolysis and tenderization.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Cadeias Pesadas de Miosina/análise , Carne Vermelha/análise , Animais , Canais de Cálcio , Bovinos , Desmina/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Proteólise , Troponina T/metabolismo
13.
Meat Sci ; 162: 108039, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31935569

RESUMO

The purpose of this study was to examine the role of mitochondria in postmortem calcium homeostasis and its effect on proteolysis and tenderness. We hypothesized that mitochondria buffer cytosolic calcium levels and delay the activation of calpain-1 and subsequently the development of meat tenderness. To test this hypothesis, pre-rigor bovine longissimus thoracis et lumborum muscle samples were injected with DS16570511 to inhibit mitochondrial calcium uptake. Free calcium, tenderness, texture profile analysis (TPA), calpain-1 activity, and proteolysis were evaluated over a 336 h aging period. Inhibition of mitochondrial calcium uptake increased (P < .0001) cytosolic calcium concentration and calpain-1 autolysis and activity at 24 h compared to control steaks. Further, tenderness and TPA at 168 and 336 h, calpastatin degradation at 24 h, and proteolysis at 168 h were all enhanced (P < .05) in the treated steaks. Collectively, these data indicate that inhibition of mitochondrial calcium uptake can enhance postmortem proteolysis and tenderization through an early activation of calpain-1.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Proteólise , Carne Vermelha/análise , Animais , Canais de Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio , Calpaína/metabolismo , Bovinos , Masculino , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Resistência ao Cisalhamento
14.
Poult Sci ; 97(5): 1808-1817, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635634

RESUMO

During postmortem metabolism, muscle pH gradually declines to reach an ultimate pH near 5.6 across most meat species. Yet, broiler pectoralis major (P. major) muscle generates meat with high ultimate pH (pH ∼ 5.9). For better understanding of the underlying mechanism responsible for this phenomenon, we evaluated the involvement of breast muscle chilling on the extent of postmortem metabolism. Broiler breast muscles were either subjected to chilling treatment (control) or left at room temperature (RT) for 120 min. P. major muscle from the RT treatment had lower ultimate pH, greater glycogen degradation and lactate accumulation. While these findings suggest that carcass chilling can contribute to the premature termination of postmortem metabolism, chilling did not fully explain the high ultimate pH of P. major muscle. Our results also revealed that glucose-6-phosphate (G6P) was very low at 24 h, and therefore we hypothesized that G6P was limiting. To test this hypothesis, muscle samples from P. major and porcine longissimus lumborum (LL) muscle were homogenized into a reaction buffer that mimics postmortem glycolysis with or without 0.5 mg/mL isolated mitochondria. While samples containing porcine LL muscle reached the normal level of ultimate pH, P. major muscle samples reached a value similar to that observed in vivo even in the presence of excess G6P, indicating that G6P was not limiting. Mitochondria enhanced the glycolytic flux and pH decline in systems containing muscle from both species. More importantly, however, was that in vitro system containing chicken with mitochondria reached pH value similar to that of samples containing LL muscle without mitochondria. To investigate further, phosphofructokinase (PFK) activity was compared in broiler P. major and porcine LL muscle at different pH values. PFK activity was lower in P. major muscle at pH 7, 6.5, and 6.2 than LL muscle. In conclusion, carcass chilling can partially contribute to the high ultimate pH of broiler P. major muscle, while low PFK activity and mitochondria content limit the flux through glycolysis.


Assuntos
Galinhas/metabolismo , Glicólise , Carne/análise , Mitocôndrias/metabolismo , Músculos Peitorais/metabolismo , Fosfofrutoquinases/metabolismo , Animais , Proteínas Aviárias/metabolismo , Concentração de Íons de Hidrogênio
15.
Meat Sci ; 139: 97-106, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29413683

RESUMO

Anaerobic glycolysis dominates energy metabolism postmortem. Even so, however, recent studies suggest mitochondria can modify postmortem energy metabolism and may contribute to pH decline, possibly affecting the transformation of muscle to meat and fresh meat quality development. Because oxygen is a necessary component of mitochondrial function, oxygenation of porcine and bovine longissimus thoracis et lumborum was determined postmortem using NIR spectroscopy. The ratio of oxy- to deoxymyoglobin decreased with time postmortem in both species. Metabolic analyses of muscle samples collected over the same timeframe also revealed fluctuations in TCA intermediates. Finally, mitochondria collected from muscle of electrically stimulated carcasses differed from those of non-stimulated muscle. Collectively, these data support the thesis that muscle mitochondria function early postmortem and may play a more active part in pH decline and possibly meat quality development.


Assuntos
Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Oxigênio/química , Carne Vermelha/análise , Animais , Bovinos , Estimulação Elétrica , Concentração de Íons de Hidrogênio , Mioglobina/metabolismo , Mudanças Depois da Morte , Suínos
16.
Meat Sci ; 137: 85-91, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29154223

RESUMO

The experiment was conducted to identify the mitochondrial protein responsible for enhancing glycolytic flux. We hypothesized that mitochondrial F1-ATPase promotes ATP hydrolysis and thereby the flux through glycolysis. Porcine longissimus muscle mitochondria were incorporated into an in vitro system designed to recapitulate postmortem glycolysis with or without Na-azide to specifically inhibit the ß-subunit of mitochondrial F1-ATPase that catalyzes ATP hydrolysis. Addition of mitochondria enhanced ATP hydrolysis, glycogen degradation, lactate accumulation, and pH decline in the in vitro system. However, the majority of mitochondria-mediated enhancement in glycolytic flux was abolished in the presence of Na-azide. To investigate further, myofibrillar and mitochondrial proteins were added to the in vitro system after 240min from the initiation of the reaction. Greater pH decline and lactate accumulation were observed in system containing mitochondrial protein compared to their myofibrillar counterpart. In conclusion, mitochondrial F1-ATPase is capable of increasing glycolytic flux through promoting greater ATP hydrolysis at lower pH.


Assuntos
Glicólise , Proteínas Mitocondriais/análise , Músculo Esquelético/metabolismo , ATPases Translocadoras de Prótons/química , Sus scrofa/fisiologia , Animais , Feminino , Concentração de Íons de Hidrogênio , Masculino , Mitocôndrias , Proteínas Musculares/análise , Carne Vermelha/análise , Azida Sódica
17.
Meat Sci ; 133: 119-125, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28668577

RESUMO

The purpose of this study was to determine the role of mitochondria in postmortem muscle metabolism. Isolated mitochondria were incorporated into a reaction buffer that mimics postmortem glycolysis with or without mitochondrial electron transport chain inhibitors. Addition of mitochondria lowered pH values at 240 and 1440min regardless of inhibitors. Reduction in pH was accompanied by enhanced glycogen degradation and lactate accumulation. To explore the mechanism responsible for this exaggerated metabolism, mitochondrial preparations were mechanically disrupted and centrifuged. Resulting supernatants and pellets each were added to the in vitro model. Mitochondrial supernatants produced similar effects as those including intact mitochondria. To narrow further our target of investigation, mitochondrial supernatants were deproteinized with perchloric acid. The effect of mitochondrial supernatant was lost after perchloric acid treatment. These data indicate that a mitochondrial-based protein is capable of increasing glycolytic flux in an in vitro model and may partially explain acid meat development in highly oxidative AMPKγ3R200Q mutated pigs.


Assuntos
Glicogênio/metabolismo , Glicólise , Carne Vermelha/análise , Animais , Feminino , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Masculino , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Músculo Esquelético/metabolismo , Percloratos/farmacologia , Mudanças Depois da Morte , Sus scrofa
18.
Meat Sci ; 114: 95-102, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26766296

RESUMO

Skeletal muscle glycogen content can impact the extent of postmortem pH decline. Compared to glycolytic muscles, oxidative muscles contain lower glycogen levels antemortem which may contribute to the higher ultimate pH. In an effort to explore further the participation of glycogen in postmortem metabolism, we postulated that increasing the availability of glycogen would drive additional pH decline in oxidative muscles to equivalent pH values similar to the ultimate pH of glycolytic muscles. Glycolysis and pH declines were compared in porcine longissimus lumborum (glycolytic) and masseter (oxidative) muscles using an in vitro system in the presence of excess glycogen. The ultimate pH of the system containing longissimus lumborum reached a value similar to that observed in intact muscle. The pH decline of the system containing masseter samples stopped prematurely resulting in a higher ultimate pH which was similar to that of intact masseter muscle. To investigate further, we titrated powdered longissimus lumborum and masseter samples in the reaction buffer. As the percentage of glycolytic sample increased, the ultimate pH decreased. These data show that oxidative muscle produces meat with a high ultimate pH regardless of glycogen content and suggest that inherent muscle factors associated with glycolytic muscle control the extent of pH decline in pig muscles.


Assuntos
Glicogênio/metabolismo , Glicólise , Carne/análise , Músculo Esquelético/metabolismo , Mudanças Depois da Morte , Animais , Humanos , Concentração de Íons de Hidrogênio , Oxirredução , Suínos
19.
Meat Sci ; 110: 189-95, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26241465

RESUMO

Postmortem lactate accumulation in skeletal muscle is linearly associated with the extent of pH decline. Yet, pigs harboring the AMPKγ3(R200Q) mutation produce meat with similar lactate levels to that of wild-type pigs but have a lower ultimate pH. We hypothesized that lower initial lactate levels and (or) lower buffering capacity in muscle of these pigs may help explain this discrepancy. Longissimus lumborum muscle samples were harvested at 0 and 1440 min postmortem from AMPKγ3(R200Q) and wild-type pigs. As expected, AMPKγ3(R200Q) muscle exhibited a lower ultimate pH but similar lactate levels to that of wild-type pigs at 1440 min postmortem. However, the total net lactate produced postmortem was greater in the AMPKγ3(R200Q) muscle due to lower initial lactate levels at 0 min postmortem. Buffering capacity measured over the pH range of 5.5-7.0 was also lower in AMPKγ3(R200Q) muscle. Greater net lactate accumulation postmortem (i.e., glycolytic flux) coupled with a lower buffering capacity explains the lower ultimate pH of meat from AMPKγ3(R200Q) pigs.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Lactatos/metabolismo , Músculo Esquelético/química , Suínos/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Genótipo , Concentração de Íons de Hidrogênio , Mutação , Suínos/genética
20.
Meat Sci ; 110: 118-25, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26209819

RESUMO

Our objective was to determine the influence of mitochondria on metabolites and pH decline using an in vitro model of postmortem muscle metabolism. Mitochondria were isolated from porcine longissimus lumborum and added (0, 0.5, or 2.0mg) to powdered muscle in reaction media containing either a combination of inhibitors for mitochondria complexes (I, IV, and V) or diluent (without inhibitors). In the absence of inhibitors, adding mitochondria (0.5 and 2.0mg) reduced ATP loss from 30 to 120 min, but did not alter glycogen or lactate during this time. In reactions with mitochondria, inhibitors decreased ATP levels by 30 min and increased glycogen degradation by 60 min. Regardless of mitochondria content, inhibitors enhanced lactate accumulation from 15 to 240 min, and decreased pH from 15 min to 1440 min. In the in vitro model, mitochondria influence the maintenance of ATP, and inhibition of mitochondria enzyme activity contributes to accelerated metabolism and pH decline.


Assuntos
Trifosfato de Adenosina/metabolismo , Glicogênio/metabolismo , Ácido Láctico/metabolismo , Carne/análise , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Animais , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos , Mudanças Depois da Morte , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...