Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(36): e2401085, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39056405

RESUMO

Cytotoxic neuronal swelling and glutamate excitotoxicity are two hallmarks of ischemic stroke. However, the underlying molecular mechanisms are not well understood. Here, it is reported that SWELL1, the essential subunit of the volume-regulated anion channel (VRAC), plays a dual role in ischemic injury by promoting neuronal swelling and glutamate excitotoxicity. SWELL1 expression is upregulated in neurons and astrocytes after experimental stroke in mice. The neuronal SWELL1 channel is activated by intracellular hypertonicity, leading to Cl- influx-dependent cytotoxic neuronal swelling and subsequent cell death. Additionally, the SWELL1 channel in astrocytes mediates pathological glutamate release, indicated by increases in neuronal slow inward current frequency and tonic NMDAR current. Pharmacologically, targeting VRAC with a new inhibitor, an FDA-approved drug Dicumarol, attenuated cytotoxic neuronal swelling and cell death, reduced astrocytic glutamate release, and provided significant neuroprotection in mice when administered either before or after ischemia. Therefore, these findings uncover the pleiotropic effects of the SWELL1 channel in neurons and astrocytes in the pathogenesis of ischemic stroke and provide proof of concept for therapeutically targeting it in this disease.


Assuntos
Isquemia Encefálica , Modelos Animais de Doenças , Ácido Glutâmico , Neurônios , Animais , Camundongos , Ácido Glutâmico/metabolismo , Ácido Glutâmico/toxicidade , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Masculino , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas de Membrana
3.
Adv Pharmacol ; 100: 157-180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39034051

RESUMO

The recognition that rapidly proliferating cancer cells rely heavily on glutamine for their survival and growth has renewed interest in the development of glutamine antagonists for cancer therapy. Glutamine plays a pivotal role as a carbon source for synthesizing lipids and metabolites through the TCA cycle, as well as a nitrogen source for synthesis of amino acid and nucleotides. Numerous studies have explored the significance of glutamine metabolism in cancer, providing a robust rationale for targeting this metabolic pathway in cancer treatment. The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) has been explored as an anticancer therapeutic for nearly six decades. Initial investigations revealed remarkable efficacy in preclinical studies and promising outcomes in early clinical trials. However, further advancement of DON was hindered due to dose-limiting gastrointestinal (GI) toxicities as the GI system is highly dependent on glutamine for regulating growth and repair. In an effort to repurpose DON and mitigate gastrointestinal (GI) toxicity concerns, prodrug strategies were utilized. These strategies aimed to enhance the delivery of DON to specific target tissues, such as tumors and the central nervous system (CNS), while sparing DON delivery to normal tissues, particularly the GI tract. When administered at low daily doses, optimized for metabolic inhibition, these prodrugs exhibit remarkable effectiveness without inducing significant toxicity to normal tissues. This approach holds promise for overcoming past challenges associated with DON, offering an avenue for its successful utilization in cancer treatment.


Assuntos
Diazo-Oxo-Norleucina , Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Diazo-Oxo-Norleucina/farmacologia , Diazo-Oxo-Norleucina/uso terapêutico , Animais , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Glutamina/metabolismo
4.
Diabetes ; 73(9): 1411-1425, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38869519

RESUMO

Dopamine (DA) D2-like receptors in both the central nervous system (CNS) and the periphery are key modulators of metabolism. Moreover, disruption of D2-like receptor signaling is implicated in dysglycemia. Yet, the respective metabolic contributions of CNS versus peripheral D2-like receptors, including D2 (D2R) and D3 (D3R) receptors, remain poorly understood. To address this, we developed new pharmacological tools, D2-like receptor agonists with diminished and delayed blood-brain barrier capability, to selectively manipulate D2R/D3R signaling in the periphery. We designated bromocriptine methiodide (BrMeI), a quaternary methiodide analog of D2R/D3R agonist and diabetes drug bromocriptine, as our lead compound based on preservation of D2R/D3R binding and functional efficacy. We then used BrMeI and unmodified bromocriptine to dissect relative contributions of CNS versus peripheral D2R/D3R signaling in treating dysglycemia. Systemic administration of bromocriptine, with unrestricted access to CNS and peripheral targets, significantly improved both insulin sensitivity and glucose tolerance in obese, dysglycemic mice in vivo. In contrast, metabolic improvements were attenuated when access to bromocriptine was restricted either to the CNS through intracerebroventricular administration or delayed access to the CNS via BrMeI. Our findings demonstrate that the coordinated actions of both CNS and peripheral D2-like receptors are required for correcting dysglycemia. Ultimately, the development of a first-generation of drugs designed to selectively target the periphery provides a blueprint for dissecting mechanisms of central versus peripheral DA signaling and paves the way for novel strategies to treat dysglycemia.


Assuntos
Bromocriptina , Agonistas de Dopamina , Receptores de Dopamina D2 , Transdução de Sinais , Animais , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/agonistas , Bromocriptina/farmacologia , Bromocriptina/uso terapêutico , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/uso terapêutico , Camundongos Endogâmicos C57BL , Resistência à Insulina/fisiologia , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Humanos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D3/agonistas
5.
Cancer Immunol Res ; 12(7): 854-875, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701369

RESUMO

Glutamine metabolism in tumor microenvironments critically regulates antitumor immunity. Using the glutamine-antagonist prodrug JHU083, we report potent tumor growth inhibition in urologic tumors by JHU083-reprogrammed tumor-associated macrophages (TAMs) and tumor-infiltrating monocytes. We show JHU083-mediated glutamine antagonism in tumor microenvironments induced by TNF, proinflammatory, and mTORC1 signaling in intratumoral TAM clusters. JHU083-reprogrammed TAMs also exhibited increased tumor cell phagocytosis and diminished proangiogenic capacities. In vivo inhibition of TAM glutamine consumption resulted in increased glycolysis, a broken tricarboxylic acid (TCA) cycle, and purine metabolism disruption. Although the antitumor effect of glutamine antagonism on tumor-infiltrating T cells was moderate, JHU083 promoted a stem cell-like phenotype in CD8+ T cells and decreased the abundance of regulatory T cells. Finally, JHU083 caused a global shutdown in glutamine-utilizing metabolic pathways in tumor cells, leading to reduced HIF-1α, c-MYC phosphorylation, and induction of tumor cell apoptosis, all key antitumor features. Altogether, our findings demonstrate that targeting glutamine with JHU083 led to suppressed tumor growth as well as reprogramming of immunosuppressive TAMs within prostate and bladder tumors that promoted antitumor immune responses. JHU083 can offer an effective therapeutic benefit for tumor types that are enriched in immunosuppressive TAMs.


Assuntos
Glutamina , Neoplasias da Próstata , Microambiente Tumoral , Macrófagos Associados a Tumor , Neoplasias da Bexiga Urinária , Glutamina/metabolismo , Masculino , Animais , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Camundongos , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Reprogramação Metabólica
6.
Mol Psychiatry ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615102

RESUMO

We report a mechanism that underlies stress-induced cognitive inflexibility at the molecular level. In a mouse model under subacute cellular stress in which deficits in rule shifting tasks were elicited, the nuclear glyceraldehyde dehydrogenase (N-GAPDH) cascade was activated specifically in microglia in the prelimbic cortex. The cognitive deficits were normalized with a pharmacological intervention with a compound (the RR compound) that selectively blocked the initiation of N-GAPDH cascade without affecting glycolytic activity. The normalization was also observed with a microglia-specific genetic intervention targeting the N-GAPDH cascade. At the mechanistic levels, the microglial secretion of High-Mobility Group Box (HMGB), which is known to bind with and regulate the NMDA-type glutamate receptors, was elevated. Consequently, the hyperactivation of the prelimbic layer 5 excitatory neurons, a neural substrate for cognitive inflexibility, was also observed. The upregulation of the microglial HMGB signaling and neuronal hyperactivation were normalized by the pharmacological and microglia-specific genetic interventions. Taken together, we show a pivotal role of cortical microglia and microglia-neuron interaction in stress-induced cognitive inflexibility. We underscore the N-GAPDH cascade in microglia, which causally mediates stress-induced cognitive alteration.

7.
bioRxiv ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38529497

RESUMO

Dopamine (DA) D2-like receptors in both the central nervous system (CNS) and the periphery are key modulators of metabolism. Moreover, disruption of D2-like receptor signaling is implicated in dysglycemia. Yet, the respective metabolic contributions of CNS versus peripheral D2-like receptors including D2 (D2R) and D3 (D3R) receptors remain poorly understood. To address this, we developed new pharmacological tools, D2-like receptor agonists with diminished and delayed blood-brain barrier capability, to selectively manipulate D2R/D3R signaling in the periphery. We designated bromocriptine methiodide (BrMeI), a quaternary methiodide analogue of D2/3R agonist and diabetes drug bromocriptine, as our lead compound based on preservation of D2R/D3R binding and functional efficacy. We then used BrMeI and unmodified bromocriptine to dissect relative contributions of CNS versus peripheral D2R/D3R signaling in treating dysglycemia. Systemic administration of bromocriptine, with unrestricted access to CNS and peripheral targets, significantly improved both insulin sensitivity and glucose tolerance in obese, dysglycemic mice in vivo. In contrast, metabolic improvements were attenuated when access to bromocriptine was restricted either to the CNS through intracerebroventricular administration or delayed access to the CNS via BrMeI. Our findings demonstrate that the coordinated actions of both CNS and peripheral D2-like receptors are required for correcting dysglycemia. Ultimately, the development of a first-generation of drugs designed to selectively target the periphery provides a blueprint for dissecting mechanisms of central versus peripheral DA signaling and paves the way for novel strategies to treat dysglycemia.

8.
Microbiol Spectr ; 12(4): e0389623, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376151

RESUMO

The rising rate of antimicrobial resistance continues to threaten global public health. Further hastening antimicrobial resistance is the lack of new antibiotics against new targets. The bacterial enzyme, 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), is thought to play important roles in central metabolism, including processes required for pathogen adaptation to fluctuating host environments. Thus, impairing DXPS function represents a possible new antibacterial strategy. We previously investigated a DXPS-dependent metabolic adaptation as a potential target in uropathogenic Escherichia coli (UPEC) associated with urinary tract infection (UTI), using the DXPS-selective inhibitor butyl acetylphosphonate (BAP). However, investigations of DXPS inhibitors in vivo have not been conducted. The goal of the present study is to advance DXPS inhibitors as in vivo probes and assess the potential of inhibiting DXPS as a strategy to prevent UTI in vivo. We show that BAP was well-tolerated at high doses in mice and displayed a favorable pharmacokinetic profile for studies in a mouse model of UTI. Further, an alkyl acetylphosphonate prodrug (homopropargyl acetylphosphonate, pro-hpAP) was significantly more potent against UPEC in urine culture and exhibited good exposure in the urinary tract after systemic dosing. Prophylactic treatment with either BAP or pro-hpAP led to a partial protective effect against UTI, with the prodrug displaying improved efficacy compared to BAP. Overall, our results highlight the potential for DXPS inhibitors as in vivo probes and establish preliminary evidence that inhibiting DXPS impairs UPEC colonization in a mouse model of UTI.IMPORTANCENew antibiotics against new targets are needed to prevent an antimicrobial resistance crisis. Unfortunately, antibiotic discovery has slowed, and many newly FDA-approved antibiotics do not inhibit new targets. Alkyl acetylphosphonates (alkyl APs), which inhibit the enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), represent a new possible class of compounds as there are no FDA-approved DXPS inhibitors. To our knowledge, this is the first study demonstrating the in vivo safety, pharmacokinetics, and efficacy of alkyl APs in a urinary tract infection mouse model.


Assuntos
Acetaldeído/análogos & derivados , Anti-Infecciosos , Infecções por Escherichia coli , Pentosefosfatos , Pró-Fármacos , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Camundongos , Infecções Urinárias/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/metabolismo , Anti-Infecciosos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli Uropatogênica/metabolismo
9.
J Med Chem ; 67(1): 709-727, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38117239

RESUMO

Atypical dopamine transporter (DAT) inhibitors have shown therapeutic potential in the preclinical models of psychostimulant use disorders (PSUD). In rats, 1-(4-(2-((bis(4-fluorophenyl)methyl)sulfinyl)ethyl)-piperazin-1-yl)-propan-2-ol (JJC8-091, 3b) was effective in reducing the reinforcing effects of both cocaine and methamphetamine but did not exhibit psychostimulant behaviors itself. Improvements in DAT affinity and metabolic stability were desirable for discovering pipeline drug candidates. Thus, a series of 1-(4-(2-bis(4-fluorophenyl)methyl)sulfinyl)alkyl alicyclic amines were synthesized and evaluated for binding affinities at DAT and the serotonin transporter (SERT). Replacement of the piperazine with either a homopiperazine or a piperidine ring system was well tolerated at DAT (Ki range = 3-382 nM). However, only the piperidine analogues (20a-d) showed improved metabolic stability in rat liver microsomes as compared to the previously reported analogues. Compounds 12b and 20a appeared to retain an atypical DAT inhibitor profile, based on negligible locomotor activity in mice and molecular modeling that predicts binding to an inward-facing conformation of DAT.


Assuntos
Estimulantes do Sistema Nervoso Central , Cocaína , Ratos , Camundongos , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina , Aminas/farmacologia , Relação Estrutura-Atividade , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Piperidinas/farmacologia
10.
Mol Psychiatry ; 29(3): 624-632, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38145984

RESUMO

(R,S)-methadone ((R,S)-MTD) is a µ-opioid receptor (MOR) agonist comprised of (R)-MTD and (S)-MTD enantiomers. (S)-MTD is being developed as an antidepressant and is considered an N-methyl-D-aspartate receptor (NMDAR) antagonist. We compared the pharmacology of (R)-MTD and (S)-MTD and found they bind to MORs, but not NMDARs, and induce full analgesia. Unlike (R)-MTD, (S)-MTD was a weak reinforcer that failed to affect extracellular dopamine or induce locomotor stimulation. Furthermore, (S)-MTD antagonized motor and dopamine releasing effects of (R)-MTD. (S)-MTD acted as a partial agonist at MOR, with complete loss of efficacy at the MOR-galanin Gal1 receptor (Gal1R) heteromer, a key mediator of the dopaminergic effects of opioids. In sum, we report novel and unique pharmacodynamic properties of (S)-MTD that are relevant to its potential mechanism of action and therapeutic use. One-sentence summary: (S)-MTD, like (R)-MTD, binds to and activates MORs in vitro, but (S)-MTD antagonizes the MOR-Gal1R heteromer, decreasing its abuse liability.


Assuntos
Analgésicos Opioides , Metadona , Receptores Opioides mu , Receptores Opioides mu/metabolismo , Receptores Opioides mu/efeitos dos fármacos , Animais , Metadona/farmacologia , Masculino , Analgésicos Opioides/farmacologia , Humanos , Camundongos , Dopamina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ligantes , Estereoisomerismo
11.
Transl Neurodegener ; 12(1): 56, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049923

RESUMO

BACKGROUND: Cognitive decline in Alzheimer's disease (AD) is associated with hyperphosphorylated tau (pTau) propagation between neurons along synaptically connected networks, in part via extracellular vesicles (EVs). EV biogenesis is triggered by ceramide enrichment at the plasma membrane from neutral sphingomyelinase2 (nSMase2)-mediated cleavage of sphingomyelin. We report, for the first time, that human tau expression elevates brain ceramides and nSMase2 activity. METHODS: To determine the therapeutic benefit of inhibiting this elevation, we evaluated PDDC, the first potent, selective, orally bioavailable, and brain-penetrable nSMase2 inhibitor in the transgenic PS19 AD mouse model. Additionally, we directly evaluated the effect of PDDC on tau propagation in a mouse model where an adeno-associated virus (AAV) encoding P301L/S320F double mutant human tau was stereotaxically-injected unilaterally into the hippocampus. The contralateral transfer of the double mutant human tau to the dentate gyrus was monitored. We examined ceramide levels, histopathological changes, and pTau content within EVs isolated from the mouse plasma. RESULTS: Similar to human AD, the PS19 mice exhibited increased brain ceramide levels and nSMase2 activity; both were completely normalized by PDDC treatment. The PS19 mice also exhibited elevated tau immunostaining, thinning of hippocampal neuronal cell layers, increased mossy fiber synaptophysin immunostaining, and glial activation, all of which were pathologic features of human AD. PDDC treatment reduced these changes. The plasma of PDDC-treated PS19 mice had reduced levels of neuronal- and microglial-derived EVs, the former carrying lower pTau levels, compared to untreated mice. In the tau propagation model, PDDC normalized the tau-induced increase in brain ceramides and significantly reduced the amount of tau propagation to the contralateral side. CONCLUSIONS: PDDC is a first-in-class therapeutic candidate that normalizes elevated brain ceramides and nSMase2 activity, leading to the slowing of tau spread in AD mice.


Assuntos
Doença de Alzheimer , Animais , Humanos , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Ceramidas/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo
12.
Nat Commun ; 14(1): 7427, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973991

RESUMO

As one of the most successful human pathogens, Mycobacterium tuberculosis (Mtb) has evolved a diverse array of determinants to subvert host immunity and alter host metabolic patterns. However, the mechanisms of pathogen interference with host metabolism remain poorly understood. Here we show that a glutamine metabolism antagonist, JHU083, inhibits Mtb proliferation in vitro and in vivo. JHU083-treated mice exhibit weight gain, improved survival, a 2.5 log lower lung bacillary burden at 35 days post-infection, and reduced lung pathology. JHU083 treatment also initiates earlier T-cell recruitment, increased proinflammatory myeloid cell infiltration, and a reduced frequency of immunosuppressive myeloid cells when compared to uninfected and rifampin-treated controls. Metabolomic analysis of lungs from JHU083-treated Mtb-infected mice reveals citrulline accumulation, suggesting elevated nitric oxide (NO) synthesis, and lowered levels of quinolinic acid which is derived from the immunosuppressive metabolite kynurenine. JHU083-treated macrophages also produce more NO potentiating their antibacterial activity. When tested in an immunocompromised mouse model of Mtb infection, JHU083 loses its therapeutic efficacy suggesting the drug's host-directed effects are likely to be predominant. Collectively, these data reveal that JHU083-mediated glutamine metabolism inhibition results in dual antibacterial and host-directed activity against tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Humanos , Animais , Glutamina/farmacologia , Tuberculose/microbiologia , Antibacterianos/farmacologia
13.
J Med Chem ; 66(22): 15493-15510, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37949450

RESUMO

The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) exhibits remarkable anticancer efficacy; however, its therapeutic potential is hindered by its toxicity to gastrointestinal (GI) tissues. We recently reported the discovery of DRP-104, a tumor-targeted DON prodrug with excellent efficacy and tolerability, which is currently in clinical trials. However, DRP-104 exhibits limited aqueous solubility, and the instability of its isopropyl ester promoiety leads to the formation of an inactive M1-metabolite, reducing overall systemic prodrug exposure. Herein, we aimed to synthesize DON prodrugs with various ester and amide promoieties with improved solubility, GI stability, and DON tumor delivery. Twenty-one prodrugs were synthesized and characterized in stability and pharmacokinetics studies. Of these, P11, tert-butyl-(S)-6-diazo-2-((S)-2-(2-(dimethylamino)acetamido)-3-phenylpropanamido)-5-oxo-hexanoate, showed excellent metabolic stability in plasma and intestinal homogenate, high aqueous solubility, and high tumor DON exposures and preserved the ideal tumor-targeting profile of DRP-104. In conclusion, we report a new generation of glutamine antagonist prodrugs with improved physicochemical and pharmacokinetic attributes.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Pró-Fármacos/química , Diazo-Oxo-Norleucina/farmacocinética , Glutamina , Ésteres/uso terapêutico , Neoplasias/tratamento farmacológico
14.
Pharmaceutics ; 15(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37765332

RESUMO

The progression of Alzheimer's disease (AD) correlates with the propagation of hyperphosphorylated tau (pTau) from the entorhinal cortex to the hippocampus and neocortex. Neutral sphingomyelinase2 (nSMase2) is critical in the biosynthesis of extracellular vesicles (EVs), which play a role in pTau propagation. We recently conjugated DPTIP, a potent nSMase2 inhibitor, to hydroxyl-PAMAM-dendrimer nanoparticles that can improve brain delivery. We showed that dendrimer-conjugated DPTIP (D-DPTIP) robustly inhibited the spread of pTau in an AAV-pTau propagation model. To further evaluate its efficacy, we tested D-DPTIP in the PS19 transgenic mouse model. Unexpectantly, D-DPTIP showed no beneficial effect. To understand this discrepancy, we assessed D-DPTIP's brain localization. Using immunofluorescence and fluorescence-activated cell-sorting, D-DPTIP was found to be primarily internalized by microglia, where it selectively inhibited microglial nSMase2 activity with no effect on other cell types. Furthermore, D-DPTIP inhibited microglia-derived EV release into plasma without affecting other brain-derived EVs. We hypothesize that microglial targeting allowed D-DPTIP to inhibit tau propagation in the AAV-hTau model, where microglial EVs play a central role in propagation. However, in PS19 mice, where tau propagation is independent of microglial EVs, it had a limited effect. Our findings confirm microglial targeting with hydroxyl-PAMAM dendrimers and highlight the importance of understanding cell-specific mechanisms when designing targeted AD therapies.

15.
J Med Chem ; 66(17): 12141-12162, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37646374

RESUMO

Pharmacological targeting of the dopamine D4 receptor (D4R)─expressed in brain regions that control cognition, attention, and decision-making─could be useful for several neuropsychiatric disorders including substance use disorders (SUDs). This study focused on the synthesis and evaluation of a novel series of benzothiazole analogues designed to target D4R. We identified several compounds with high D4R binding affinity (Ki ≤ 6.9 nM) and >91-fold selectivity over other D2-like receptors (D2R, D3R) with diverse partial agonist and antagonist profiles. Novel analogue 16f is a potent low-efficacy D4R partial agonist, metabolically stable in rat and human liver microsomes, and has excellent brain penetration in rats (AUCbrain/plasma > 3). 16f (5-30 mg/kg, i.p.) dose-dependently decreased iv cocaine self-administration in rats, consistent with previous results produced by D4R-selective antagonists. Off-target antagonism of 5-HT2A or 5-HT2B may also contribute to these effects. Results with 16f support further efforts to target D4R in SUD treatment.


Assuntos
Cocaína , Transtornos Relacionados ao Uso de Substâncias , Humanos , Animais , Ratos , Serotonina , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Encéfalo , Cocaína/farmacologia
16.
Sci Transl Med ; 15(708): eabn7491, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556558

RESUMO

There is an urgent need to develop therapeutics for inflammatory bowel disease (IBD) because up to 40% of patients with moderate-to-severe IBD are not adequately controlled with existing drugs. Glutamate carboxypeptidase II (GCPII) has emerged as a promising therapeutic target. This enzyme is minimally expressed in normal ileum and colon, but it is markedly up-regulated in biopsies from patients with IBD and preclinical colitis models. Here, we generated a class of GCPII inhibitors designed to be gut-restricted for oral administration, and we interrogated efficacy and mechanism using in vitro and in vivo models. The lead inhibitor, (S)-IBD3540, was potent (half maximal inhibitory concentration = 4 nanomolar), selective, gut-restricted (AUCcolon/plasma > 50 in mice with colitis), and efficacious in acute and chronic rodent colitis models. In dextran sulfate sodium-induced colitis, oral (S)-IBD3540 inhibited >75% of colon GCPII activity, dose-dependently improved gross and histologic disease, and markedly attenuated monocytic inflammation. In spontaneous colitis in interleukin-10 (IL-10) knockout mice, once-daily oral (S)-IBD3540 initiated after disease onset improved disease, normalized colon histology, and attenuated inflammation as evidenced by reduced fecal lipocalin 2 and colon pro-inflammatory cytokines/chemokines, including tumor necrosis factor-α and IL-17. Using primary human colon epithelial air-liquid interface monolayers to interrogate the mechanism, we further found that (S)-IBD3540 protected against submersion-induced oxidative stress injury by decreasing barrier permeability, normalizing tight junction protein expression, and reducing procaspase-3 activation. Together, this work demonstrated that local inhibition of dysregulated gastrointestinal GCPII using the gut-restricted, orally active, small-molecule (S)-IBD3540 is a promising approach for IBD treatment.


Assuntos
Colite , Glutamato Carboxipeptidase II , Doenças Inflamatórias Intestinais , Animais , Humanos , Camundongos , Colite/tratamento farmacológico , Colite/metabolismo , Colo/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Glutamato Carboxipeptidase II/antagonistas & inibidores , Inflamação/patologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Camundongos Endogâmicos C57BL
17.
Eur J Med Chem ; 259: 115674, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37536209

RESUMO

Neutral sphingomyelinase 2 (nSMase2) has gained increasing attention as a therapeutic target to regulate ceramide production in various disease conditions. Phenyl (R)-(1-(3-(3,4-dimethoxyphenyl)-2,6-dimethylimidazo[1,2-b]pyridazin-8-yl)-pyrrolidin-3-yl)carbamate (PDDC) is a submicromolar nSMase2 inhibitor and has been widely used to study the pharmacological effects of nSMase2 inhibition. Through screening of compounds containing a bicyclic 5-6 fused ring, larotrectinib containing a pyrazolo[1,5-a]pyrimidine ring was identified as a low micromolar inhibitor of nSMase2. This prompted us to investigate the pyrazolo[1,5-a]pyrimidin-3-amine ring as a novel scaffold to replace the imidazo[1,2-b]pyridazine-8-amine ring of PDDC. A series of molecules containing a pyrazolo[1,5-a]pyrimidin-3-amine ring were synthesized and tested for their ability to inhibit human nSMase2. Several compounds exhibited nSMase2 inhibitory potency superior to that of PDDC. Among these, N,N-dimethyl-5-morpholinopyrazolo[1,5-a]pyrimidin-3-amine (11j) was found to be metabolically stable in liver microsomes and orally available with a favorable brain-to-plasma ratio, demonstrating the potential of pyrazolo[1,5-a]pyrimidine ring as an effective scaffold for nSMase2 inhibition.


Assuntos
Aminas , Esfingomielina Fosfodiesterase , Humanos , Pirimidinas/farmacologia , Ceramidas
18.
Mol Cancer Ther ; 22(12): 1390-1403, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37616542

RESUMO

Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft-tissue sarcomas that arise from neural tissues and carry a poor prognosis. Previously, we found that the glutamine amidotransferase inhibitor JHU395 partially impeded tumor growth in preclinical models of MPNST. JHU395 inhibits de novo purine synthesis in human MPNST cells and murine tumors with partial decreases in purine monophosphates. On the basis of prior studies showing enhanced efficacy when glutamine amidotransferase inhibition was combined with the antimetabolite 6-mercaptopurine (6-MP), we hypothesized that such a combination would be efficacious in MPNST. Given the known toxicity associated with 6-MP, we set out to develop a more efficient and well-tolerated drug that targets the purine salvage pathway. Here, we report the discovery of Pro-905, a phosphoramidate protide that delivered the active nucleotide antimetabolite thioguanosine monophosphate (TGMP) to tumors over 2.5 times better than equimolar 6-MP. Pro-905 effectively prevented the incorporation of purine salvage substrates into nucleic acids and inhibited colony formation of human MPNST cells in a dose-dependent manner. In addition, Pro-905 inhibited MPNST growth and was well-tolerated in both human patient-derived xenograft (PDX) and murine flank MPNST models. When combined with JHU395, Pro-905 enhanced the colony formation inhibitory potency of JHU395 in human MPNST cells and augmented the antitumor efficacy of JHU395 in mice. In summary, the dual inhibition of the de novo and purine salvage pathways in preclinical models may safely be used to enhance therapeutic efficacy against MPNST.


Assuntos
Neoplasias de Bainha Neural , Neurofibrossarcoma , Humanos , Animais , Camundongos , Glutamina , Linhagem Celular Tumoral , Antimetabólitos/uso terapêutico , Neoplasias de Bainha Neural/tratamento farmacológico
20.
Res Sq ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37502930

RESUMO

Background: Cognitive decline in Alzheimer's disease (AD) is associated with prion-like tau propagation between neurons along synaptically connected networks, in part via extracellular vesicles (EV). EV biogenesis is triggered by ceramide enrichment at the plasma membrane from neutral sphingomyelinase2(nSMase2)-mediated cleavage of sphingomyelin. We report, for the first time, that tau expression triggers an elevation in brain ceramides and nSMase2 activity. Methods: To determine the therapeutic benefit of inhibiting this elevation, we evaluated the efficacy of PDDC, the first potent, selective, orally bioavailable, and brain-penetrable nSMase2 inhibitor, in the PS19 tau transgenic AD murine model. Changes in brain ceramide and sphingomyelin levels, Tau content, histopathology, and nSMase2 target engagement were monitored, as well as changes in the number of brain-derived EVs in plasma and their Tau content. Additionally, we evaluated the ability of PDDC to impede tau propagation in a murine model where an adeno-associated virus(AAV) encoding for P301L/S320F double mutant human tau was stereotaxically-injected unilaterally into the hippocampus and the contralateral transfer to the dentate gyrus was monitored. Results: Similar to human AD, PS19 mice exhibited increased brain ceramides and nSMase2 activity; both were completely normalized by PDDC treatment. PS19 mice exhibited elevated tau immunostaining, thinning of hippocampal neuronal cell layers, increased mossy fiber synaptophysin immunostaining, and glial activation, all pathologic features of human AD. PDDC treatment significantly attenuated these aberrant changes. Mouse plasma isolated from PDDC-treated PS19 mice exhibited reduced levels of neuron- and microglia-derived EVs, the former carrying lower phosphorylated Tau(pTau) levels, compared to untreated mice. In the AAV tau propagation model, PDDC normalized the tau-induced increase in brain ceramides and significantly decreased tau spreading to the contralateral side. Conclusions: PDDC is a first-in-class therapeutic candidate that normalizes elevated brain ceramides and nSMase2 activity leading to the slowing of tau spread in AD mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...