Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Transl Cancer Res ; 13(5): 2419-2436, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38881940

RESUMO

Background: Breast cancer (BRCA) is the most common type of cancer and the second leading cause of cancer-related death in women all over the world. Metastasis to bone is an indicator of poor prognosis in BRCA patients. This study aimed to develop a prognostic score model for predicting bone metastasis in patients with BRCA. Methods: BRCA-related RNA sequencing datasets and corresponding clinical information were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Differentially expressed genes (DEGs) were screened using Limma package of R software. A risk score based predictive model was constructed based on the key genes identified through univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) Cox regression. The gene expression profiles in BRCA patients were analyzed by gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA). Random survival forest (RSF) analysis of BRCA patients with bone metastasis was conducted to identify the key DEGs. Results: Based on DEG analysis, a total of 677 genes were identified as genes related to bone metastasis in BRCA. By univariate Cox regression and LASSO regression, 28 DEGs were identified as signature genes to develop the prognostic model. A risk score for each patient was created by incorporating the expression values of each specific gene and weighting them with the corresponding estimated regression coefficients. Patients were divided into a low-risk and a high-risk group based on the median risk score. Overall survival (OS) was significantly lower in the high-risk group. The receiver operating characteristic (ROC) curve and multi-omics analysis indicated that the model had high training/testing accuracy and a good clinical predictive value. We used extra data from GEO database to verify the robustness of the prognostic model, and the lower OS in high-risk group and area under the curve (AUC) value indicated the model had strong predictive efficacy for prognosis of BRCA. Conclusions: A prognostic prediction model was constructed based on 28 key DEGs identified through multi-omics analysis of studies on bone metastasis. The model may provide a promising method for distinguishing the high-risk BRCA patients and help on decision making in addition to prognosis prediction for BRCA patients.

2.
Plant Methods ; 20(1): 77, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797847

RESUMO

BACKGROUND: Taraxacum kok-saghyz Rodin (TKS) is a highly potential source of natural rubber (NR) due to its wide range of suitable planting areas, strong adaptability, and suitability for mechanized planting and harvesting. However, current methods for detecting NR content are relatively cumbersome, necessitating the development of a rapid detection model. This study used near-infrared spectroscopy technology to establish a rapid detection model for NR content in TKS root segments and powder samples. The K445 strain at different growth stages within a year and 129 TKS samples hybridized with dandelion were used to obtain their near-infrared spectral data. The rubber content in the root of the samples was detected using the alkaline boiling method. The Monte Carlo sampling method (MCS) was used to filter abnormal data from the root segments of TKS and powder samples, respectively. The SPXY algorithm was used to divide the training set and validation set in a 3:1 ratio. The original spectrum was preprocessed using moving window smoothing (MWS), standard normalized variate (SNV), multiplicative scatter correction (MSC), and first derivative (FD) algorithms. The competitive adaptive reweighted sampling (CARS) algorithm and the corresponding chemical characteristic bands of NR were used to screen the bands. Partial least squares (PLS), random forest (RF), Lightweight gradient augmentation machine (LightGBM), and convolutional neural network (CNN) algorithms were employed to establish a model using the optimal spectral processing method for three different bands: full band, CARS algorithm, and chemical characteristic bands corresponding to NR. The model with the best predictive performance for high rubber content intervals (rubber content > 15%) was identified. RESULT: The results indicated that the optimal rubber content prediction models for TKS root segments and powder samples were MWS-FD CASR-RF and MWS-FD chemical characteristic band RF, respectively. Their respective R P 2 , RMSEP, and RPDP values were 0.951, 0.979, 1.814, 1.133, 4.498, and 6.845. In the high rubber content range, the model based on the LightGBM algorithm had the best prediction performance, with the RMSEP of the root segments and powder samples being 0.752 and 0.918, respectively. CONCLUSIONS: This research indicates that dried TKS root powder samples are more appropriate for constructing a rubber content prediction model than segmented samples, and the predictive capability of root powder samples is superior to that of root segmented samples. Especially in the elevated rubber content range, the model formulated using the LightGBM algorithm has superior predictive performance, which could offer a theoretical basis for the rapid detection technology of TKS content in the future.

3.
Nanoscale ; 16(22): 10645-10655, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38766844

RESUMO

A BiO2-x/COF composite was successfully synthesized by simple mechanical ball milling. Compared to pure BiO2-x and COFs, the BiO2-x/COF composite (1 : 9) showed superior photocatalytic capability. Under visible light irradiation for 90 min, the photocatalytic degradation rate of DCF reached 97%. In addition, the characterization results showed that the formation of heterojunctions and the increase in oxygen vacancy concentration were the reasons for the enhancement of the photocatalytic activity. It is confirmed by free radical capture experiments that ˙O2- and h+ are the main reactive substances in the photocatalytic process. The photocatalytic degradation mechanism of the composite and the photocatalytic degradation pathway of diclofenac were deduced.

4.
Mitochondrial DNA B Resour ; 9(1): 143-147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38274856

RESUMO

Zicaitai (Brassica rapa var. purpuraria (L.H.Bailey) Kitam 1950) is a vegetable crop that boasts a high nutritional value and unique flavor. It originated from Central China and was formed after long-term cultivation and domestication. In this study, we obtained the complete sequence of the chloroplast genome of zicaitai, a circular molecule of 153,483 bp in length. This chloroplast genome consists of a large single-copy (LSC) region (83,282 bp), a small single-copy (SSC) region (17,775 bp), and a pair of inverted repeats (IRs) (26,213 bp). By sequence annotation, 132 genes, including 87 protein-coding genes, 37 tRNA genes, and eight rRNA genes were identified in the zicaitai chloroplast. A total of 315 simple sequence repeats (SSRs) were found located in LSC (197), SSC (72), and IR (46), respectively. Phylogenetic analysis based on chloroplast genomes indicated the relationship of zicaitai and the Brassicaceae family, which supports zicaitai as a variety of B. rapa in taxonomy. The results obtained in this study provide insight into further research on Brassica chloroplasts and their phylogeny.

5.
Sci Data ; 10(1): 759, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923891

RESUMO

Zicaitai is a seasonal vegetable known for its high anthocyanin content in both stalks and leaves, yet its reference genome has not been published to date. Here, we generated the first chromosome-level genome assembly of Zicaitai using a combination of PacBio long-reads, Illumina short-reads, and Hi-C sequencing techniques. The final genome length is 474.12 Mb with a scaffold N50 length of 43.82 Mb, a BUSCO score of 99.30% and the LAI score of 10.14. Repetitive elements accounted for 60.89% (288.72 Mb) of the genome, and Hi-C data enabled the allocation of 430.87 Mb of genome sequences to ten pseudochromosomes. A total of 42,051 protein-coding genes were successfully predicted using multiple methods, of which 99.74% were functionally annotated. Notably, comparing the genome of Zicaitai with seven other species in the Cruciferae family revealed strong conservation in terms of gene numbers and structures. Overall, the high-quality genome assembly provides a critical resource for studying the genetic basis of important agronomic traits in Zicaitai.


Assuntos
Brassica rapa , Genoma de Planta , Brassica rapa/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico , Cromossomos de Plantas
6.
Plants (Basel) ; 12(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447059

RESUMO

Chinese flowering cabbage (Brassica rapa var. parachinensis) is a popular and widely cultivated leaf vegetable crop in Asia. Here, we performed a high quality de novo assembly of the 384 Mb genome of 10 chromosomes of a typical cultivar of Chinese flowering cabbage with an integrated approach using PacBio, Illumina, and Hi-C technology. We modeled 47,598 protein-coding genes in this analysis and annotated 52% (205.9/384) of its genome as repetitive sequences including 17% in DNA transposons and 22% in long terminal retrotransposons (LTRs). Phylogenetic analysis reveals the genome of the Chinese flowering cabbage has a closer evolutionary relationship with the AA diploid progenitor of the allotetraploid species, Brassica juncea. Comparative genomic analysis of Brassica species with different subgenome types (A, B and C) reveals that the pericentromeric regions on chromosome 5 and 6 of the AA genome have been significantly expanded compared to the orthologous genomic regions in the BB and CC genomes, largely driven by LTR-retrotransposon amplification. Furthermore, we identified a large number of structural variations (SVs) within the B. rapa lines that could impact coding genes, suggesting the functional significance of SVs on Brassica genome evolution. Overall, our high-quality genome assembly of the Chinese flowering cabbage provides a valuable genetic resource for deciphering the genome evolution of Brassica species and it can potentially serve as the reference genome guiding the molecular breeding practice of B. rapa crops.

7.
Spine (Phila Pa 1976) ; 48(18): 1308-1316, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36856549

RESUMO

STUDY DESIGN: Retrospective observational study. OBJECTIVE: The objective of this study was to investigate factors associated with cervical kyphosis after laminoplasty. SUMMARY OF BACKGROUND DATA: Many factors are reportedly associated with the deterioration of cervical curvature after laminoplasty, including cervical lordosis angle, cervical spine range of motion (ROM), T1 slope, and C2-C7 sagittal vertical axis. Postlaminoplasty kyphosis or deterioration of cervical curvature is likely caused by multiple factors. There is currently no consensus on these issues. MATERIALS AND METHODS: Data of patients treated with laminoplasty for degenerative cervical myelopathy at our institution during 2008-2018 were reviewed. The following variables were collected for each patient: age and sex; follow-up time; surgery involving C3 (yes or no); surgery involving C7 (yes or no); distribution of segments operated on; number of laminae operated on; flexion, extension, and total ROM; cervical lordotic angle; longitudinal distance index; curvature index; C2-C7 sagittal vertical axis; and T1 slope. Logistic regression analysis was used to assess possible risk factors for postoperative kyphosis. Receiver operating characteristic curves were constructed to determine the cutoff values of risk factors. RESULTS: The study cohort comprised 151 patients. Logistic regression analysis indicated that sex, number of laminae operated on, and preoperative extension ROM were significantly associated with postoperative cervical kyphosis ( P <0.05). There was significantly greater postoperative kyphosis in women than in men; the more segments operated on, the greater the risk of postoperative kyphosis, and the larger the preoperative extension ROM, the lower the risk of postlaminoplasty kyphosis. Receiver operating characteristic curve analysis showed that the cutoff value for preoperative extension ROM is 22.1°. CONCLUSIONS: Preoperative extension ROM may be associated with the development of postoperative kyphosis. The cutoff value of preoperative extension ROM that suggested the prospect of postoperative kyphosis in our sample was 22.1°.


Assuntos
Cifose , Laminoplastia , Lordose , Doenças da Medula Espinal , Masculino , Humanos , Feminino , Laminoplastia/efeitos adversos , Laminoplastia/métodos , Cifose/diagnóstico por imagem , Cifose/etiologia , Cifose/cirurgia , Lordose/cirurgia , Doenças da Medula Espinal/cirurgia , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia , Estudos Retrospectivos , Amplitude de Movimento Articular , Resultado do Tratamento
8.
PeerJ ; 11: e14698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36684677

RESUMO

Medicago polymorpha L. (bur clover), an invasive plant species of the genus Medicago, has been traditionally used in China as an edible vegetable crop because of its high nutritive value. However, few molecular markers for M. polymorpha have been identified. Using the recently published high-quality reference genome of M. polymorpha, we performed a specific-locus amplified fragment sequencing (SLAF-seq) analysis of 10 M. polymorpha accessions to identify molecular markers and explore genetic diversity. A total of 52,237 high-quality single nucleotide polymorphisms (SNPs) were developed. These SNPs were mostly distributed on pseudochromosome 3, least distributed on pseudochromosome 7, and relatively evenly distributed on five other pseudochromosomes of M. polymorpha. Phenotypic analysis showed that there was a great difference in phenotypic traits among different M. polymorpha accessions. Moreover, clustering all M. polymorpha accessions based on their phenotypic traits revealed three groups. Both phylogenetic analysis and principal component analysis (PCA) of all M. polymorpha accessions based on SNP markers consistently indicated that all M. polymorpha accessions could be divided into three distinct groups (I, II, and III). Subsequent genetic diversity analysis for the 10 M. polymorpha accessions validated the effectiveness of the M. polymorpha germplasm molecular markers in China. Additionally, SSR mining analysis was also performed to identify polymorphic SSR motifs, which could provide valuable candidate markers for the further breeding of M. polymorpha. Since M. polymorpha genetics have not been actively studied, the molecular markers generated from our research will be useful for further research on M. polymorpha resource utilization and marker-assisted breeding.


Assuntos
Variação Genética , Medicago , Variação Genética/genética , Medicago/genética , Filogenia , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética
10.
Front Genet ; 13: 913133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873475

RESUMO

Telomere biology disorders (TBDs) induced by TINF2 mutations manifest clinically with a spectrum of phenotypes, from silent carriers to a set of overlapping conditions. A rare TINF2 frameshift mutation (c.591delG) encoding a truncated mutant TIN2 protein (p.W198fs) was identified in a 6-years-and-3-month-old Chinese girl with neuroblastoma (NB) by next generation sequencing and confirmed by Sanger sequencing. To explore the possible implications of TINF2 mutations in TBDs development, the TINF2 mutant was transfected into the human embryonic kidney (HEK) 293T cells, and mRNA expression of the shelterin complex components as well as the cellular distribution of mutant TIN2 were examined. The TINF2 mutation was phenotypically associated with short stature in the proband, nail dystrophy and spotted hypopigmentation in her mother, and psoriasis in her older brother. I-TASSER modeling analysis revealed conformational changes of the mutant TIN2 protein and loss of pivotal domains downstream of the 198th amino acid. Additionally, mRNA expression of the shelterin components was downregulated, and TIN2 mutant protein expression was reduced in HEK293T cells transfected with mutant TINF2. Furthermore, instead of being restricted to the nucleus, the mutant TIN2 was identified in both the cytoplasm and the nucleus. The TINF2 gene mutation might impair the function of the shelterin complex and the telomere maintenance mechanisms, both of which are involved in the development of TBDs. TBDs have been associated with increased cancer risk. To the best of our knowledge, this is the first report of NB in patients with TBDs. The relationship between the TINF2 mutation and NB may need to further study.

11.
Talanta ; 237: 122909, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736646

RESUMO

In this work, we propose a two-step coating method, combining C-ZIF67@Ni with molecular imprinting polymer (MIP), to develop a high-sensitivity and high-selectivity Carbendazim (CBD) electrochemical sensor. ZIF67@Ni was prepared by a simple chemical bath method, and C-ZIF67@Ni was obtained by high-temperature carbonization of ZIF67@Ni. Then, MIP layer was prepared by electrochemical in-situ polymerization, with O-aminophenol as functional monomers, CBD acting as template on the surface of the C-ZIF67@Ni-modified glassy carbon electrode (GCE). During the preparation process, the types of functional monomers, the polymerization solution pH, the ratio of functional monomers to template molecules, and the incubation time are optimized. The morphological characteristics, composition information and electrochemical properties of MIP/C-ZIF67@Ni/GCE were investigated in detail under optimal conditions. Physical characterization and electrochemical tests revealed that ZIF67@Ni significantly improves the electron transmission capacity and surface area of the sensor after high-temperature carbonization. C-ZIF67@ Ni has a good synergistic effect on MIP, allowing rapid and specific identification of the test substance. MIP/C-ZIF67@Ni/GCE showed a good linear relationship with CBD in the concentration range from 4 × 10-13 M to 1 × 10-9 M, the lowest detection limit was 1.35 × 10-13 M (S/N = 3) R2 = 0.9983 and RSD = 2.34. Additionally, the sensor showed good repeatability, stability, and selectivity, and can be used for the detection of carbendazim in soil and water with a recovery of 98% above.


Assuntos
Técnicas Biossensoriais , Impressão Molecular , Benzimidazóis , Carbamatos , Técnicas Eletroquímicas , Eletrodos , Limite de Detecção , Polímeros Molecularmente Impressos
12.
Ecol Evol ; 11(12): 7917-7926, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188861

RESUMO

Taraxacum kok-saghyz Rodin (TKS) is an important potential alternative source of natural inulin and rubber production, which has great significance for the production of industrial products. In this study, we sequenced 58 wild TKS individuals collected from four different geography regions worldwide to elucidate the population structure, genetic diversity, and the patterns of evolution. Also, the first flowering time, crown diameter, morphological characteristics of leaf, and scape of all TKS individuals were measured and evaluated statistically. Phylogenetic analysis based on SNPs and cluster analysis based on agronomic traits showed that all 58 TKS individuals could be roughly divided into three distinct groups: (a) Zhaosu County in Xinjiang (population AB, including a few individuals from population C and D); (b) Tekes County in Xinjiang (population C); and (c) Tuzkol lake in Kazakhstan (population D). Population D exhibited a closer genetic relationship with population C compared with population AB. Genetic diversity analysis further revealed that population expansion from C and D to AB occurred, as well as gene flow between them. Additionally, some natural selection regions were identified in AB population. Function annotation of candidate genes identified in these regions revealed that they mainly participated in biological regulation processes, such as transporter activity, structural molecule activity, and molecular function regulator. We speculated that the genes identified in selective sweep regions may contribute to TKS adaptation to the Yili River Valley of Xinjiang. In general, this study provides new insights in clarifying population structure and genetic diversity analysis of TKS using SNP molecular markers and agronomic traits.

13.
Hortic Res ; 8(1): 47, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33642569

RESUMO

Medicago polymorpha is a nutritious and palatable forage and vegetable plant that also fixes nitrogen. Here, we reveal the chromosome-scale genome sequence of M. polymorpha using an integrated approach including Illumina, PacBio and Hi-C technologies. We combined PacBio full-length RNA-seq, metabolomic analysis, structural anatomy analysis and related physiological indexes to elucidate the important agronomic traits of M. polymorpha for forage and vegetable usage. The assembled M. polymorpha genome consisted of 457.53 Mb with a long scaffold N50 of 57.72 Mb, and 92.92% (441.83 Mb) of the assembly was assigned to seven pseudochromosomes. Comparative genomic analysis revealed that expansion and contraction of the photosynthesis and lignin biosynthetic gene families, respectively, led to enhancement of nutritious compounds and reduced lignin biosynthesis in M. polymorpha. In addition, we found that several positively selected nitrogen metabolism-related genes were responsible for crude protein biosynthesis. Notably, the metabolomic results revealed that a large number of flavonoids, vitamins, alkaloids, and terpenoids were enriched in M. polymorpha. These results imply that the decreased lignin content but relatively high nutrient content of M. polymorpha enhance its edibility and nutritional value as a forage and vegetable. Our genomic data provide a genetic basis that will accelerate functional genomic and breeding research on M. polymorpha as well as other Medicago and legume plants.

14.
Plant Dis ; 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33543992

RESUMO

Cucumis metuliferus, also called horned cucumber or jelly melon, is considered as a wild species in the Cucumis genus and a potential material for nematodes- or viruses-resistant breeding (Provvidenti, et al. 1977; Sigüenza et al. 2005; Chen et al. 2020). This species, originating from Africa, has been cultivated as a fruit in China in recent years. In July 2020, a mosaic disease was observed on C. metuliferus growing in five fields (approximately 0.7 hectare) in Urumqi, Xijiang, China, where more than 85~100% of the field plants exhibited moderate to severe viral disease-like leaf mosaic and/or deformation symptoms. Delayed flowering and small and/or deformed fruits on the affected plants could result in yield loss of about 50%. To identify the causal pathogen, the symptomatic leaf samples were collected from the five fields (five plants/points for each field) and their total RNAs were extracted using a commercial RNA extraction kit. The universal potyviral primers (Ha et al. 2008) and specific primers for a number of frequently-occurring, cucurbit crop-infecting viruses including Papaya ringspot virus (PRSV) (Lin et al. 2013), Cucumber mosaic virus (CMV) and Watermelon mosaic virus (WMV) were designed and used for detection by RT-PCR. The result showed that only the WMV primers (forward: 5'-AAGTGTGACCAAGCTTGGACTGCA-3' and reverse: 5'-CTCACCCATTGTGCCAAAGAACGT-3') could amplify the corresponding target fragment from the total RNA templates, and direct sequencing of the RT-PCR products and GenBank BLAST confirmed the presence of WMV (genus Potyvirus) in the collected C. metuliferus samples. To complete Koch's postulates, the infected C. metuliferus leaves were ground in the sodium phosphate buffer (0.01 M, pH 7.0) and the sap was mechanically inoculated onto 30 four-leaf-stage C. metuliferus seedlings (two leaves for each seedling were inoculated) kept in an insect-proof, temperature-controlled greenhouse at 25~28℃. Twenty-five of the inoculated plants were observed to have apparent leaf mosaic similar to the field symptoms two weeks after inoculation, and positive result was obtained in RT-PCR detection for the symptomatic leaves of inoculated plants using the WMV primers aforementioned, confirming the virus as the pathogen of C. metuliferus in Urumqi. To our knowledge, this is the first report of WMV naturally infecting C. metuliferus in China. We obtained the full-length sequence of the WMV Urumqi isolation (WMV-Urumqi) by sequencing the RT-PCR amplicons from seven pairs of primers spanning the viral genome and the 5'RACE and 3'RACE products. The complete sequence of WMV-Urumqi (GenBank accession no. MW345911) is 10046 nucleotides (nt) long and contains an open reading frame that encodes a polyprotein of 3220 amino acids (aa). WMV-Urumqi shares the highest nt identity (95.9%) and aa identity (98.0%) with the Cucurbita pepo-infecting isolation (KX664483) from Shanxi province, China. Our findings provide a better understanding of the host range and genetic diversity of WMV, and a useful reference for virus-resistant breeding involving C. metuliferus.

15.
Anal Chim Acta ; 1136: 99-105, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33081955

RESUMO

Herein, a Mo2C/bimetallic zeolitic imidazolate framework-modified glassy carbon electrode (Mo2C@BMZIFs/GCE) was established as an electrochemical sensor for the simultaneous sensitive determination of acetaminophen (APAP) and isoniazid (INZ). The apparent morphology, structural composition, and electrochemical properties were comprehensively investigated. The outstanding electrocatalytic activity and conductivity endow the sensor desirable electrochemical performance toward APAP and INZ compared to the bare GCE, such as wide linear range, low detection limit, and high selectivity. Under the optimum conditions, a linear relationship between the oxidation peak current and the concentration of the measured object was obtained, with linear ranges from 0.1 to 300 µM for APAP and from 10 to 3500 µM for INZ. The detection limits for APAP and INZ were 0.03 µM and 1.5 µM, respectively. More importantly, the APAP and INZ oxidation peaks could be completely separated. Moreover, the highly sensitive and stable sensor was applied to detect APAP and INZ in human serum. This work can provide a viable route to rational design and construct electrochemical sensors for drug monitoring and clinical diagnosis.


Assuntos
Acetaminofen , Estruturas Metalorgânicas , Eletrodos , Humanos , Isoniazida , Oxirredução
16.
J Orthop Surg Res ; 15(1): 370, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867845

RESUMO

OBJECTIVE: This study evaluated the biomechanical changes in the adjacent vertebrae under a physiological load (500 N) when the clinically relevant amount of bone cement was injected into fractured cadaver vertebral bodies. METHODS: The embalmed cadaver thoracolumbar specimens in which each vertebral body (T12-L2) had a BMD of < 0.75 g/cm2 were used for the experiment. For establishing a fracture model, the upper one third of the L1 vertebra was performed wedge osteotomy and the superior endplate was kept complete. Stiffness of specimens was measured in different states. Strain of the adjacent vertebral body and intervertebral disc were measured in pre-fracture, post-fracture, and after augmentation by non-contact optical strain measurement system. RESULTS: The average amount of bone cement was 4.4 ml (3.8-5.0 ml). The stiffness of after augmentation was significantly higher than the stiffness of post-fracture (p < 0.05), but still lower than pre-fracture stiffness (p < 0.05). After augmentation, the adjacent upper vertebral strain showed no significant difference (p > 0.05) with pre-fracture, while the strain of adjacent lower vertebral body was significantly higher than that before fracture (p < 0.05). In flexion, T12/L1 intervertebral disc strain was significantly greater after augmentation than after the fracture (p < 0.05), but there was no significant difference from that before the fracture (p > 0.05); L1/2 vertebral strain after augmentation was significantly less than that after the fracture (p < 0.05), but there was no significant difference from that before the fracture (p > 0.05). CONCLUSIONS: PVP may therefore have partially reversed the abnormal strain state of adjacent vertebral bodies which was caused by fracture.


Assuntos
Cimentos Ósseos , Fraturas por Compressão/terapia , Vértebras Lombares/fisiopatologia , Fraturas da Coluna Vertebral/terapia , Vértebras Torácicas/fisiopatologia , Fenômenos Biomecânicos , Cadáver , Fraturas por Compressão/fisiopatologia , Humanos , Disco Intervertebral/fisiopatologia , Modelos Anatômicos , Fraturas da Coluna Vertebral/fisiopatologia , Entorses e Distensões
17.
Analyst ; 145(23): 7609-7615, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-32996480

RESUMO

In this work, MoO2 nanoparticles were synthesized and annealed to form Mo2C nanoparticles. This is the first report of a ratiometric electrochemical sensor (R-ECS) for the detection of acetaminophen (AP), in which Mo2C is used as the sensing agent and ferrocene (FC) is used as an internal reference. FC (100 µM) is added directly to the electrolyte solution for convenient operation. The synthesized materials were fully characterized with respect to composition, morphology and electrochemical performance. The oxidation peak potentials of FC (0.196 V) and AP (0.364 V) can be completely separated by the Mo2C modified glassy carbon electrode, and their ratiometric signals are used for the quantification of AP. It was found that the oxidation peak currents of AP at separated potentials on Mo2C/GCE are linear with concentration in the range of 0.5-600 µM, and the detection limit is 0.029 µM (S/N = 3). Mo2C/GCE exhibited decent repeatability, reproducibility, stability, and selectivity. The sensor was then applied to measure AP in tap water and river water.


Assuntos
Acetaminofen , Técnicas Eletroquímicas , Carbono , Eletrodos , Limite de Detecção , Reprodutibilidade dos Testes
18.
BMC Surg ; 20(1): 35, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32093662

RESUMO

BACKGROUND: The aim of this study was to investigate the correlation between lumbar multifidus fat infiltration and lumbar postoperative surgical site infection (SSI). Several clinical studies have found that spine postoperative SSI is associated with age, diabetes, obesity, and multilevel surgery. However, few studies have focused on the correlation between lumbar multifidus fat infiltration and SSI. METHOD: A retrospective review was performed on patients who underwent posterior lumbar interbody fusion (PLIF) between 2011 and 2016 at our hospital. The patients were divided into SSI and non-SSI groups. Data of risk factors [age, diabetes, obesity, body mass index (BMI), number of levels, and surgery duration] and indicators of body mass distribution (subcutaneous fat thickness and multifidus fat infiltration) were collected. The degree of multifidus fat infiltration was analyzed on magnetic resonance images using Image J. RESULTS: Univariate analysis indicated that lumbar spine postoperative SSI was associated with urinary tract infection, subcutaneous fat thickness, lumbar multifidus muscle (LMM) fat infiltration, multilevel surgery (≥2 levels), surgery duration, drainage duration, and number of drainage tubes. In addition, multiple logistic regression analysis revealed that spine SSI development was associated with sex (male), age (> 60 years), subcutaneous fat thickness, LMM fat infiltration, and drainage duration. Receiver operating characteristic curve analysis indicated that the risk of SSI development was higher when the percentage of LMM fat infiltration exceeded 29.29%. Furthermore, Pearson's correlation analysis demonstrated that LMM fat infiltration was correlated with age but not with BMI. CONCLUSION: Indicators of body mass distribution may better predict SSI risk than BMI following PLIF. Lumbar Multifidus fat infiltration is a novel spine-specific risk factor for SSI development.


Assuntos
Vértebras Lombares/cirurgia , Gordura Subcutânea/diagnóstico por imagem , Infecção da Ferida Cirúrgica/etiologia , Adulto , Idoso , Índice de Massa Corporal , Estudos de Casos e Controles , Drenagem/efeitos adversos , Feminino , Humanos , Vértebras Lombares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Músculos Paraespinais/diagnóstico por imagem , Período Pós-Operatório , Estudos Retrospectivos , Fatores de Risco
19.
Mikrochim Acta ; 186(11): 733, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673848

RESUMO

Walnut shell was processed for preparing nanoporous carbon, which further underwent element doping in order to boost its performance. A novel electrochemical sensor was then built by using the nitrogen and sulfur co-doped walnut shell carbon (N,S-WSC). Morphology and microstructure of the materials were characterized by scanning electron microscopy and Brunauer-Emmett-Teller (de)sorption which showed that N,S-WSC has a large specific surface with abundant pores. Electrochemical properties of differently modified sensors were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. They demonstrated enhanced conductivity and enlarged surface after N,S co-doping. The modified electrode exhibits good catalytic ability towards paracetamol (ACOP) and p-aminophenol (PAP), and baseline separation of their oxidation peaks (peak potential difference is 0.24 V) allows for simultaneous detection of these two compounds. Under the optimal conditions, the calibration plot is linear in the 0.1 to 220 µM ACOP concentration range, with a 26 nM detection limit. Response to PAP is linear from 1.0 to 300 µM, and the detection limit is 38 nM (at S/N = 3). The sensor was successfully applied to quantify ACOP and PAP in tablets, and the accuracy of results is validated by HPLC. Graphical abstract Schematic representation of a novel electrochemical sensor based on N, S co-doped walnut shell carbon modified glassy carbon electrode for determination of paracetamol and p-aminophenol.

20.
Biosens Bioelectron ; 144: 111663, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31539721

RESUMO

M-nitrophenol (m-NP) is a high priority environmental pollutant and poses a series of threats on human health. Accurate and rapid detection of m-NP in practical samples is very important as this is the key prerequisite for its effective monitoring. Eelectrochemical sensor, though long serving as highly sensitive and fast analytical tool, suffers from the bottleneck problems like low specificity, poor reproducibility, susceptibility to internal and external disturbances, etc. Herein, we developed a ratiometric electrochemical sensor (R-ECS) for m-NP detection, in which nitrogen-doped Mo2C (N-Mo2C) was deployed as the sensing agent and methylene blue (MB) as the internal reference. Full characterization of N-Mo2C was carried out in the aspects of morphology, composition, chemical bonds and electrochemical behavior, and the sensing performance of the easy-to-operate R-ECS was evaluated. Complete separation of the oxidation peaks of m-NP and MB was achieved using the MB/N-Mo2C composite modified electrode and their ratiometric signals were adopted for quantification of m-NP. The linear relation between the electrical signal and the concentration of m-NP is in the range of 1-1500 µM, with the detection limit of 0.256 µM (S/N = 3). The sensor was applied to measure m-NP in real samples from tap water and river. Experimental results demonstrate that it exhibits decent repeatability, reproducibility, stability and selectivity, which proves its great practical potential as an analytical detector.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Nitrofenóis/isolamento & purificação , Água/química , Eletrodos , Humanos , Azul de Metileno/química , Nitrogênio/química , Nitrofenóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...