Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(10): e31170, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813150

RESUMO

Microalgae and bacteria, known for their resilience, rapid growth, and proximate ecological partnerships, play fundamental roles in environmental and biotechnological advancements. This comprehensive review explores the synergistic interactions between microalgae and bacteria as an innovative approach to address some of the most pressing environmental issues and the demands of clean and renewable freshwater and energy sources. Studies indicated that microalgae-bacteria consortia can considerably enhance the output of biotechnological applications; for instance, various reports showed during wastewater treatment the COD removal efficiency increased by 40%-90.5 % due to microalgae-bacteria consortia, suggesting its great potential amenability in biotechnology. This review critically synthesizes research works on the microalgae and bacteria nexus applied in the advancements of renewable energy generation, with a special focus on biohydrogen, reclamation of wastewater and desalination processes. The mechanisms of underlying interactions, the environmental factors influencing consortia performance, and the challenges and benefits of employing these bio-complexes over traditional methods are also discussed in detail. This paper also evaluates the biotechnological applications of these microorganism consortia for the augmentation of biomass production and the synthesis of valuable biochemicals. Furthermore, the review sheds light on the integration of microalgae-bacteria systems in microbial fuel cells for concurrent energy production, waste treatment, and resource recovery. This review postulates microalgae-bacteria consortia as a sustainable and efficient solution for clean water and energy, providing insights into future research directions and the potential for industrial-scale applications.

2.
Sci Total Environ ; 926: 172108, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38556013

RESUMO

Global aquaculture production is expected to rise to meet the growing demand for food worldwide, potentially leading to increased anthropogenic greenhouse gases (GHG) emissions. As the demand for fish protein increases, so will stocking density, feeding amounts, and nitrogen loading in aquaculture ponds. However, the impact of GHG emissions and the underlying microbial processes remain poorly understood. This study investigated the GHG emission characteristics, key microbial processes, and environmental drivers underlying GHG emissions in low and high nitrogen loading aquaculture ponds (LNP and HNP). The N2O flux in HNP (43.1 ± 11.3 µmol m-2 d-1) was significantly higher than in LNP (-11.3 ± 25.1 µmol m-2 d-1), while the dissolved N2O concentration in HNP (52.8 ± 7.1 nmol L-1) was 150 % higher than in LNP (p < 0.01). However, the methane (CH4) and carbon dioxide (CO2) fluxes and concentrations showed no significant differences (p > 0.05). N2O replaced CH4 as the main source of Global Warming Potential in HNP. Pond sediments acted as a sink for N2O but a source for CH4 and CO2. The △N2O/(△N2O + â–³N2) in HNP (0.015 ± 0.007 %) was 7.7-fold higher than in LNP (0.002 ± 0.001 %) (p < 0.05). The chemical oxygen demand to NO2-N ratio was the most important environmental factor explaining the variability of N2O fluxes. Ammonia-oxidizing bacteria driven nitrification in water was the predominant N2O source, while comammox-driven nitrification and nosZII-driven N2O reduction in water were key processes for reducing N2O emission in LNP but decreased in HNP. The strong CH4 oxidization by Methylocystis and CO2 assimilation by algae resulted in low CH4 emissions and CO2 sink in the aquaculture pond. The Mantel test indicated that HNP increased N2O fluxes mainly through altering functional genes composition in water and sediment. Our findings suggest that there is a significant underestimation of N2O emissions without considering the significantly increased △N2O/(△N2O + â–³N2) caused by increased nitrogen loading.


Assuntos
Gases de Efeito Estufa , Animais , Lagoas , Dióxido de Carbono/análise , Nitrogênio , Monitoramento Ambiental , Aquicultura/métodos , Água , Metano/análise , Óxido Nitroso/análise , Solo
3.
Front Microbiol ; 14: 1286923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075917

RESUMO

The World Health Organization (WHO) estimated that pathogens like Escherichia coli, primarily linked to food and water contamination, are associated with 485,000 deaths from diarrheal diseases annually, translating to a staggering worldwide economic loss of nearly 12 billion USD per annum. International organizations like the WHO and United Nations Children's Fund (UNICEF) have established related guidelines and criteria for pathogenic detection technologies and driving the search for innovative and efficient detection methods. This comprehensive review examines the trajectory of waterborne pathogenic bacteria detection technologies from traditional techniques, i.e., culture-based methods, to current detection methods including various forms of polymerase chain reaction (PCR) techniques [qualitative real-time PCR, digital PCR, ELISA, loop-mediated isothermal amplification, next-generation sequencing (NGS)] and to emerging techniques, i.e., biosensors and artificial intelligence (AI). The scope of the review paper focuses on waterborne pathogenic bacteria that are recognized as human pathogens, posing tangible threats to public health through waterborne. The detection techniques' merits, constraints, research gaps and future perspectives are critically discussed. Advancements in digital droplet PCR, NGS and biosensors have significantly improved sensitivity and specificity, revolutionizing pathogen detection. Additionally, the integration of artificial intelligence (AI) with these technologies has enhanced detection accuracy, enabling real-time analysis of large datasets. Molecular-based methods and biosensors show promise for efficient water quality monitoring, especially in resource-constrained settings, but on-site practical implementation remains a challenge. The pairwise comparison metrics used in this review also offer valuable insights into quick evaluation on the advantages, limitations and research gaps of various techniques, focusing on their applicability in field settings and timely analyses. Future research efforts should focus on developing robust, cost-effective and user-friendly techniques for routine waterborne bacteria monitoring, ultimately safeguarding global water supplies and public health, with AI and data analysis playing a crucial role in advancing these methods for a safer environment.

4.
Bioresour Technol ; 378: 128994, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004889

RESUMO

Aerobic environments exist widely in wastewater treatment plants (WWTP) and are unfavorable for greenhouse gas nitrous oxide (N2O) reduction. Here, a novel strain Pseudomonas sp. YR02, which can perform N2O reduction under aerobic conditions, was isolated. The successful amplification of four denitrifying genes proved its complete denitrifying ability. The inorganic nitrogen (IN) removal efficiencies (NRE) were >98.0% and intracellular nitrogen and gaseous nitrogen account for 52.6-58.4% and 41.6-47.4% of input nitrogen, respectively. The priority of IN utilization was TAN > NO3--N > NO2--N. The optimal conditions for IN and N2O removal were consistent, except for the C/N ratio, which is 15 and 5 for IN and N2O removal, respectively. The biokinetic constants analysis indicated strain YR02 had high potential to treat high ammonia and dissolved N2O wastewater. Strain YR02 bioaugmentation mitigated 98.7% of N2O emission and improved 32% NRE in WWTP, proving its application potential for N2O mitigation.


Assuntos
Gases de Efeito Estufa , Óxido Nitroso , Óxido Nitroso/análise , Desnitrificação , Pseudomonas , Nitrogênio
5.
Sci Total Environ ; 720: 137370, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32325554

RESUMO

Complete degradation of azo dye has always been a challenge due to the refractory nature of azo dye. An innovative hybrid system, constructed wetland-microbial fuel cell (CW-MFC) was developed for simultaneous azo dye remediation and energy recovery. This study investigated the effect of circuit connection and the influence of azo dye molecular structures on the degradation rate of azo dye and bioelectricity generation. The closed circuit system exhibited higher chemical oxygen demand (COD) removal and decolourisation efficiencies compared to the open circuit system. The wastewater treatment performances of different operating systems were ranked in the decreasing order of CW-MFC (R1 planted-closed circuit) > MFC (R2 plant-free-closed circuit) > CW (R1 planted-open circuit) > bioreactor (R2 plant-free-open circuit). The highest decolourisation rate was achieved by Acid Red 18 (AR18), 96%, followed by Acid Orange 7 (AO7), 67% and Congo Red (CR), 60%. The voltage outputs of the three azo dyes were ranked in the decreasing order of AR18 > AO7 > CR. The results disclosed that the decolourisation performance was significantly influenced by the azo dye structure and the moieties at the proximity of azo bond; the naphthol type azo dye with a lower number of azo bond and more electron-withdrawing groups could cause azo bond to be more electrophilic and more reductive for decolourisation. Moreover, the degradation pathway of AR18, AO7 and CR were elucidated based on the respective dye intermediate products identified through UV-Vis spectrophotometry, high-performance liquid chromatography (HPLC), and gas chromatograph-mass spectrometer (GC-MS) analyses. The CW-MFC system demonstrated high capability of decolouring azo dyes at the anaerobic anodic region and further mineralising dye intermediates at the aerobic cathodic region to less harmful or non-toxic products.


Assuntos
Áreas Alagadas , Compostos Azo , Fontes de Energia Bioelétrica , Eletrodos , Cinética , Estrutura Molecular , Águas Residuárias
6.
Bioresour Technol ; 266: 97-108, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29957296

RESUMO

This study explored the influence of azo dye concentration, salinity (with and without aeration) and nitrate concentration on bioelectricity generation and treatment performance in the up-flow constructed wetland-microbial fuel cell (UFCW-MFC) system. The decolourisation efficiencies were up to 91% for 500 mg/L of Acid Red 18 (AR18). However, the power density declined with the increment in azo dye concentration. The results suggest that the combination of salinity and aeration at an optimum level improved the power performance. The highest power density achieved was 8.67 mW/m2. The increase of nitrate by 3-fold led to decrease in decolourisation and power density of the system. The findings revealed that the electron acceptors (AR18, nitrate and anode) competed at the anodic region for electrons and the electron transfer pathways would directly influence the treatment and power performance of UFCW-MFC. The planted UFCW-MFC significantly outweighed the plant-free control in power performance.


Assuntos
Compostos Azo/isolamento & purificação , Fontes de Energia Bioelétrica , Áreas Alagadas , Eletricidade , Eletrodos , Águas Residuárias
7.
J Environ Sci (China) ; 66: 295-300, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29628097

RESUMO

This study demonstrated the potential of single chamber up-flow membrane-less microbial fuel cell (UFML-MFC) in wastewater treatment and power generation. The purpose of this study was to evaluate and enhance the performance under different operational conditions which affect the chemical oxygen demand (COD) reduction and power generation, including the increase of KCl concentration (MFC1) and COD concentration (MFC2). The results showed that the increase of KCl concentration is an important factor in up-flow membrane-less MFC to enhance the ease of electron transfer from anode to cathode. The increase of COD concentration in MFC2 could led to the drop of voltage output due to the prompt of biofilm growth in MFC2 cathode which could increase the internal resistance. It also showed that the COD concentration is a vital issue in up-flow membrane-less MFC. Despite the COD reduction was up to 96%, the power output remained constrained.


Assuntos
Fontes de Energia Bioelétrica , Química Verde/métodos , Eliminação de Resíduos Líquidos/métodos , Biofilmes , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Eletrodos , Águas Residuárias
8.
Environ Sci Pollut Res Int ; 24(29): 23331-23340, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28840563

RESUMO

A novel sustainable hybrid system of photocatalytic fuel cell (PFC) and Fenton process is an alternative wastewater treatment technology for energy-saving and efficient treatment of organic pollutants. The electrons generated from PFC photoanode are used to produce H2O2 in the Fenton reactor and react with the in situ generation of Fe2+ from sacrificial iron for hydroxyl radical formation. In this study, the effect of different initial Amaranth dye concentrations on degradation and electricity generation were investigated. ZnO/Zn photoanode was prepared by anodizing method and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Results revealed that the maximum power density (9.53 mW/m2) and current density (0.0178 mA/m2) were achieved at 10 mg/L of Amaranth. The correlation between dye degradation, voltage output, and kinetic photocatalytic degradation were also investigated and discussed.


Assuntos
Corante Amaranto/análise , Fontes de Energia Elétrica , Peróxido de Hidrogênio/química , Ferro/química , Energia Solar , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Catálise , Águas Residuárias/química
9.
Int J Phytoremediation ; 19(8): 725-731, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28448169

RESUMO

The objective of this study is to determine the reduction efficiency of Chemical Oxygen Demand (COD) as well as the removal of color and Amaranth dye metabolites by the Aerobic-anaerobic Baffled Constructed Wetland Reactor (ABCW). The ABCW reactor was planted with common reed (Phragmite australis) where the hydraulic retention time (HRT) was set to 1 day and was fed with synthetic wastewater with the addition of Amaranth dye. Supplementary aeration was supplied in designated compartments of the ABCW reactor to control the aerobic and anaerobic zones. After Amaranth dye addition the COD reduction efficiency dropped from 98 to 91% while the color removal efficiency was 100%. Degradation of azo bond in Amaranth dye is shown by the UV-Vis spectrum analysis which demonstrates partial degradation of Amaranth dye metabolites. The performance of the baffled unit is due to the longer pathway as there is the up-flow and down-flow condition sequentially, thus allowing more contact of the wastewater with the rhizomes and micro-aerobic zones.


Assuntos
Corante Amaranto/química , Biodegradação Ambiental , Poluentes Químicos da Água/química , Áreas Alagadas , Compostos Azo , Reatores Biológicos , Corantes , Eliminação de Resíduos Líquidos
10.
J Hazard Mater ; 325: 170-177, 2017 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-27931001

RESUMO

Monoazo and diazo dyes [New coccine (NC), Acid orange 7 (AO7), Reactive red 120 (RR120) and Reactive green 19 (RG19)] were employed as electron acceptors in the abiotic cathode of microbial fuel cell. The electrons and protons generated from microbial organic oxidation at the anode which were utilized for electrochemical azo dye reduction at the cathodic chamber was successfully demonstrated. When NC was employed as the electron acceptor, the chemical oxygen demand (COD) removal and dye decolourisation efficiencies obtained at the anodic and cathodic chamber were 73±3% and 95.1±1.1%, respectively. This study demonstrated that the decolourisation rates of monoazo dyes were ∼50% higher than diazo dyes. The maximum power density in relation to NC decolourisation was 20.64mW/m2, corresponding to current density of 120.24mA/m2. The decolourisation rate and power output of different azo dyes were in the order of NC>AO7>RR120>RG19. The findings revealed that the structure of dye influenced the decolourisation and power performance of MFC. Azo dye with electron-withdrawing group at para substituent to azo bond would draw electrons from azo bond; hence the azo dye became more electrophilic and more favourable for dye reduction.


Assuntos
Compostos Azo/química , Fontes de Energia Bioelétrica , Águas Residuárias/química , Benzenossulfonatos/química , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Cor , Eletrodos , Elétrons , Naftalenossulfonatos/química , Oxidantes , Oxigênio/química , Espectrofotometria Ultravioleta , Triazinas/química , Purificação da Água
11.
Bioresour Technol ; 224: 265-275, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27864130

RESUMO

This study investigates the role of plant (Elodea nuttallii) and effect of supplementary aeration on wastewater treatment and bioelectricity generation in an up-flow constructed wetland-microbial fuel cell (UFCW-MFC). Aeration rates were varied from 1900 to 0mL/min and a control reactor was operated without supplementary aeration. 600mL/min was the optimum aeration flow rate to achieve highest energy recovery as the oxygen was sufficient to use as terminal electron acceptor for electrical current generation. The maximum voltage output, power density, normalized energy recovery and Coulombic efficiency were 545.77±25mV, 184.75±7.50mW/m3, 204.49W/kg COD, 1.29W/m3 and 10.28%, respectively. The variation of aeration flow rates influenced the NO3- and NH4+ removal differently as nitrification and denitrification involved conflicting requirement. In terms of wastewater treatment performance, at 60mL/min aeration rate, UFCW-MFC achieved 50 and 81% of NO3- and NH4+ removal, respectively. E. nuttallii enhanced nitrification by 17% and significantly contributed to bioelectricity generation.


Assuntos
Fontes de Energia Bioelétrica , Hydrocharitaceae/fisiologia , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Desnitrificação , Desenho de Equipamento , Nitrificação , Oxigênio , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias
12.
Bioprocess Biosyst Eng ; 39(6): 893-900, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26894384

RESUMO

The main aim of this study is to investigate the performance of organic oxidation and denitrification of the system under long-term operation. The MFC reactor was operated in continuous mode for 180 days. Nitrate was successfully demonstrated as terminal electron acceptor, where nitrate was reduced at the cathode using electron provided by acetate oxidation at the anode. The removal efficiencies of chemical oxygen demand (COD) and nitrate were higher in the closed circuit system than in open circuit system. Both COD and nitrate reduction improved with the increase of organic loading and subsequently contributed to higher power output. The maximum nitrate removal efficiency was 88 ± 4 % (influent of 141 ± 14 mg/L). The internal resistant was 50 Ω, which was found to be low for a double chambered MFC. The maximum power density was 669 mW/m(3) with current density of 3487 mA/m(3).


Assuntos
Fontes de Energia Bioelétrica , Desnitrificação , Águas Residuárias , Purificação da Água
13.
Bioresour Technol ; 203: 190-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26724550

RESUMO

This study demonstrated a successful operation of up-flow constructed wetland-microbial fuel cell (UFCW-MFC) in wastewater treatment and energy recovery. The goals of this study were to investigate the effect of circuit connection, organic loading rates, and electrode spacing on the performance of wastewater treatment and bioelectricity generation. The average influent of COD, NO3(-) and NH4(+) were 624 mg/L, 142 mg/L, 40 mg/L, respectively and their removal efficiencies (1 day HRT) were 99%, 46%, and 96%, respectively. NO3(-) removal was relatively higher in the closed circuit system due to lower dissolved oxygen in the system. Despite larger electrode spacing, the voltage outputs from Anode 2 (A2) (30 cm) and Anode 3 (A3) (45 cm) were higher than from Anode 1 (A1) (15 cm) as a result of insufficient fuel supply to A1. The maximum power density and Coulombic efficiency were obtained at A2, which were 93 mW/m(3) and 1.42%, respectively.


Assuntos
Fontes de Energia Bioelétrica , Conservação de Recursos Energéticos/métodos , Purificação da Água/métodos , Áreas Alagadas , Biodegradação Ambiental , Fontes de Energia Bioelétrica/provisão & distribuição , Eletricidade , Eletrodos , Filtração , Oxirredução , Oxigênio/análise , Oxigênio/metabolismo , Typhaceae/fisiologia , Instalações de Eliminação de Resíduos , Águas Residuárias/química
14.
Bioresour Technol ; 197: 284-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26342340

RESUMO

Single chambered up-flow membrane-less microbial fuel cell (UFML MFC) was developed to study the feasibility of the bioreactor for decolorization of Acid Orange 7 (AO7) and electricity generation simultaneously. The performance of UFML MFC was evaluated in terms of voltage output, chemical oxygen demand (COD) and color removal efficiency by varying the concentration of AO7 in synthetic wastewater. The results shown the voltage generation and COD removal efficiency decreased as the initial AO7 concentration increased; this indicates there is electron competition between anode and azo dye. Furthermore, there was a phenomenon of further decolorization at cathode region which indicates the oxygen and azo dye are both compete as electron acceptor. Based on the UV-visible spectra analysis, the breakdown of the azo bond and naphthalene compound in AO7 were confirmed. These findings show the capability of integrated UFML MFC in azo dye wastewater treatment and simultaneous electricity generation.


Assuntos
Compostos Azo/química , Benzenossulfonatos/química , Fontes de Energia Bioelétrica , Corantes/química , Águas Residuárias/química , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química
15.
Bioresour Technol ; 186: 270-275, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25836035

RESUMO

An innovative design of upflow constructed wetland-microbial fuel cell (UFCW-MFC) planted with cattail was used for simultaneous wastewater treatment and electricity generation. The electrodes material employed in the study was carbon felt. The main aim of this study is to assess the performance of the UFCW coupling with MFC in term of ability to treat wastewater and the capability to generate bioelectricity. The oxidation reduction potential (ORP) and dissolved oxygen (DO) profile showed that the anaerobic and aerobic regions were well developed in the lower and upper bed, respectively, of UFCW-MFC. Biodegradation of organic matter, nitrification and denitrification was investigated and the removal efficiencies of COD, NO3(-), NH4(+) were 100%, 40%, and 91%, respectively. The maximum power density of 6.12 mW m(-2) and coulombic efficiency of 8.6% were achieved at electrode spacing of anode 1 (A1) and cathode (15 cm).


Assuntos
Fontes de Energia Bioelétrica , Typhaceae/química , Águas Residuárias/química , Purificação da Água/métodos , Áreas Alagadas , Biodegradação Ambiental , Desnitrificação , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...