Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 3): 127797, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949272

RESUMO

Biodegradable orthopedic implants are essential for restoring the physiological structure and function of bone tissue while ensuring complete degradation after recovery. Polylactic acid (PLA), a biodegradable polymer, is considered a promising material due to its considerable mechanical properties and biocompatibility. However, further improvements are necessary to enhance the mechanical strength and bioactivity of PLA for reliable load-bearing orthopedic applications. In this study, a multifunctional PLA-based composite was fabricated by incorporating tricalcium phosphate (TCP) microspheres and magnesium (Mg) particles homogenously at a volume fraction of 40 %. This approach aims to enhance mechanical strength, accelerate pore generation, and improve biological and antibacterial performance. Mg content was incorporated into the composite at varying values of 1, 3, and 5 vol% (referred to as PLA/TCP-1 Mg, PLA/TCP-3 Mg, and PLA/TCP-5 Mg, respectively). The compressive strength and stiffness were significantly enhanced in all composites, reaching 87.7, 85.9, and 84.1 MPa, and 2.7, 3.0, and 3.1 GPa, respectively. The degradation test indicated faster elimination of the reinforcers as the Mg content increased, resulting in accelerated pore generation to induce enhanced osseointegration. Because PLA/TCP-3 Mg and PLA/TCP-5 Mg exhibited cracks in the PLA matrix due to rapid corrosion of Mg forming corrosion byproducts, to optimize the Mg particle content, PLA/TCP-1 Mg was selected for further evaluation. As determined by in vitro biological and antibacterial testing, PLA/TCP-1 Mg showed enhanced bioactivity with pre-osteoblast cells and exhibited antibacterial properties by suppressing bacterial colonization. Overall, the multifunctional PLA/TCP-Mg composite showed improved mechanobiological performance, making it a promising material for biodegradable orthopedic implants.


Assuntos
Magnésio , Osseointegração , Magnésio/farmacologia , Magnésio/química , Poliésteres/farmacologia , Poliésteres/química , Antibacterianos/farmacologia , Teste de Materiais , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
2.
Biomater Adv ; 152: 213523, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37336010

RESUMO

Biodegradability, bone-healing rate, and prevention of bacterial infection are critical factors for orthopedic implants. Polylactic acid (PLA) is a good candidate biodegradable material; however, it has insufficient mechanical strength and bioactivity for orthopedic implants. Magnesium (Mg), has good bioactivity, biodegradability, and sufficient mechanical properties, similar to that of bone. Moreover, Mg has an inherent antibacterial property via a photothermal effect, which generates localized heat, thus preventing bacterial infection. Therefore, Mg is a good candidate material for PLA composites, to improve their mechanical and biological performance and add an antibacterial property. Herein, we fabricated an antibacterial PLA/Mg composite for enhanced mechanical and biological performance with an antibacterial property for application as biodegradable orthopedic implants. The composite was fabricated with 15 and 30 vol% of Mg homogeneously dispersed in PLA without the generation of a defect using a high-shear mixer. The composites exhibited an enhanced compressive strength of 107.3 and 93.2 MPa, and stiffness of 2.3 and 2.5 GPa, respectively, compared with those of pure PLA which were 68.8 MPa and 1.6 GPa, respectively. Moreover, the PLA/Mg composite at 15 vol% Mg exhibited significant improvement of biological performance in terms of enhanced initial cell attachment and cell proliferation, whereas the composite at 30 vol% Mg showed deteriorated cell proliferation and differentiation because of the rapid degradation of the Mg particles. In turn, the PLA/Mg composites exerted an antibacterial effect based on the inherent antibacterial property of Mg as well as the photothermal effect induced by near-infrared (NIR) treatment, which can minimize infection after implantation surgery. Therefore, antibacterial PLA/Mg composites with enhanced mechanical and biological performance may be a candidate material with great potential for biodegradable orthopedic implants.


Assuntos
Magnésio , Poliésteres , Magnésio/farmacologia , Implantes Absorvíveis , Antibacterianos/farmacologia
3.
Materials (Basel) ; 16(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049045

RESUMO

Sulfide-based solid electrolytes exhibit good formability and superior ionic conductivity. However, these electrolytes can react with atmospheric moisture to generate H2S gas, resulting in performance degradation. In this study, we attempted to improve the stability of the interface between Li metal and an argyrodite Li6Ps5Cl solid electrolyte by partially substituting P with Sn to form an Sn-S bond. The solid electrolyte was synthesized via liquid synthesis instead of the conventional mechanical milling method. X-ray diffraction analyses confirmed that solid electrolytes have an argyrodite structure and peak shift occurs as substitution increases. Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses confirmed that the particle size gradually increased, and the components were evenly distributed. Moreover, electrochemical impedance spectroscopy and DC cycling confirmed that the ionic conductivity decreased slightly but that the cycling behavior was stable for about 500 h at X = 0.05. The amount of H2S gas generated when the solid electrolyte is exposed to moisture was measured using a gas sensor. Stability against atmospheric moisture was improved. In conclusion, liquid-phase synthesis could be applied for the large-scale production of argyrodite-based Li6PS5Cl solid electrolytes. Moreover, Sn substitution improved the electrochemical stability of the solid electrolyte.

4.
Materials (Basel) ; 16(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903074

RESUMO

In this study, a ferroelectric layer was formed on a ferroelectric device via plasma enhanced atomic layer deposition. The device used 50 nm thick TiN as upper and lower electrodes, and an Hf0.5Zr0.5O2 (HZO) ferroelectric material was applied to fabricate a metal-ferroelectric-metal-type capacitor. HZO ferroelectric devices were fabricated in accordance with three principles to improve their ferroelectric properties. First, the HZO nanolaminate thickness of the ferroelectric layers was varied. Second, heat treatment was performed at 450, 550, and 650 °C to investigate the changes in the ferroelectric characteristics as a function of the heat-treatment temperature. Finally, ferroelectric thin films were formed with or without seed layers. Electrical characteristics such as the I-E characteristics, P-E hysteresis, and fatigue endurance were analyzed using a semiconductor parameter analyzer. The crystallinity, component ratio, and thickness of the nanolaminates of the ferroelectric thin film were analyzed via X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. The residual polarization of the (20,20)*3 device heat treated at 550 °C was 23.94 µC/cm2, whereas that of the D(20,20)*3 device was 28.18 µC/cm2, which improved the characteristics. In addition, in the fatigue endurance test, the wake-up effect was observed in specimens with bottom and dual seed layers, which exhibited excellent durability after 108 cycles.

5.
Biomed Eng Lett ; 10(4): 505-516, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33194244

RESUMO

Powder based additive manufacturing (AM) technology of Ti and its alloys has received great attention in biomedical applications owing to its advantages such as customized fabrication, potential to be cost-, time-, and resource-saving. The performance of additive manufactured implants or scaffolds strongly depends on various kinds of AM technique and the quality of Ti and its alloy powders. This paper has specifically covered the process of commonly used powder-based AM technique and the powder production of Ti and its alloy. The selected techniques include laser-based powder bed fusion of metals (PBF-LB/M), electron beam powder bed fusion of metals (PBF-EB/M), and directed energy deposition utilized in the production of the biomaterials are discussed as well as the powder fed system of binder jetting. Moreover, titanium based powder production methods such as gas atomization, plasma atomization, and plasma rotating electrode process are also discussed.

6.
Materials (Basel) ; 13(9)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392713

RESUMO

Powder bed fusion (PBF) additive manufacturing (AM) is currently used to produce high-efficiency, high-density, and high-performance products for a variety of applications. However, existing AM methods are applicable only to metal materials and not to high-melting-point ceramics. Here, we develop a composite material for PBF AM by adding Al2O3 to a glass material using laser melting. Al2O3 and a black pigment are added to a synthesized glass frit for improving the composite strength and increased laser-light absorption, respectively. Our sample analysis shows that the glass melts to form a composite when the mixture is laser-irradiated. To improve the sintering density, we heat-treat the sample at 750 °C to synthesize a high-density glass frit composite. As per our X-ray diffraction (XRD) analysis to confirm the reactivity of the glass frit and Al2O3, we find that no reactions occur between glass and crystalline Al2O3. Moreover, we obtain a high sample density of ≥95% of the theoretical density. We also evaluate the composite's mechanical properties as a function of the Al2O3 content. Our approach facilitates the manufacturing of ceramic 3D structures using glass materials through PBF AM and affords the benefits of reduced process cost, improved performance, newer functionalities, and increased value addition.

7.
J Nanosci Nanotechnol ; 19(8): 5227-5232, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913838

RESUMO

In this study, we designed, prepared, and characterized Low Temperature Co-fired Ceramic (LTCC) toxic gas sensor devices with nanostructured SnO2 semiconducting thick films. In order to promote the reaction of carbon monoxide (CO) toxic gas molecules on the SnO2 thick films, a RuO2 planar heater was inserted into the LTCC substrate. Using an optimized RuO2 heater, the surface temperature of the LTCC substrate reached 360 °C within 25 seconds at an applied voltage of 5 V. The power consumption for the surface of the LTCC substrate to reach 300 °C was 778 mW. A nanostructured SnO2 thick film as a gas sensing layer was prepared by the ink dropping method on Pt electrodes patterned on the LTCC substrate. The gas sensor device was packaged in a commercial housing to measure the CO gas response. The fabricated gas sensor showed a gas response (Rair/Rgas) of 5.26 at a CO gas concentration of 500 ppm and a temperature of 300 °C. Additionally, a mild plasma post-treatment using Ar discharge gas improved the gas response up to 6.35 at the equivalent measurement conditions.

8.
Opt Lett ; 41(7): 1590-3, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192294

RESUMO

Phosphor in glass (PiG) with 40 wt% of Ca-α-SiAlON phosphor and 60 wt% of Pb-free silicate glass was synthesized and mounted on a high-power blue LED to make an amber LED for automotive applications. Gas pressure sintering was applied after the conventional sintering process was used to achieve fully dense PiG plates. Changes in photoluminescence spectra and color coordination were inspected by varying the thickness of the plates that were mounted after optical polishing and machining. A trade-off between luminous flux and color purity was observed. The commercial feasibility of amber PiG packaged LED, which can satisfy international regulations for automotive components, was successfully demonstrated by examining the practical reliability under 85% humidity at an 85°C condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...