Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Nat Protoc ; 18(12): 3821-3855, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37833423

RESUMO

One of the main challenges in the fight against coronavirus disease 2019 (COVID-19) stems from the ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into multiple variants. To address this hurdle, research groups around the world have independently developed protocols to isolate these variants from clinical samples. These isolates are then used in translational and basic research-for example, in vaccine development, drug screening or characterizing SARS-CoV-2 biology and pathogenesis. However, over the course of the COVID-19 pandemic, we have learned that the introduction of artefacts during both in vitro isolation and subsequent propagation to virus stocks can lessen the validity and reproducibility of data. We propose a rigorous pipeline for the generation of high-quality SARS-CoV-2 variant clonal isolates that minimizes the acquisition of mutations and introduces stringent controls to detect them. Overall, the process includes eight stages: (i) cell maintenance, (ii) isolation of SARS-CoV-2 from clinical specimens, (iii) determination of infectious virus titers by plaque assay, (iv) clonal isolation by plaque purification, (v) whole-virus-genome deep-sequencing, (vi and vii) amplification of selected virus clones to master and working stocks and (viii) sucrose purification. This comprehensive protocol will enable researchers to generate reliable SARS-CoV-2 variant inoculates for in vitro and in vivo experimentation and will facilitate comparisons and collaborative work. Quality-controlled working stocks for most applications can be generated from acquired biorepository virus within 1 month. An additional 5-8 d are required when virus is isolated from clinical swab material, and another 6-7 d is needed for sucrose-purifying the stocks.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias/prevenção & controle , Reprodutibilidade dos Testes , Sacarose
2.
Respir Res ; 24(1): 213, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37635251

RESUMO

BACKGROUND: The airway epithelium is composed of diverse cell types with specialized functions that mediate homeostasis and protect against respiratory pathogens. Human airway epithelial (HAE) cultures at air-liquid interface are a physiologically relevant in vitro model of this heterogeneous tissue and have enabled numerous studies of airway disease. HAE cultures are classically derived from primary epithelial cells, the relatively limited passage capacity of which can limit experimental methods and study designs. BCi-NS1.1, a previously described and widely used basal cell line engineered to express hTERT, exhibits extended passage lifespan while retaining the capacity for differentiation to HAE. However, gene expression and innate immune function in BCi-NS1.1-derived versus primary-derived HAE cultures have not been fully characterized. METHODS: BCi-NS1.1-derived HAE cultures (n = 3 independent differentiations) and primary-derived HAE cultures (n = 3 distinct donors) were characterized by immunofluorescence and single cell RNA-Seq (scRNA-Seq). Innate immune functions were evaluated in response to interferon stimulation and to infection with viral and bacterial respiratory pathogens. RESULTS: We confirm at high resolution that BCi-NS1.1- and primary-derived HAE cultures are largely similar in morphology, cell type composition, and overall gene expression patterns. While we observed cell-type specific expression differences of several interferon stimulated genes in BCi-NS1.1-derived HAE cultures, we did not observe significant differences in susceptibility to infection with influenza A virus and Staphylococcus aureus. CONCLUSIONS: Taken together, our results further support BCi-NS1.1-derived HAE cultures as a valuable tool for the study of airway infectious disease.


Assuntos
Células Epiteliais , Interferons , Humanos , Epitélio , Diferenciação Celular , Expressão Gênica
3.
bioRxiv ; 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36909601

RESUMO

The airway epithelium is composed of diverse cell types with specialized functions that mediate homeostasis and protect against respiratory pathogens. Human airway epithelial cultures at air-liquid interface (HAE) are a physiologically relevant in vitro model of this heterogeneous tissue, enabling numerous studies of airway disease 1â€"7 . HAE cultures are classically derived from primary epithelial cells, the relatively limited passage capacity of which can limit experimental methods and study designs. BCi-NS1.1, a previously described and widely used basal cell line engineered to express hTERT, exhibits extended passage lifespan while retaining capacity for differentiation to HAE 5 . However, gene expression and innate immune function in HAE derived from BCi-NS1.1 versus primary cells have not been fully characterized. Here, combining single cell RNA-Seq (scRNA-Seq), immunohistochemistry, and functional experimentation, we confirm at high resolution that BCi-NS1.1 and primary HAE cultures are largely similar in morphology, cell type composition, and overall transcriptional patterns. While we observed cell-type specific expression differences of several interferon stimulated genes in BCi-NS1.1 HAE cultures, we did not observe significant differences in susceptibility to infection with influenza A virus and Staphylococcus aureus . Taken together, our results further support BCi-NS1.1-derived HAE cultures as a valuable tool for the study of airway infectious disease.

4.
bioRxiv ; 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36415456

RESUMO

Proteases play key roles in viral replication cycles. They can provide cleavage maturation of viral glycoproteins, processing of viral polyproteins, or disassembly of viral capsids. Thus, proteases constitute ideal targets for antiviral intervention â€" pharmaceutically, by small molecule inhibitors, or naturally, by host immune responses. Indeed, we and others have shown that individual members of the Serine protease inhibitor (SERPIN) family have specific antiviral function by blocking proteolytic steps inherent to viral replication cycles. Whether additional members of the large SERPIN family possess antiviral activity and whether SERPINs function as part of the antiviral cell-intrinsic immune response, is currently unknown. Here, we found that specific SERPINs are produced upon infection with clinically relevant respiratory viruses in vitro and in vivo , and in concert with classical interferon-stimulated genes. We next developed a structure-based in silico screen to uncover non-canonical SERPIN-protease pairs. We identified several SERPINs with potential antiviral function, including: SERPINE1 targeting cathepsin L, required for SARS-CoV-2 entry; SERPINB8 targeting furin, required for glycoprotein maturation cleavage of numerous viruses; and SERPINB2 targeting adenovirus protease, which suggests the first direct-acting antiviral SERPIN. Our study demonstrates how proteolysis is modulated for antiviral defense and how this process could inform antiviral targets against clinically relevant respiratory pathogens.

5.
PLoS Biol ; 20(9): e3001754, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36099266

RESUMO

Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of Coronavirus Disease 2019 (COVID-19). Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchoalveolar lavage fluid (BALF) from critically ill COVID-19 patients was associated with reduced intensive care unit (ICU) and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19 , Humanos , Peptidil Dipeptidase A/metabolismo , Receptores Virais , SARS-CoV-2
6.
Proc Natl Acad Sci U S A ; 119(37): e2210321119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36001732

RESUMO

Long noncoding RNAs (lncRNAs) have emerged as critical regulators of gene expression, yet their contribution to immune regulation in humans remains poorly understood. Here, we report that the primate-specific lncRNA CHROMR is induced by influenza A virus and SARS-CoV-2 infection and coordinates the expression of interferon-stimulated genes (ISGs) that execute antiviral responses. CHROMR depletion in human macrophages reduces histone acetylation at regulatory regions of ISG loci and attenuates ISG expression in response to microbial stimuli. Mechanistically, we show that CHROMR sequesters the interferon regulatory factor (IRF)-2-dependent transcriptional corepressor IRF2BP2, thereby licensing IRF-dependent signaling and transcription of the ISG network. Consequently, CHROMR expression is essential to restrict viral infection of macrophages. Our findings identify CHROMR as a key arbitrator of antiviral innate immune signaling in humans.


Assuntos
COVID-19 , Proteínas de Ligação a DNA , Imunidade Inata , Vírus da Influenza A , Influenza Humana , RNA Longo não Codificante , SARS-CoV-2 , Fatores de Transcrição , COVID-19/genética , COVID-19/imunologia , Proteínas de Ligação a DNA/metabolismo , Humanos , Imunidade Inata/genética , Vírus da Influenza A/imunologia , Influenza Humana/genética , Influenza Humana/imunologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/fisiologia , SARS-CoV-2/imunologia , Fatores de Transcrição/metabolismo
7.
Cell Death Differ ; 29(2): 285-292, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34862481

RESUMO

The risk of zoonotic coronavirus spillover into the human population, as highlighted by the SARS-CoV-2 pandemic, demands the development of pan-coronavirus antivirals. The efficacy of existing antiviral ribonucleoside/ribonucleotide analogs, such as remdesivir, is decreased by the viral proofreading exonuclease NSP14-NSP10 complex. Here, using a novel assay and in silico modeling and screening, we identified NSP14-NSP10 inhibitors that increase remdesivir's potency. A model compound, sofalcone, both inhibits the exonuclease activity of SARS-CoV-2, SARS-CoV, and MERS-CoV in vitro, and synergistically enhances the antiviral effect of remdesivir, suppressing the replication of SARS-CoV-2 and the related human coronavirus OC43. The validation of top hits from our primary screenings using cellular systems provides proof-of-concept for the NSP14 complex as a therapeutic target.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Exorribonucleases/metabolismo , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Células A549 , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Antivirais/farmacologia , Humanos , SARS-CoV-2/enzimologia , Replicação Viral/efeitos dos fármacos
8.
Sci Transl Med ; 13(593)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33820835

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a public health threat for which preventive and therapeutic agents are urgently needed. Neutralizing antibodies are a key class of therapeutics that may bridge widespread vaccination campaigns and offer a treatment solution in populations less responsive to vaccination. Here, we report that high-throughput microfluidic screening of antigen-specific B cells led to the identification of LY-CoV555 (also known as bamlanivimab), a potent anti-spike neutralizing antibody from a hospitalized, convalescent patient with coronavirus disease 2019 (COVID-19). Biochemical, structural, and functional characterization of LY-CoV555 revealed high-affinity binding to the receptor-binding domain, angiotensin-converting enzyme 2 binding inhibition, and potent neutralizing activity. A pharmacokinetic study of LY-CoV555 conducted in cynomolgus monkeys demonstrated a mean half-life of 13 days and a clearance of 0.22 ml hour-1 kg-1, consistent with a typical human therapeutic antibody. In a rhesus macaque challenge model, prophylactic doses as low as 2.5 mg/kg reduced viral replication in the upper and lower respiratory tract in samples collected through study day 6 after viral inoculation. This antibody has entered clinical testing and is being evaluated across a spectrum of COVID-19 indications, including prevention and treatment.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , COVID-19 , Animais , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Macaca mulatta , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia
9.
Sci Rep ; 11(1): 5538, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692390

RESUMO

Understanding antibody responses to SARS-CoV-2 is indispensable for the development of containment measures to overcome the current COVID-19 pandemic. Recent studies showed that serum from convalescent patients can display variable neutralization capacities. Still, it remains unclear whether there are specific signatures that can be used to predict neutralization. Here, we performed a detailed analysis of sera from a cohort of 101 recovered healthcare workers and we addressed their SARS-CoV-2 antibody response by ELISA against SARS-CoV-2 Spike receptor binding domain and nucleoprotein. Both ELISA methods detected sustained levels of serum IgG against both antigens. Yet, the majority of individuals from our cohort generated antibodies with low neutralization capacity and only 6% showed high neutralizing titers against both authentic SARS-CoV-2 virus and the Spike pseudotyped virus. Interestingly, higher neutralizing sera correlate with detection of -IgG, IgM and IgA antibodies against both antigens, while individuals with positive IgG alone showed poor neutralization response. These results suggest that having a broader repertoire of antibodies may contribute to more potent SARS-CoV-2 neutralization. Altogether, our work provides a cross sectional snapshot of the SARS-CoV-2 neutralizing antibody response in recovered healthcare workers and provides preliminary evidence that possessing multiple antibody isotypes can play an important role in predicting SARS-CoV-2 neutralization.


Assuntos
Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Anticorpos Antivirais/imunologia , COVID-19/terapia , Estudos de Coortes , Estudos Transversais , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/imunologia , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Masculino , Testes de Neutralização/métodos , Pandemias , SARS-CoV-2/patogenicidade , Soro/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
10.
J Virol ; 95(7)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33622961

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of Coronavirus Disease 2019 (COVID-19). There is a dire need for novel effective antivirals to treat COVID-19, as the only approved direct-acting antiviral to date is remdesivir, targeting the viral polymerase complex. A potential alternate target in the viral life cycle is the main SARS-CoV-2 protease 3CLpro (Mpro). The drug candidate PF-00835231 is the active compound of the first anti-3CLpro regimen in clinical trials. Here, we perform a comparative analysis of PF-00835231, the pre-clinical 3CLpro inhibitor GC-376, and the polymerase inhibitor remdesivir, in alveolar basal epithelial cells modified to express ACE2 (A549+ACE2 cells). We find PF-00835231 with at least similar or higher potency than remdesivir or GC-376. A time-of-drug-addition approach delineates the timing of early SARS-CoV-2 life cycle steps in A549+ACE2 cells and validates PF-00835231's early time of action. In a model of the human polarized airway epithelium, both PF-00835231 and remdesivir potently inhibit SARS-CoV-2 at low micromolar concentrations. Finally, we show that the efflux transporter P-glycoprotein, which was previously suggested to diminish PF-00835231's efficacy based on experiments in monkey kidney Vero E6 cells, does not negatively impact PF-00835231 efficacy in either A549+ACE2 cells or human polarized airway epithelial cultures. Thus, our study provides in vitro evidence for the potential of PF-00835231 as an effective SARS-CoV-2 antiviral and addresses concerns that emerged based on prior studies in non-human in vitro models.Importance:The arsenal of SARS-CoV-2 specific antiviral drugs is extremely limited. Only one direct-acting antiviral drug is currently approved, the viral polymerase inhibitor remdesivir, and it has limited efficacy. Thus, there is a substantial need to develop additional antiviral compounds with minimal side effects and alternate viral targets. One such alternate target is its main protease, 3CLpro (Mpro), an essential component of the SARS-CoV-2 life cycle processing the viral polyprotein into the components of the viral polymerase complex. In this study, we characterize a novel antiviral drug, PF-00835231, which is the active component of the first-in-class 3CLpro-targeting regimen in clinical trials. Using 3D in vitro models of the human airway epithelium, we demonstrate the antiviral potential of PF-00835231 for inhibition of SARS-CoV-2.

11.
bioRxiv ; 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32869028

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of Coronavirus Disease 2019 (COVID-19). There is a dire need for novel effective antivirals to treat COVID-19, as the only approved direct-acting antiviral to date is remdesivir, targeting the viral polymerase complex. A potential alternate target in the viral life cycle is the main SARS-CoV-2 protease 3CLpro (Mpro). The drug candidate PF-00835231 is the active compound of the first anti-3CLpro regimen in clinical trials. Here, we perform a comparative analysis of PF-00835231, the pre-clinical 3CLpro inhibitor GC-376, and the polymerase inhibitor remdesivir, in alveolar basal epithelial cells modified to express ACE2 (A549+ACE2 cells). We find PF-00835231 with at least similar or higher potency than remdesivir or GC-376. A time-of-drug-addition approach delineates the timing of early SARS-CoV-2 life cycle steps in A549+ACE2 cells and validates PF-00835231's early time of action. In a model of the human polarized airway epithelium, both PF-00835231 and remdesivir potently inhibit SARS-CoV-2 at low micromolar concentrations. Finally, we show that the efflux transporter P-glycoprotein, which was previously suggested to diminish PF-00835231's efficacy based on experiments in monkey kidney Vero E6 cells, does not negatively impact PF-00835231 efficacy in either A549+ACE2 cells or human polarized airway epithelial cultures. Thus, our study provides in vitro evidence for the potential of PF-00835231 as an effective SARS-CoV-2 antiviral and addresses concerns that emerged based on prior studies in non-human in vitro models.

12.
bioRxiv ; 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34981050

RESUMO

Extracellular vesicles of endosomal origin, exosomes, mediate intercellular communication by transporting substrates with a variety of functions related to tissue homeostasis and disease. Their diagnostic and therapeutic potential has been recognized for diseases such as cancer in which signaling defects are prominent. However, it is unclear to what extent exosomes and their cargo inform the progression of infectious diseases. We recently defined a subset of exosomes termed defensosomes that are mobilized during bacterial infection in a manner dependent on autophagy proteins. Through incorporating protein receptors on their surface, defensosomes mediated host defense by binding and inhibiting pore-forming toxins secreted by bacterial pathogens. Given this capacity to serve as decoys that interfere with surface protein interactions, we investigated the role of defensosomes during infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19. Consistent with a protective function, exosomes containing high levels of the viral receptor ACE2 in bronchioalveolar lavage fluid from critically ill COVID-19 patients was associated with reduced ICU and hospitalization times. We found ACE2+ exosomes were induced by SARS-CoV-2 infection and activation of viral sensors in cell culture, which required the autophagy protein ATG16L1, defining these as defensosomes. We further demonstrate that ACE2+ defensosomes directly bind and block viral entry. These findings suggest that defensosomes may contribute to the antiviral response against SARS-CoV-2 and expand our knowledge on the regulation and effects of extracellular vesicles during infection.

13.
bioRxiv ; 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33024963

RESUMO

SARS-CoV-2 poses a public health threat for which therapeutic agents are urgently needed. Herein, we report that high-throughput microfluidic screening of antigen-specific B-cells led to the identification of LY-CoV555, a potent anti-spike neutralizing antibody from a convalescent COVID-19 patient. Biochemical, structural, and functional characterization revealed high-affinity binding to the receptor-binding domain, ACE2 binding inhibition, and potent neutralizing activity. In a rhesus macaque challenge model, prophylaxis doses as low as 2.5 mg/kg reduced viral replication in the upper and lower respiratory tract. These data demonstrate that high-throughput screening can lead to the identification of a potent antiviral antibody that protects against SARS-CoV-2 infection. ONE SENTENCE SUMMARY: LY-CoV555, an anti-spike antibody derived from a convalescent COVID-19 patient, potently neutralizes SARS-CoV-2 and protects the upper and lower airways of non-human primates against SARS-CoV-2 infection.

14.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32938761

RESUMO

SARS-CoV-2, a novel coronavirus (CoV) that causes COVID-19, has recently emerged causing an ongoing outbreak of viral pneumonia around the world. While distinct from SARS-CoV, both group 2B CoVs share similar genome organization, origins to bat CoVs, and an arsenal of immune antagonists. In this report, we evaluate type I interferon (IFN-I) sensitivity of SARS-CoV-2 relative to the original SARS-CoV. Our results indicate that while SARS-CoV-2 maintains similar viral replication to SARS-CoV, the novel CoV is much more sensitive to IFN-I. In Vero E6 and in Calu3 cells, SARS-CoV-2 is substantially attenuated in the context of IFN-I pretreatment, whereas SARS-CoV is not. In line with these findings, SARS-CoV-2 fails to counteract phosphorylation of STAT1 and expression of ISG proteins, while SARS-CoV is able to suppress both. Comparing SARS-CoV-2 and influenza A virus in human airway epithelial cultures, we observe the absence of IFN-I stimulation by SARS-CoV-2 alone but detect the failure to counteract STAT1 phosphorylation upon IFN-I pretreatment, resulting in near ablation of SARS-CoV-2 infection. Next, we evaluated IFN-I treatment postinfection and found that SARS-CoV-2 was sensitive even after establishing infection. Finally, we examined homology between SARS-CoV and SARS-CoV-2 in viral proteins shown to be interferon antagonists. The absence of an equivalent open reading frame 3b (ORF3b) and genetic differences versus ORF6 suggest that the two key IFN-I antagonists may not maintain equivalent function in SARS-CoV-2. Together, the results identify key differences in susceptibility to IFN-I responses between SARS-CoV and SARS-CoV-2 that may help inform disease progression, treatment options, and animal model development.IMPORTANCE With the ongoing outbreak of COVID-19, differences between SARS-CoV-2 and the original SARS-CoV could be leveraged to inform disease progression and eventual treatment options. In addition, these findings could have key implications for animal model development as well as further research into how SARS-CoV-2 modulates the type I IFN response early during infection.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Interferon Tipo I/farmacologia , Interferon-alfa/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Animais , Antivirais/antagonistas & inibidores , Antivirais/metabolismo , Betacoronavirus/imunologia , Betacoronavirus/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Interferon-alfa/antagonistas & inibidores , Interferon-alfa/imunologia , Interferon-alfa/metabolismo , Fosforilação , Proteínas Recombinantes/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2 , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Células Vero , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
15.
bioRxiv ; 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32511335

RESUMO

SARS-CoV-2, a novel coronavirus (CoV) that causes COVID-19, has recently emerged causing an ongoing outbreak of viral pneumonia around the world. While distinct from SARS-CoV, both group 2B CoVs share similar genome organization, origins to bat CoVs, and an arsenal of immune antagonists. In this report, we evaluate type-I interferon (IFN-I) sensitivity of SARS-CoV-2 relative to the original SARS-CoV. Our results indicate that while SARS-CoV-2 maintains similar viral replication to SARS-CoV, the novel CoV is much more sensitive to IFN-I. In Vero and in Calu3 cells, SARS-CoV-2 is substantially attenuated in the context of IFN-I pretreatment, while SARS-CoV is not. In line with these findings, SARS-CoV-2 fails to counteract phosphorylation of STAT1 and expression of ISG proteins, while SARS-CoV is able to suppress both. Comparing SARS-CoV-2 and influenza A virus in human airway epithelial cultures (HAEC), we observe the absence of IFN-I stimulation by SARS-CoV-2 alone, but detect failure to counteract STAT1 phosphorylation upon IFN-I pretreatment resulting in near ablation of SARS-CoV-2 infection. Next, we evaluated IFN-I treatment post infection and found SARS-CoV-2 was sensitive even after establishing infection. Finally, we examined homology between SARS-CoV and SARS-CoV-2 in viral proteins shown to be interferon antagonists. The absence of an equivalent open reading frame (ORF) 3b and changes to ORF6 suggest the two key IFN-I antagonists may not maintain equivalent function in SARS-CoV-2. Together, the results identify key differences in susceptibility to IFN-I responses between SARS-CoV and SARS-CoV-2 that may help inform disease progression, treatment options, and animal model development.

16.
Sci Immunol ; 5(45)2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32220976

RESUMO

Tissue-resident macrophages are a diverse population of cells that perform specialized functions including sustaining tissue homeostasis and tissue surveillance. Here, we report an interstitial subset of CD169+ lung-resident macrophages that are transcriptionally and developmentally distinct from alveolar macrophages (AMs). They are primarily localized around the airways and are found in close proximity to the sympathetic nerves in the bronchovascular bundle. These nerve- and airway-associated macrophages (NAMs) are tissue resident, yolk sac derived, self-renewing, and do not require CCR2+ monocytes for development or maintenance. Unlike AMs, the development of NAMs requires CSF1 but not GM-CSF. Bulk population and single-cell transcriptome analysis indicated that NAMs are distinct from other lung-resident macrophage subsets and highly express immunoregulatory genes under steady-state and inflammatory conditions. NAMs proliferated robustly after influenza infection and activation with the TLR3 ligand poly(I:C), and in their absence, the inflammatory response was augmented, resulting in excessive production of inflammatory cytokines and innate immune cell infiltration. Overall, our study provides insights into a distinct subset of airway-associated pulmonary macrophages that function to maintain immune and tissue homeostasis.


Assuntos
Macrófagos Alveolares/imunologia , Neurônios/imunologia , Animais , Homeostase/imunologia , Fator Estimulador de Colônias de Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Saco Vitelino/citologia , Saco Vitelino/imunologia
17.
PLoS Pathog ; 15(11): e1007634, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31682641

RESUMO

Induction of vast transcriptional programs is a central event of innate host responses to viral infections. Here we report a transcriptional program with potent antiviral activity, driven by E74-like ETS transcription factor 1 (ELF1). Using microscopy to quantify viral infection over time, we found that ELF1 inhibits eight diverse RNA and DNA viruses after multi-cycle replication. Elf1 deficiency results in enhanced susceptibility to influenza A virus infections in mice. ELF1 does not feed-forward to induce interferons, and ELF1's antiviral effect is not abolished by the absence of STAT1 or by inhibition of JAK phosphorylation. Accordingly, comparative expression analyses by RNA-seq revealed that the ELF1 transcriptional program is distinct from interferon signatures. Thus, ELF1 provides an additional layer of the innate host response, independent from the action of type I interferons.


Assuntos
Antivirais/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Vírus da Influenza A/imunologia , Interferon Tipo I/farmacologia , Proteínas Nucleares/metabolismo , Infecções por Orthomyxoviridae/imunologia , Fatores de Transcrição/metabolismo , Replicação Viral/imunologia , Células A549 , Animais , Feminino , Humanos , Imunidade Inata , Vírus da Influenza A/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Fosforilação , Fator de Transcrição STAT1 , Transdução de Sinais , Fatores de Transcrição/genética , Replicação Viral/efeitos dos fármacos
18.
Biochem J ; 465(2): 305-14, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25330796

RESUMO

The HA (haemagglutinin) of influenza viruses must be recruited to membrane rafts to perform its function in membrane fusion and virus budding. We previously showed using FRET that deletion of the two raft-targeting features of HA, S-acylation at the cytoplasmic tail and the hydrophobic amino acids VIL (Val-Ile-Leu) in the outer part of the TMR (transmembrane region), lead to reduced raft association. In addition, exchange of VIL, but not of the S-acylation sites severely retards transport of HA through the Golgi. In the present study, we have further characterized the ill-defined signal in the TMR. A sequence comparison suggests that the leucine residue of VIL might be part of a CCM (cholesterol consensus motif) that is known to bind cholesterol to seven-transmembrane receptors. The signal also comprises a lysine residue and a tryptophan residue on one and a tyrosine residue on another TMR helix and is conserved in group 2 HAs. Mutations in the CCM retard Golgi-localized processing of HA, such as acquisition of Endo H (endoglycosidase H)-resistant carbohydrates in the medial Golgi and proteolytic cleavage in the TGN (trans-Golgi network). The delay in transport of HA to and from the medial Golgi varied with the mutation, suggesting that different transport steps are affected. All mutants analysed by FRET also showed reduced association with rafts at the plasma membrane. Thus the raft-targeting signal of HA encompasses not only hydrophobic, but also aromatic and positively charged, residues. We speculate that binding to cholesterol might facilitate intracellular transport of HA and association with rafts.


Assuntos
Hemaglutininas Virais/metabolismo , Vírus da Influenza A Subtipo H7N1/metabolismo , Microdomínios da Membrana/metabolismo , Rede trans-Golgi/metabolismo , Motivos de Aminoácidos , Animais , Células CHO , Colesterol , Cricetinae , Cricetulus , Hemaglutininas Virais/genética , Vírus da Influenza A Subtipo H7N1/genética , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/genética , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Microdomínios da Membrana/genética , Microdomínios da Membrana/virologia , Mutação , Transporte Proteico/genética , Rede trans-Golgi/genética , Rede trans-Golgi/virologia
19.
Vet Microbiol ; 172(3-4): 555-62, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25042527

RESUMO

A particularly severe equine herpesvirus type 1 (EHV-1) abortion outbreak occurred at a breeding farm in northern Germany. Sixteen of 25 pregnant mares that had received regular vaccination using an inactivated vaccine aborted and two gave birth to weak non-viable foals in a span of three months, with 89% of cases occurring within 40 days after the initial abortion case. Virological examinations revealed the presence of EHV-1 in all cases of abortion and serological follow-up in mares confirmed recent infection. Molecular studies identified a neuropathogenic variant (Pol/ORF30 A2254 to G2254) that belonged to geographical group 4 of EHV-1 isolates. The abortion outbreak was preceded by a case of mild ataxia of unknown cause in a mare that aborted four months after the ataxic episode. Although vaccination of pregnant mares did not prevent abortion, good EHV-1 immune status of the population at the time of outbreak may have had an impact in the failure of manifestation of the neurological form of the disease.


Assuntos
Aborto Animal/virologia , Infecções por Herpesviridae/veterinária , Herpesvirus Equídeo 1/classificação , Doenças dos Cavalos/virologia , Aborto Animal/epidemiologia , Animais , Surtos de Doenças/veterinária , Feminino , Alemanha/epidemiologia , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Herpesvirus Equídeo 1/genética , Doenças dos Cavalos/epidemiologia , Cavalos , Gravidez
20.
J Virol Methods ; 193(2): 667-73, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23928223

RESUMO

A peptide-based enzyme-linked immunosorbent assay (ELISA) for discrimination between serological responses to equine herpesvirus type 1 (EHV-1) and 4 (EHV-4) was developed. Three and four peptides for EHV-1 and EHV-4, respectively, were designed and studied initially in the ELISA using sera from foals infected experimentally. The most promising peptide pair, derived from EHV-1 glycoprotein E and EHV-4 glycoprotein G, was evaluated further using acute and convalescent sera from horses infected experimentally and naturally as well as a panel of horse field sera. Ten pre- and post-vaccination serum pairs were similarly tested in the type-specific ELISA. The peptide ELISA was able to identify horses which had been infected with EHV-1 or EHV-4 as derived from the results using acute and convalescent sera collected from natural outbreaks. When applied to a set of field samples, the assay proved robust with respect to determining the EHV-1 and EHV-4 antibody status. Also, the peptide ELISA was able to detect type-specific seroconversion for EHV-1 in vaccinated animals. With further validation, the EHV-1/EHV-4 peptide ELISA described in this study could serve as a reliable and cost-effective alternative to current methods for serological EHV-1 and EHV-4 diagnosis.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Herpesviridae/veterinária , Herpesvirus Equídeo 1/imunologia , Herpesvirus Equídeo 4/imunologia , Doenças dos Cavalos/diagnóstico , Doenças dos Cavalos/virologia , Peptídeos , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Infecções por Herpesviridae/diagnóstico , Infecções por Herpesviridae/virologia , Cavalos , Sensibilidade e Especificidade , Testes Sorológicos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...