Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 147: 370-381, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003055

RESUMO

Two strains of Fe/Mn oxidizing bacteria tolerant to high concentrations of multiple heavy metal(loid)s and efficient decontamination for them were screened. The surface of the bio-Fe/Mn oxides produced by the oxidation of Fe(II) and Mn(II) by Pseudomonas taiwanensis (marked as P4) and Pseudomonas plecoglossicida (marked as G1) contains rich reactive oxygen functional groups, which play critical roles in the removal efficiency and immobilization of heavy metal(loid)s in co-contamination system. The isolated strains P4 and G1 can grow well in the following environments: pH 5-9, NaCl 0-4%, and temperature 20-30°C. The removal efficiencies of Fe, Pb, As, Zn, Cd, Cu, and Mn are effective after inoculation of the strains P4 and G1 in the simulated water system (the initial concentrations of heavy metal(loid) were 1 mg/L), approximately reaching 96%, 92%, 85%, 67%, 70%, 54% and 15%, respectively. The exchangeable and carbonate bound As, Cd, Pb and Cu are more inclined to convert to the Fe-Mn oxide bound fractions in P4 and G1 treated soil, thereby reducing the phytoavailability and bioaccessible of heavy metal(loid)s. This research provides alternatives method to treat water and soil containing high concentrations of multi-heavy metal(loid)s.


Assuntos
Metais Pesados , Poluentes do Solo , Poluentes Químicos da Água , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Poluentes do Solo/metabolismo , Oxirredução , Pseudomonas/metabolismo , Manganês , Ferro/química , Ferro/metabolismo , Solo/química , Biodegradação Ambiental , Microbiologia do Solo
2.
Materials (Basel) ; 17(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39274694

RESUMO

This paper presents the experimental results of a study evaluating the mechanical and fatigue performance of welded Fe-Mn-Si SMA. For the experimental study, welded and welded-and-heat-treated Fe-Mn-Si SMA specimens were fabricated, and fatigue tests were performed at various stress amplitudes. In addition, direct tensile tests and recovery stress tests were also performed to evaluate the material properties of Fe-Mn-Si SMAs. The elastic modulus, yield strength, and tensile strength of the welded specimens were reduced by 35.4%, 12.1%, and 8.6%, respectively, compared to the values of the non-welded specimens. On the other hand, the elastic modulus, yield strength, and tensile strength of the welded-and-heat-treated Fe-Mn-Si SMA specimens were increased by 18.6%, 4.9%, and 1.3%, respectively, compared to the values of the welded specimens. Both welded and welded-and-heat-treated Fe-Mn-Si SMAs failed at lower cycles than the conventional Fe-Mn-Si SMAs at the same stress amplitude. High-cycle fatigue failure, characterized by cycles exceeding 104, typically occurs at relatively low stress levels within the elastic region, whereas low-cycle fatigue failure, generally occurring within cycles below 104, involves high stress levels that encompass both elastic and plastic deformation. Regardless of the welding condition, the stress amplitude at which Fe-Mn-Si SMA transitions from high-cycle to low-cycle failure exceeded the yield strength.

3.
Chemosphere ; 364: 143207, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39214406

RESUMO

Biochar (BC) has emerged as a potential solution to phosphate removal from wastewater primarily resulting from global overuse of fertilizers. Further modification by embedment of iron (Fe)-manganese (Mn) oxides on BC can enhance phosphate removal; however, the modification method serves as a vital factor underlying distinctive removal performances and mechanisms, which have yet been systematically examined. Herein, two Fe-Mn modified BC, Fe/MnBC (comprised of Fe3O4 and MnO2) and Fe-MnBC (comprised of MnFe2O4), were comprehensively investigated for gaining insights into the unsolved perspectives. The results indicated that Fe-MnBC exhibited a markedly greater maximum phosphate adsorption capacity of 135.88 mg g-1 than that of Fe/MnBC with 17.93 mg g-1. The comparative results based on microstructure and spectroscopic analyses suggested that different Fe and Mn oxides were successfully loaded, which played a distinctive role in phosphate removal. Further characterizations unveiled that the key mechanisms for phosphate removal by Fe/MnBC are inner-sphere complexation and precipitation, while electrostatic interaction and outer-sphere complexation are the dominant mechanisms underlying the notable performance of Fe-MnBC. The delicately designed Fe-MnBC with special structure and property also enabled a superior regeneration capacity, which presented a promisingly high phosphate removal efficacy of over 81.34% after five cycles. These results enhance comprehension regarding the impact of biochar modification techniques on phosphate removal, offering positive indications for the remediation of excessive phosphate and other pollutant-containing water through feasible design and green chemicals.


Assuntos
Carvão Vegetal , Ferro , Manganês , Fosfatos , Poluentes Químicos da Água , Carvão Vegetal/química , Fosfatos/química , Manganês/química , Adsorção , Ferro/química , Poluentes Químicos da Água/química , Águas Residuárias/química , Óxidos/química , Compostos de Manganês/química , Purificação da Água/métodos
4.
Chemosphere ; 364: 143165, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39181457

RESUMO

Antimony (Sb) pollution in surface water and soil has earned extensive attention. Our previous study synthesized a new class of alumina supported Fe-Mn binary oxide (Fe-Mn@Al2O3) and found that MnO2 in the composite oxidized Sb(III) to Sb(V) and FeOOH and Al2O3 played an indispensable role in adsorption of Sb(III) and Sb(V). This study further explored the removal of Sb in surface water and in situ sequestration of Sb in Sb-contaminated field soil via Fe-Mn@Al2O3. Sb removal from water was pH independent and the removal efficiencies of Sb(III) and total Sb kept constant at 95.4% and 60.5%, respectively, over a pH range of 5.0-10.0. Increasing dissolved organic matter (DOM) from 0 to 22.8 mg/L had negligible effect on Sb(III) removal whereas inhibited the total Sb removal from 60.5% to 51.2%. Dissolved oxygen cannot oxidize aqueous Sb(III), yet, enhanced the Sb(III) removal whereas decreased the total Sb removal. The composite performed well in natural surface water with high DOM and inorganic ligands. In addition, the composite effectively immobilized Sb in field soil. 5% of the composite significantly inhibited the H2SO4 and HNO3 leachable Sb by 93.6% after 30 d. The amendment transformed the Sb speciation from more easily available fractions (i.e., exchangeable, carbonate-bound, and Fe-Mn oxides-bound species) into more stable fractions (i.e., organic material bound and residual species), leading to declined Sb bioaccessibility and reduced environmental risk. The composite facilitated a long-term stability of Sb in soil. The study demonstrated an easy, fast, and effective strategy for efficient immobilization of Sb in water and soil.


Assuntos
Óxido de Alumínio , Antimônio , Recuperação e Remediação Ambiental , Óxidos , Poluentes do Solo , Solo , Poluentes Químicos da Água , Antimônio/química , Óxido de Alumínio/química , Poluentes do Solo/química , Poluentes do Solo/análise , Recuperação e Remediação Ambiental/métodos , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Óxidos/química , Solo/química , Compostos de Manganês/química , Compostos Férricos/química , Ferro/química , Manganês/química
5.
Water Sci Technol ; 90(4): 1149-1163, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39215729

RESUMO

To achieve the purpose of treating waste by waste, in this study, a nitrogen-doped Fe/Mn bimetallic biochar material (FeMn@N-BC) was prepared from chicken manure for persulfate activation to degrade Bisphenol A (BPA). The FeMn@N-BC was characterized by scanning electron microscopy (SEM), X-ray diffract meter (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectrometer (XPS) and found that N doping can form larger specific surface area. Catalytic degradation experiments showed that Fe/Mn bimetal doping not only accelerated the electron cycling rate on the catalyst surface, but also makes the biochar magnetic and easy to separate, thus reducing environmental pollution. Comparative experiments was concluded that the highest degradation efficiency of BPA was achieved when the mass ratios of urea and chicken manure, Fe/Mn were 3:1 and 2:1, respectively, and the pyrolysis temperature was 800 °C, which can almost degrade all the BPA in 60 min. FeMn@N-BC/PS system with high catalytic efficiency and low consumables is promising for reuse of waste resources and the remediation of wastewater.


Assuntos
Compostos Benzidrílicos , Carvão Vegetal , Ferro , Manganês , Nitrogênio , Fenóis , Poluentes Químicos da Água , Compostos Benzidrílicos/química , Fenóis/química , Nitrogênio/química , Carvão Vegetal/química , Ferro/química , Manganês/química , Poluentes Químicos da Água/química , Animais , Sulfatos/química , Esterco , Galinhas
6.
J Colloid Interface Sci ; 676: 227-237, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39029249

RESUMO

Hydrogen peroxide (H2O2) is a crucial eco-friendly oxidizer with increasing demand due to its wide range of applications. Activating O2 with catalysts to generate H2O2 on-site offers a promising alternative to traditional production methods. Here, we design unique crystalline/amorphous heterophase Fe-Mn core-shell chains (ZVI-Mn) for efficient on-site generation of H2O2 and manipulation of subsequent H2O2 activation. The yield of H2O2 on-site produced by ZVI-Mn in water within 5 min was 103.7 mg·L-1, which was much greater than that of zero-valent iron (ZVI) and amorphous Mn (A-Mn) (0 and 42.5 mg·L-1). Raman and density functional theory (DFT) calculations confirmed that *OOH is the key species involved in the on-site generation of H2O2. Electrochemical tests confirmed the excellent electron-transferring ability, while electron paramagnetic resonance (EPR) revealed oxygen vacancy defects in the catalysts, which proved to be conducive to improving the catalytic activity of ZVI-Mn. Additionally, by regulating the pH of aqueous solution, ZVI-Mn can simultaneously achieve efficient on-site generation of H2O2 and in-situ removal of enrofloxacin from aqueous solution.

7.
J Hazard Mater ; 476: 135228, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39024761

RESUMO

Peroxidase-like (POD-like) as a kind of new Fenton-like catalyst can effectively activate H2O2 to degrade organic pollutants in water, but improving the catalytic activity and stability of POD-like remains a challenging task. Here, we synthesized a novel dual single-atom nanoenzyme (DSAzyme) FeMn/N-CNTs with Fe-N4 and Mn-N4 bimetallic single-atom active centers by mimicking the active centers of natural enzymes and taking advantage of the synergistic effect between the dual metals. FeMn/N-CNTs DSAzyme showed significantly enhanced POD-like activity compared to monometallic-loaded Fe/N-CNTs and Mn/N-CNTs. Within the FeMn/N-CNTs/H2O2 system, bisphenol A (BPA) could be removed 100 % within 20 min. DFT calculations show that Mn-N4 in FeMn/N-CNTs can readily adsorb negatively charged BPA molecules and capture electrons. Meanwhile, Fe-N4 sites can easily adsorb H2O2 molecules, leading to their activation and splitting into strongly oxidizing hydroxyl radicals (·OH). Throughout this process, electrons are continuously recycled in BPA → Mn-N4 → Fe-N4 → H2O2, effectively promoting the regeneration of Fe2+. Practical studies on wastewater and cycling experiments have demonstrated the great potential of this method for remediating water environments.


Assuntos
Compostos Benzidrílicos , Peróxido de Hidrogênio , Ferro , Manganês , Fenóis , Poluentes Químicos da Água , Compostos Benzidrílicos/química , Ferro/química , Fenóis/química , Peróxido de Hidrogênio/química , Manganês/química , Poluentes Químicos da Água/química , Nanotubos de Carbono/química , Elétrons , Catálise , Águas Residuárias/química , Peroxidase/química , Peroxidase/metabolismo , Purificação da Água/métodos
8.
Materials (Basel) ; 17(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893961

RESUMO

This study compares the hydrogen embrittlement susceptibility of a Fe-30Mn-8Al-1.2C austenitic low-density steel aged at 600 °C for 0 (RX), 1 min (A1) and 60 min (A60), each exhibiting varying sizes and distributions of nano-sized κ-carbides. Slow strain rate tests were conducted to assess hydrogen embrittlement susceptibility, while thermal desorption analysis was applied to investigate hydrogen trapping behaviors. Fracture surface analysis was employed to discuss the associated failure mechanisms. The results suggest that nano-sized κ-carbides with sizes ranging from 2-4 nm play a crucial role in mitigating hydrogen embrittlement, contrasting with the exacerbating effect of coarse grain boundary κ-carbides. This highlights the significance of controlling the sizes and morphology of precipitates in designing hydrogen-resistant materials.

9.
Environ Res ; 258: 119455, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38906449

RESUMO

Heterogeneous catalytic processes based on zero-valent iron (ZVI) have been developed to treat soil and wastewater pollutants. However, the agglomeration of ZVI reduces its ability to activate persulfate (PS). In this study, a new Fe-Mn@AC activated material was prepared to activated PS to treat oil-contaminated soil, and using the microscopic characterization of Fe-Mn@AC materials, the electron transfer mode during the Fe-Mn@AC activation of PS was clarified. Firstly, the petroluem degradation rate was optimized. When the PS addition amount was 8%, Fe-Mn@AC addition amount was 3% and the water to soil ratio was 3:1, the petroluem degradation rate in the soil reached to the maximum of 85.69% after 96 h of reaction. Then it was illustrated that sulfate and hydroxyl radicals played major roles in crude oil degradation, while singlet oxygen contributed slightly. Finally, the indigenous microbial community structures remaining after restoring the Fe-Mn@AC/PS systems were analyzed. The proportion of petroleum degrading bacteria in soil increased by 23% after oxidation by Fe-Mn@AC/PS system. Similarly, the germination rate of wheat seeds revealed that soil toxicity was greatly reduced after applying the Fe-Mn@AC/PS system. After the treatment with Fe-Mn@AC/PS system, the germination rate, root length and bud length of wheat seed were increased by 54.05%, 7.98 mm and 6.84 mm, respectively, compared with the polluted soil group. These results showed that the advanced oxidation system of Fe-Mn@AC activates PS and can be used in crude oil-contaminated soil remediation.


Assuntos
Ferro , Manganês , Petróleo , Poluentes do Solo , Sulfatos , Poluentes do Solo/química , Ferro/química , Manganês/química , Sulfatos/química , Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos
10.
Adv Mater ; 36(33): e2310659, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871360

RESUMO

Layered iron/manganese-based oxides are a class of promising cathode materials for sustainable batteries due to their high energy densities and earth abundance. However, the stabilization of cationic and anionic redox reactions in these cathodes during cycling at high voltage remain elusive. Here, an electrochemically/thermally stable P2-Na0.67Fe0.3Mn0.5Mg0.1Ti0.1O2 cathode material with zero critical elements is designed for sodium-ion batteries (NIBs) to realize a highly reversible capacity of ≈210 mAh g-1 at 20 mA g-1 and good cycling stability with a capacity retention of 74% after 300 cycles at 200 mA g-1, even when operated with a high charge cut-off voltage of 4.5 V versus sodium metal. Combining a suite of cutting-edge characterizations and computational modeling, it is shown that Mg/Ti co-doping leads to stabilized surface/bulk structure at high voltage and high temperature, and more importantly, enhances cationic/anionic redox reaction reversibility over extended cycles with the suppression of other undesired oxygen activities. This work fundamentally deepens the failure mechanism of Fe/Mn-based layered cathodes and highlights the importance of dopant engineering to achieve high-energy and earth-abundant cathode material for sustainable and long-lasting NIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...