Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Transcription ; : 1-22, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223991

RESUMO

The SorC family is a large group of bacterial transcription regulators involved in controlling carbohydrate catabolism and quorum sensing. SorC proteins consist of a conserved C-terminal effector-binding domain and an N-terminal DNA-binding domain, whose type divides the family into two subfamilies: SorC/DeoR and SorC/CggR. Proteins of the SorC/CggR subfamily are known to regulate the key node of glycolysis-triose phosphate interconversion. On the other hand, SorC/DeoR proteins are involved in a variety of peripheral carbohydrate catabolic pathways and quorum sensing functions, including virulence. Despite the abundance and importance of this family, SorC proteins seem to be on the periphery of scientific interest, which might be caused by the fragmentary information about its representatives. This review aims to compile the existing knowledge and provide material to inspire future questions about the SorC protein family.

2.
Transcription ; 15(1-2): 48-62, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532542

RESUMO

Bacterial transcription is not monolithic. Microbes exist in a wide variety of cell states that help them adapt to their environment, acquire and produce essential nutrients, and engage in both competition and cooperation with their neighbors. While we typically think of bacterial adaptation as a group behavior, where all cells respond in unison, there is often a mixture of phenotypic responses within a bacterial population, where distinct cell types arise. A primary phenomenon driving these distinct cell states is transcriptional heterogeneity. Given that bacterial mRNA transcripts are extremely short-lived compared to eukaryotes, their transcriptional state is closely associated with their physiology, and thus the transcriptome of a bacterial cell acts as a snapshot of the behavior of that bacterium. Therefore, the application of single-cell transcriptomics to microbial populations will provide novel insight into cellular differentiation and bacterial ecology. In this review, we provide an overview of transcriptional heterogeneity in microbial systems, discuss the findings already provided by single-cell approaches, and plot new avenues of inquiry in transcriptional regulation, cellular biology, and mechanisms of heterogeneity that are made possible when microbial communities are analyzed at single-cell resolution.


Assuntos
Bactérias , Análise de Sequência de RNA , Análise de Célula Única , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Análise de Sequência de RNA/métodos , Fenótipo , Transcriptoma/genética , Heterogeneidade Genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
3.
Bioorg Chem ; 143: 106983, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016396

RESUMO

RNA polymerase is an essential enzyme involved in bacterial transcription, playing a crucial role in RNA synthesis. However, it requires the association with sigma factors to initiate this process. In our previous work, we utilized a structure-based drug discovery approach to create benzoyl and benzyl benzoic acid compounds. These compounds were designed based on the amino acid residues within the key binding site of sigma factors, which are crucial for their interaction with RNA polymerase. By inhibiting bacterial transcription, these compounds exhibited notable antimicrobial activity, and we coined them as sigmacidins to highlight their resemblance to sigma factors and the benzoic acid structure. In this study, we further modified the compound scaffolds and developed a series of sulfonamidyl benzoic acid derivatives. These derivatives displayed potent antimicrobial activity, with minimum inhibitory concentrations (MICs) as low as 1 µg/mL, demonstrating their efficacy against bacteria. Furthermore, these compounds demonstrated low cytotoxicity, indicating their potential as safe antimicrobial agents. To ascertain their mechanism of action in interfering with bacterial transcription, we conducted biochemical and cellular assays. Overall, this study showcases the effectiveness of sulfonamidyl benzoic acid derivatives as antimicrobial agents by targeting protein-protein interactions involving RNA polymerase and sigma factors. Their strong antimicrobial activity and low cytotoxicity implicate their potential in combating antibiotic-resistant bacteria.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Antibacterianos/química , Fator sigma/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Bactérias/metabolismo , Ácido Benzoico/farmacologia , Testes de Sensibilidade Microbiana
4.
Methods Mol Biol ; 2743: 195-209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38147217

RESUMO

Receptor protein tyrosine phosphatases (RPTPs) are one of the key regulators of receptor tyrosine kinases (RTKs) and therefore play a critical role in modulating signal transduction. While the structure-function relationship of RTKs has been widely studied, the mechanisms modulating the activity of RPTPs still need to be fully understood. On the other hand, homodimerization has been shown to antagonize RPTP catalytic activity and appears to be a general feature of the entire family. Conversely, their documented ability to physically interact with RTKs is integral to their negative regulation of RTKs, but there is a yet-to-be proposed common model. However, specific transmembrane (TM) domain interactions and residues have been shown to be essential in regulating RPTP homodimerization, interactions with RTK substrates, and activity. Therefore, elucidating the contribution of the TM domains in RPTP regulation can provide significant insights into how these receptors function, interact, and eventually be modulated. This chapter describes the dominant-negative AraC-based transcriptional reporter (DN-AraTM) assay to identify specific TM interactions essential to homodimerization and heteroassociation with other membrane receptors, such as RTKs.


Assuntos
Proteínas Tirosina Fosfatases , Transdução de Sinais , Proteínas Tirosina Fosfatases/genética , Bioensaio , Domínios Proteicos , Receptores Proteína Tirosina Quinases
5.
Mol Microbiol ; 121(2): 230-242, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38105009

RESUMO

The MerR family of transcriptional regulators includes a variety of bacterial cytoplasmic proteins that respond to a wide range of signals, including toxins, metal ions, and endogenous metabolites. Its best-characterized members share similar structural and functional features with the family founder, the mercury sensor MerR, although most of them do not respond to metal ions. The group of "canonical" MerR homologs displays common molecular mechanisms for controlling the transcriptional activation of their target genes in response to inducer signals. This includes the recognition of distinctive operator sequences located at suboptimal σ70 -dependent promoters. Interestingly, an increasing number of proteins assigned to the MerR family based on their DNA-binding domain do not match in structure, sequence, or mode of action with any of the canonical MerR-like regulators. Here, we analyzed several members of the family, including this last group. Based on a phylogenetic analysis, and similarities in structural/functional features and position of their target operators relative to the promoter elements, we propose to assign these "atypical/divergent" MerR regulators to a phylogenetically separated group. These atypical/divergent homologs represent a new class of transcriptional regulators with novel regulatory mechanisms.


Assuntos
Proteínas de Ligação a DNA , Metais , Proteínas de Ligação a DNA/metabolismo , Sequência de Bases , Filogenia , Regiões Promotoras Genéticas/genética , Metais/metabolismo , Proteínas de Bactérias/metabolismo , Íons/metabolismo , Regulação Bacteriana da Expressão Gênica/genética
6.
J Biol Chem ; 299(9): 105147, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567478

RESUMO

The vertebrate host's immune system and resident commensal bacteria deploy a range of highly reactive small molecules that provide a barrier against infections by microbial pathogens. Gut pathogens, such as Vibrio cholerae, sense and respond to these stressors by modulating the expression of exotoxins that are crucial for colonization. Here, we employ mass spectrometry-based profiling, metabolomics, expression assays, and biophysical approaches to show that transcriptional activation of the hemolysin gene hlyA in V. cholerae is regulated by intracellular forms of sulfur with sulfur-sulfur bonds, termed reactive sulfur species (RSS). We first present a comprehensive sequence similarity network analysis of the arsenic repressor superfamily of transcriptional regulators, where RSS and hydrogen peroxide sensors segregate into distinct clusters of sequences. We show that HlyU, transcriptional activator of hlyA in V. cholerae, belongs to the RSS-sensing cluster and readily reacts with organic persulfides, showing no reactivity or DNA dissociation following treatment with glutathione disulfide or hydrogen peroxide. Surprisingly, in V. cholerae cell cultures, both sulfide and peroxide treatment downregulate HlyU-dependent transcriptional activation of hlyA. However, RSS metabolite profiling shows that both sulfide and peroxide treatment raise the endogenous inorganic sulfide and disulfide levels to a similar extent, accounting for this crosstalk, and confirming that V. cholerae attenuates HlyU-mediated activation of hlyA in a specific response to intracellular RSS. These findings provide new evidence that gut pathogens may harness RSS-sensing as an evolutionary adaptation that allows them to overcome the gut inflammatory response by modulating the expression of exotoxins.


Assuntos
Proteínas de Bactérias , Dissulfetos , Exotoxinas , Regulação Bacteriana da Expressão Gênica , Proteínas Hemolisinas , Espaço Intracelular , Compostos de Sulfidrila , Ativação Transcricional , Vibrio cholerae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Exotoxinas/genética , Exotoxinas/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Ativação Transcricional/efeitos dos fármacos , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Dissulfetos/metabolismo , Dissulfetos/farmacologia , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/farmacologia , Espaço Intracelular/metabolismo , Espectrometria de Massas , Metabolômica , Dissulfeto de Glutationa/farmacologia , Microbioma Gastrointestinal/imunologia
7.
J Biol Chem ; 299(7): 104944, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37343703

RESUMO

The Gram-positive bacterium Bacillus subtilis can utilize several proteinogenic and non-proteinogenic amino acids as sources of carbon, nitrogen, and energy. The utilization of the amino acids arginine, citrulline, and ornithine is catalyzed by enzymes encoded in the rocABC and rocDEF operons and by the rocG gene. The expression of these genes is controlled by the alternative sigma factor SigL. RNA polymerase associated with this sigma factor depends on ATP-hydrolyzing transcription activators to initiate transcription. The RocR protein acts as a transcription activator for the roc genes. However, the details of amino acid metabolism via this pathway are unknown. Here, we investigated the contributions of all enzymes of the Roc pathway to the degradation of arginine, citrulline, and ornithine. We identified the previously uncharacterized RocB protein as responsible for the conversion of citrulline to ornithine. In vitro assays with the purified enzyme suggest that RocB acts as a manganese-dependent N-carbamoyl-L-ornithine hydrolase that cleaves citrulline to form ornithine and carbamate. Moreover, the molecular effector that triggers transcription activation by RocR has not been unequivocally identified. Using a combination of transcription reporter assays and biochemical experiments, we demonstrate that ornithine is the molecular inducer of RocR activity. Taken together, our work suggests that binding of ATP to RocR triggers its hexamerization, and binding of ornithine then allows ATP hydrolysis and activation of roc gene transcription. Thus, ornithine is the central molecule of the roc degradative pathway as it is the common intermediate of arginine and citrulline degradation and the molecular effector of RocR.


Assuntos
Arginina , Bacillus subtilis , Ornitina , Fator sigma , Trifosfato de Adenosina/metabolismo , Arginina/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citrulina/metabolismo , Ornitina/metabolismo , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo
8.
Biochem Soc Trans ; 51(3): 1319-1329, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37140254

RESUMO

Life came to depend on iron as a cofactor for many essential enzymatic reactions. However, once the atmosphere was oxygenated, iron became both scarce and toxic. Therefore, complex mechanisms have evolved to scavenge iron from an environment in which it is poorly bioavailable, and to tightly regulate intracellular iron contents. In bacteria, this is typically accomplished with the help of one key regulator, an iron-sensing transcription factor. While Gram-negative bacteria and Gram-positive species with low guanine-cytosine (GC) content generally use Fur (ferric uptake regulator) proteins to regulate iron homeostasis, Gram-positive species with high GC content use the functional homolog IdeR (iron-dependent regulator). IdeR controls the expression of iron acquisition and storage genes, repressing the former, and activating the latter in an iron-dependent manner. In bacterial pathogens such as Corynebacterium diphtheriae and Mycobacterium tuberculosis, IdeR is also involved in virulence, whereas in non-pathogenic species such as Streptomyces, it regulates secondary metabolism as well. Although in recent years the focus of research on IdeR has shifted towards drug development, there is much left to learn about the molecular mechanisms of IdeR. Here, we summarize our current understanding of how this important bacterial transcriptional regulator represses and activates transcription, how it is allosterically activated by iron binding, and how it recognizes its DNA target sites, highlighting the open questions that remain to be addressed.


Assuntos
Ferro , Mycobacterium tuberculosis , Ferro/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica
9.
J Biol Chem ; 299(6): 104759, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116710

RESUMO

Transcription regulation is a critical means by which microorganisms sense and adapt to their environments. Bacteria contain a wide range of highly conserved families of transcription factors that have evolved to regulate diverse sets of genes. It is increasingly apparent that structural similarities between transcription factors do not always equate to analogous transcription regulatory networks. For example, transcription factors within the copper-sensing operon repressor (CsoR)-resistance to cobalt and nickel repressor family have been found to repress a wide range of gene targets, including various metal efflux genes, as well as genes involved in sulfide and formaldehyde detoxification machinery. In this study, we identify the preferred DNA-binding sequence for the CsoR-like protein, TTHA1953, from the model extremophile Thermus thermophilus HB8 using the iterative selection approach, restriction endonuclease, protection, selection, and amplification. By mapping significant DNA motifs to the T. thermophilus HB8 genome, we identify potentially regulated genes that we validate with in vitro and in vivo methodologies. We establish TTHA1953 as a master regulator of the sulfur oxidation pathway, providing the first link between CsoR-like proteins and Sox regulation.


Assuntos
Proteínas de Bactérias , Proteínas Repressoras , Enxofre , Thermus thermophilus , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Proteínas Repressoras/metabolismo , Enxofre/metabolismo , Thermus thermophilus/metabolismo , Fatores de Transcrição/metabolismo
10.
Proc Natl Acad Sci U S A ; 120(14): e2220874120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972428

RESUMO

Bacterial transcription initiation requires σ factors for nucleation of the transcription bubble. The canonical housekeeping σ factor, σ70, nucleates DNA melting via recognition of conserved bases of the promoter -10 motif, which are unstacked and captured in pockets of σ70. By contrast, the mechanism of transcription bubble nucleation and formation during the unrelated σN-mediated transcription initiation is poorly understood. Herein, we combine structural and biochemical approaches to establish that σN, like σ70, captures a flipped, unstacked base in a pocket formed between its N-terminal region I (RI) and extra-long helix features. Strikingly, RI inserts into the nascent bubble to stabilize the nucleated bubble prior to engagement of the obligate ATPase activator. Our data suggest a general paradigm of transcription initiation that requires σ factors to nucleate an early melted intermediate prior to productive RNA synthesis.


Assuntos
Escherichia coli , Iniciação da Transcrição Genética , Escherichia coli/química , Escherichia coli/metabolismo , RNA Polimerase Sigma 54/química , Fator sigma/química , Regiões Promotoras Genéticas , Microscopia Crioeletrônica
11.
J Biol Chem ; 299(5): 103003, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36775125

RESUMO

DNA gyrase is an essential nucleoprotein motor present in all bacteria and is a major target for antibiotic treatment of Mycobacterium tuberculosis (MTB) infection. Gyrase hydrolyzes ATP to add negative supercoils to DNA using a strand passage mechanism that has been investigated using biophysical and biochemical approaches. To analyze the dynamics of substeps leading to strand passage, single-molecule rotor bead tracking (RBT) has been used previously to follow real-time supercoiling and conformational transitions in Escherichia coli (EC) gyrase. However, RBT has not yet been applied to gyrase from other pathogenically relevant bacteria, and it is not known whether substeps are conserved across evolutionarily distant species. Here, we compare gyrase supercoiling dynamics between two evolutionarily distant bacterial species, MTB and EC. We used RBT to measure supercoiling rates, processivities, and the geometries and transition kinetics of conformational states of purified gyrase proteins in complex with DNA. Our results show that E. coli and MTB gyrases are both processive, with the MTB enzyme displaying velocities ∼5.5× slower than the EC enzyme. Compared with EC gyrase, MTB gyrase also more readily populates an intermediate state with DNA chirally wrapped around the enzyme, in both the presence and absence of ATP. Our substep measurements reveal common features in conformational states of EC and MTB gyrases interacting with DNA but also suggest differences in populations and transition rates that may reflect distinct cellular needs between these two species.


Assuntos
DNA Girase , Escherichia coli , Mycobacterium tuberculosis , Trifosfato de Adenosina/metabolismo , DNA , DNA Girase/química , DNA Girase/metabolismo , DNA Super-Helicoidal , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Simulação de Dinâmica Molecular
12.
J Biol Chem ; 299(1): 102785, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502919

RESUMO

In Helicobacter pylori, the nickel-responsive NikR transcription factor plays a key role in regulating intracellular nickel concentrations, which is an essential process for survival of this pathogen in the acidic human stomach. Nickel binding to H. pylori NikR (HpNikR) allosterically activates DNA binding to target promoters encoding genes involved in nickel homeostasis and acid adaptation, to either activate or repress their transcription. We previously showed that HpNikR adopts an equilibrium between an open conformation and DNA-binding competent cis and trans states. Nickel binding slows down conformational exchange between these states and shifts the equilibrium toward the binding-competent states. The protein then becomes stabilized in a cis conformation upon binding the ureA promoter. Here, we investigate how nickel binding creates this response and how it is transmitted to the DNA-binding domains. Through mutagenesis, DNA-binding studies, and computational methods, the allosteric response to nickel was found to be propagated from the nickel-binding sites to the DNA-binding domains via the ß-sheets of the metal-binding domain and a network of residues at the inter-domain interface. Our computational results suggest that nickel binding increases protein rigidity to slow down the conformational exchange. A thymine base in the ureA promoter sequence, known to be critical for high affinity DNA binding by HpNikR, was also found to be important for the allosteric response, while a modified version of this promoter further highlighted the importance of the DNA sequence in modulating the response. Collectively, our results provide insights into regulation of a key protein for H. pylori survival.


Assuntos
Proteínas de Bactérias , Helicobacter pylori , Níquel , Proteínas Repressoras , Humanos , Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Níquel/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
13.
Antibiotics (Basel) ; 11(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290107

RESUMO

Bacterial resistance represents a major health problem worldwide and there is an urgent need to develop first-in-class compounds directed against new therapeutic targets. We previously developed a drug-discovery platform to identify new antimicrobials able to disrupt the protein-protein interaction between the ß' subunit and the σ70 initiation factor of bacterial RNA polymerase, which is essential for transcription. As a follow-up to such work, we have improved the discovery strategy to make it less time-consuming and more cost-effective. This involves three sequential assays, easily scalable to a high-throughput format, and a subsequent in-depth characterization only limited to hits that passed the three tests. This optimized workflow, applied to the screening of 5360 small molecules from three synthetic and natural compound libraries, led to the identification of six compounds interfering with the ß'-σ70 interaction, and thus was capable of inhibiting promoter-specific RNA transcription and bacterial growth. Upon supplementation with a permeability adjuvant, the two most potent transcription-inhibiting compounds displayed a strong antibacterial activity against Escherichia coli with minimum inhibitory concentration (MIC) values among the lowest (0.87-1.56 µM) thus far reported for ß'-σ PPI inhibitors. The newly identified hit compounds share structural feature similarities with those of a pharmacophore model previously developed from known inhibitors.

14.
J Biol Chem ; 298(9): 102302, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35934054

RESUMO

Riboswitches are 5'-untranslated regions of mRNA that change their conformation in response to ligand binding, allowing post-transcriptional gene regulation. This ligand-based model of riboswitch function has been expanded with the discovery of a "pH-responsive element" (PRE) riboswitch in Escherichia coli. At neutral pH, the PRE folds into a translationally inactive structure with an occluded ribosome-binding sequence, whereas at alkaline pH, the PRE adopts a translationally active structure. This unique riboswitch does not rely on ligand binding in a traditional sense to modulate its alternative folding outcomes. Rather, pH controls riboswitch folding by two possible modes that are yet to be distinguished; pH either regulates the transcription rate of RNA polymerase (RNAP) or acts on the RNA itself. Previous work suggested that RNAP pausing is prolonged by alkaline pH at two sites, stimulating PRE folding into the active structure. To date, there has been no rigorous exploration into how pH influences RNAP pausing kinetics during PRE synthesis. To provide that understanding and distinguish between pH acting on RNAP versus RNA, we investigated RNAP pausing kinetics at key sites for PRE folding under different pH conditions. We find that pH influences RNAP pausing but not in the manner proposed previously. Rather, alkaline pH either decreases or has no effect on RNAP pause longevity, suggesting that the modulation of RNAP pausing is not the sole mechanism by which pH affects PRE folding. These findings invite the possibility that the RNA itself actively participates in the sensing of pH.


Assuntos
Riboswitch , Regiões 5' não Traduzidas , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Ligantes , Conformação de Ácido Nucleico , Dobramento de RNA , Transcrição Gênica
15.
Bioorg Chem ; 124: 105863, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35580381

RESUMO

Bacterial transcription is a valid but underutilized target for antimicrobial agent discovery because of its function of bacterial RNA synthesis. Bacterial transcription factors NusB and NusE form a transcription complex with RNA polymerase for bacterial ribosomal RNA synthesis. We previously identified a series of diarylimine and -amine inhibitors capable of inhibiting the interaction between NusB and NusE and exhibiting good antimicrobial activity. To further explore the structural viability of these inhibitors, coined "nusbiarylins", 36 new derivatives containing diverse substituents at the left benzene ring of inhibitors were synthesized based upon isosteric replacement and the structure-activity relationship concluded from earlier studies. Some of the derivatives displayed good to excellent antibacterial efficacy towards a panel of clinically significant pathogens including methicillin-resistance Staphylococcus aureus (MRSA) and vancomycin-resistance S. aureus (VRSA). In particular, compound 22r exhibited the best antimicrobial activity with a minimum inhibitory concentration (MIC) of 0.5 µg/mL. Diverse mechanistic studies validated the capability of 22r inhibiting the function of NusB protein and bacterial rRNA synthesis. In silico study of drug-like properties also provided promising results. Overall, this series of derivatives showed potential antimicrobial activity and drug-likeness and provided guidance for further optimization.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Bactérias , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Staphylococcus aureus Resistente à Vancomicina
16.
J Biol Chem ; 298(4): 101752, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189142

RESUMO

RNA polymerase (RNAP) binding protein A (RbpA) is essential for mycobacterial viability and regulates transcription initiation by increasing the stability of the RNAP-promoter open complex (RPo). RbpA consists of four domains: an N-terminal tail (NTT), a core domain (CD), a basic linker, and a sigma interaction domain. We have previously shown that truncation of the RbpA NTT and CD increases RPo stabilization by RbpA, implying that these domains inhibit this activity of RbpA. Previously published structural studies showed that the NTT and CD are positioned near multiple RNAP-σA holoenzyme functional domains and predict that the RbpA NTT contributes specific amino acids to the binding site of the antibiotic fidaxomicin (Fdx), which inhibits the formation of the RPo complex. Furthermore, deletion of the NTT results in decreased Mycobacterium smegmatis sensitivity to Fdx, but whether this is caused by a loss in Fdx binding is unknown. We generated a panel of rbpA mutants and found that the RbpA NTT residues predicted to directly interact with Fdx are partially responsible for RbpA-dependent Fdx activity in vitro, while multiple additional RbpA domains contribute to Fdx activity in vivo. Specifically, our results suggest that the RPo-stabilizing activity of RbpA decreases Fdx activity in vivo. In support of the association between RPo stability and Fdx activity, we find that another factor that promotes RPo stability in bacteria, CarD, also impacts to Fdx sensitivity. Our findings highlight how RbpA and other factors may influence RNAP dynamics to affect Fdx sensitivity.


Assuntos
Fidaxomicina , Mycobacterium smegmatis , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Fidaxomicina/farmacologia , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Regiões Promotoras Genéticas , Fator sigma/metabolismo
17.
Biochem Soc Trans ; 49(6): 2711-2726, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34854920

RESUMO

Transcription is the principal control point for bacterial gene expression, and it enables a global cellular response to an intracellular or environmental trigger. Transcriptional regulation is orchestrated by transcription factors, which activate or repress transcription of target genes by modulating the activity of RNA polymerase. Dissecting the nature and precise choreography of these interactions is essential for developing a molecular understanding of transcriptional regulation. While the contribution of X-ray crystallography has been invaluable, the 'resolution revolution' of cryo-electron microscopy has transformed our structural investigations, enabling large, dynamic and often transient transcription complexes to be resolved that in many cases had resisted crystallisation. In this review, we highlight the impact cryo-electron microscopy has had in gaining a deeper understanding of transcriptional regulation in bacteria. We also provide readers working within the field with an overview of the recent innovations available for cryo-electron microscopy sample preparation and image reconstruction of transcription complexes.


Assuntos
Bactérias/metabolismo , Microscopia Crioeletrônica/métodos , Regulação da Expressão Gênica , Transcrição Gênica , Bactérias/genética , Cristalografia por Raios X
18.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33957668

RESUMO

Alternative transcription units (ATUs) are dynamically encoded under different conditions and display overlapping patterns (sharing one or more genes) under a specific condition in bacterial genomes. Genome-scale identification of ATUs is essential for studying the emergence of human diseases caused by bacterial organisms. However, it is unrealistic to identify all ATUs using experimental techniques because of the complexity and dynamic nature of ATUs. Here, we present the first-of-its-kind computational framework, named SeqATU, for genome-scale ATU prediction based on next-generation RNA-Seq data. The framework utilizes a convex quadratic programming model to seek an optimum expression combination of all of the to-be-identified ATUs. The predicted ATUs in Escherichia coli reached a precision of 0.77/0.74 and a recall of 0.75/0.76 in the two RNA-Sequencing datasets compared with the benchmarked ATUs from third-generation RNA-Seq data. In addition, the proportion of 5'- or 3'-end genes of the predicted ATUs, having documented transcription factor binding sites and transcription termination sites, was three times greater than that of no 5'- or 3'-end genes. We further evaluated the predicted ATUs by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analyses. The results suggested that gene pairs frequently encoded in the same ATUs are more functionally related than those that can belong to two distinct ATUs. Overall, these results demonstrated the high reliability of predicted ATUs. We expect that the new insights derived by SeqATU will not only improve the understanding of the transcription mechanism of bacteria but also guide the reconstruction of a genome-scale transcriptional regulatory network.


Assuntos
Biologia Computacional/métodos , Estudo de Associação Genômica Ampla/métodos , Isoformas de RNA , Transcrição Gênica , Algoritmos , Bactérias/genética , Bases de Dados Genéticas , Escherichia coli/genética , Genoma Bacteriano , Genômica/métodos , Humanos , RNA Mensageiro/genética , RNA-Seq , Análise de Célula Única/métodos , Regiões Terminadoras Genéticas , Sítio de Iniciação de Transcrição
19.
Mol Cell ; 81(11): 2361-2373.e9, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33838104

RESUMO

Toxin-antitoxin (TA) systems are widespread in bacteria, but their activation mechanisms and bona fide targets remain largely unknown. Here, we characterize a type III TA system, toxIN, that protects E. coli against multiple bacteriophages, including T4. Using RNA sequencing, we find that the endoribonuclease ToxN is activated following T4 infection and blocks phage development primarily by cleaving viral mRNAs and inhibiting their translation. ToxN activation arises from T4-induced shutoff of host transcription, specifically of toxIN, leading to loss of the intrinsically unstable toxI antitoxin. Transcriptional shutoff is necessary and sufficient for ToxN activation. Notably, toxIN does not strongly protect against another phage, T7, which incompletely blocks host transcription. Thus, our results reveal a critical trade-off in blocking host transcription: it helps phage commandeer host resources but can activate potent defense systems. More generally, our results now reveal the native targets of an RNase toxin and activation mechanism of a phage-defensive TA system.


Assuntos
Bacteriófago T4/genética , Bacteriófago T7/genética , Endorribonucleases/genética , Proteínas de Escherichia coli/genética , Escherichia coli/virologia , Sistemas Toxina-Antitoxina/genética , Antibiose/genética , Bacteriófago T4/crescimento & desenvolvimento , Bacteriófago T4/metabolismo , Bacteriófago T7/crescimento & desenvolvimento , Bacteriófago T7/metabolismo , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Transcrição Gênica
20.
J Biol Chem ; 296: 100518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33684446

RESUMO

Reversible phosphorylation relies on highly regulated kinases and phosphatases that target specific substrates to control diverse cellular processes. Here, we address how protein phosphatase activity is directed to the correct substrates under the correct conditions. The serine/threonine phosphatase SpoIIE from Bacillus subtilis, a member of the widespread protein phosphatase 2C (PP2C) family of phosphatases, is activated by movement of a conserved α-helical element in the phosphatase domain to create the binding site for the metal cofactor. We hypothesized that this conformational switch could provide a general mechanism for control of diverse members of the PP2C family of phosphatases. The B. subtilis phosphatase RsbU responds to different signals, acts on a different substrates, and produces a more graded response than SpoIIE. Using an unbiased genetic screen, we isolated mutants in the α-helical switch region of RsbU that are constitutively active, indicating conservation of the switch mechanism. Using phosphatase activity assays with phosphoprotein substrates, we found that both phosphatases integrate substrate recognition with activating signals to control metal-cofactor binding and substrate dephosphorylation. This integrated control provides a mechanism for PP2C family of phosphatases to produce specific responses by acting on the correct substrates, under the appropriate conditions.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Proteína Fosfatase 2C/metabolismo , Regulação Alostérica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Fosfoproteínas , Fosforilação , Conformação Proteica , Proteína Fosfatase 2C/química , Proteína Fosfatase 2C/genética , Transdução de Sinais , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...