Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.176
Filtrar
1.
Chemosphere ; 362: 142743, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950740

RESUMO

For the first time, a hyper-thermophilic aerobic (>60 °C) bioreactor has been integrated with direct submerged membrane distillation (MD), highlighting its potential as an advanced wastewater treatment solution. The hyper-thermophilic aerobic bioreactor, operating up to 65 °C, is tailored for high organic removal, while MD efficiently produces clean water. Throughout the study, high removal rates of 99.5% for organic matter, 96.4% for ammonia, and 100% for phosphorus underscored the impressive adaptability of microorganisms to challenging hyper-thermophilic conditions and a successful combination with the MD process. Despite the extreme temperatures and substantial salinity accumulation reaching up to 12,532 µS/cm, the biomass of microorganisms increased by 1.6 times over a 92-day period, representing their remarkable resilience. The distillation flux ranged from 6.15 LMH to 8.25 LMH, benefiting from the temperature gradient in the hyper-thermophilic setting and the design of the tubular submerged MD membrane module. The system also excels in pH control, utilizing fewer alkali and nutritional resources than conventional systems. Meiothermus, Firmicutes, and Bacteroidetes, the three dominant species, played a crucial role, showcasing their significance in adapting to high salinity and decomposing organic matter.

2.
Sci Total Environ ; : 174442, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964387

RESUMO

The decomposition of macrophytes plays a crucial role in the nutrient cycles of macrophyte-dominated eutrophication lakes. While research on plant decomposition mechanisms and microbial influences has rapid developed, it is curious that plant decomposition models have remained stagnant at the single-stage model from 50 years ago, without endeavor to consider any important factors. Our research conducted in-situ experiments and identified the optimal metrics for decomposition-related microbes, thereby establishing models for microbial impacts on decomposition rates (k_RDR). Using backward elimination in stepwise regression, we found that the optimal subset of independent variables-specifically Gammaproteobacteria-Q-L, Actinobacteriota-Q-L, and Ascomycota-Q-L-increased the adjusted R-squared (Ra2) to 0.93, providing the best modeling for decomposition rate (p = 0.002). Additionally, k_RDR can be modeled by synergic parameters of ACHB-Q-L, LDB-Q-L, and AB-Q-L for bacteria, and SFQ for fungi, albeit with a slightly lower Ra2 of 0.7-0.9 (p < 0.01). The primary contribution of our research lies in two key aspects. Firstly, we introduced optimal metrics for modeling microbes, opting for debris surface microbes over sediment microbes, and prioritizing absolute abundance over relative abundance. Secondly, our model represents a noteworthy advancement in debris modeling. Alongside elucidating the focus and innovative aspects of our work, we also addressed existing limitations and proposed directions for future research. SYNOPSIS: This study explores optimum metrics for decomposition-related microbes, offering precise microbial models for enhanced lake nutrient cycle simulation.

3.
Front Microbiol ; 15: 1407391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946907

RESUMO

Bryophytes, the second-largest group of plants, play a crucial role as early colonizers of land and are a prolific source of naturally occurring substances with significant economic potential. Microorganisms, particularly bacteria, cyanobacteria, fungi form intricate associations with plants, notably bryophytes, contributing to the ecological functioning of terrestrial ecosystems and sometimes it gives negative impact also. This review elucidates the pivotal role of endophytic bacteria in promoting plant growth, facilitating nutrient cycling, and enhancing environmental health. It comprehensively explores the diversity and ecological significance of fungal and bacterial endophytes across various ecosystems. Furthermore, it highlights the moss nitrogen dynamics observed in select moss species. Throughout the review, emphasis is placed on the symbiotic interdependence between bryophytes and microorganisms, offering foundational insights for future research endeavors. By shedding light on the intricate bryophyte-microorganism associations, this study advances our understanding of the complex interplay between plants, microbes, and their environment, paving the way for further research and applications in environmental and biotechnological realms.

4.
Front Cell Infect Microbiol ; 14: 1407051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947127

RESUMO

The Cecum is a key site for cellulose digestion in nutrient metabolism of intestine, but its mechanisms of microbial and gene interactions has not been fully elucidated during pathogenesis of obesity. Therefore, the cecum tissues of the New Zealand rabbits and their contents between the high-fat diet-induced group (Ob) and control group (Co) were collected and analyzed using multi-omics. The metagenomic analysis indicated that the relative abundances of Corallococcus_sp._CAG:1435 and Flavobacteriales bacterium species were significantly lower, while those of Akkermansia glycaniphila, Clostridium_sp._CAG:793, Mycoplasma_sp._CAG:776, Mycoplasma_sp._CAG:472, Clostridium_sp._CAG:609, Akkermansia_sp._KLE1605, Clostridium_sp._CAG:508, and Firmicutes_bacterium_CAG:460 species were significantly higher in the Ob as compared to those in Co. Transcriptomic sequencing results showed that the differentially upregulated genes were mainly enriched in pathways, including calcium signaling pathway, PI3K-Akt signaling pathway, and Wnt signaling pathway, while the differentially downregulated genes were mainly enriched in pathways of NF-kappaB signaling pathway and T cell receptor signaling pathway. The comparative analysis of metabolites showed that the glycine, serine, and threonine metabolism and cysteine and methionine metabolism were the important metabolic pathways between the two groups. The combined analysis showed that CAMK1, IGFBP6, and IGFBP4 genes were highly correlated with Clostridium_sp._CAG:793, and Akkermansia_glycaniphila species. Thus, the preliminary study elucidated the microbial and gene interactions in cecum of obese rabbit and provided a basis for further studies in intestinal intervention for human obesity.


Assuntos
Ceco , Dieta Hiperlipídica , Microbioma Gastrointestinal , Obesidade , Animais , Coelhos , Dieta Hiperlipídica/efeitos adversos , Ceco/microbiologia , Ceco/metabolismo , Obesidade/metabolismo , Obesidade/microbiologia , Interações entre Hospedeiro e Microrganismos , Metagenômica , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Redes Reguladoras de Genes , Masculino , Perfilação da Expressão Gênica
5.
Front Microbiol ; 15: 1416256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962123

RESUMO

Introduction: The effects of continuous cropping and rotation cropping, two important tobacco cultivation practices, on soil microbial communities at different stages remain unclear. Different planting patterns have been shown to influence soil physical and chemical properties, which in turn can affect the composition and diversity of soil microbial communities. Methods: In order to investigate the impact of different planting methods on soil microbial community structure, we selected two representative planting methods: continuous cropping (tobacco) and rotational cropping (tobacco-maize). These methods were chosen as the focal points of our research to explore the potential effects on soil microbial communities. High-throughput sequencing technology was employed to investigate the structure of soil microbial communities, as well as their relationships with soil environmental factors, by utilizing the 16S rRNA, ITS, and 18S genes. Furthermore, the interaction among microorganisms was explored through the application of the Random Matrix Theory (RMT) molecular ecological network approach. Results: There was no significant difference in α diversity, but significant difference in ß diversity based on Jaccard distance test. Compared to continuous cropping, crop rotation significantly increased the abundance of beneficial prokaryotes Verrucomicrobia and Rhodanobacter. These findings indicate that crop rotation promotes the enrichment of Verrucomicrobia and Rhodanobacter in the soil microbial community. AP and NH4-N had a greater effect on the community structure of prokaryotes and fungi in tobacco soil, while only AP had a greater effect on the community structure of protist. Molecular ecological network analysis showed that the network robustness and Cohesion of rotation were significantly higher than that of continuous cropping, indicating that the complexity and stability of molecular ecological networks were higher in the rotational, and the microbial communities cooperated more effectively, and the community structure was more stable. Discussion: From this point of view, rotational cropping is more conducive to changing the composition of soil microbial community, enhancing the stability of microbial network structure, and enhancing the potential ecological functions in soil.

6.
Sci Rep ; 14(1): 15368, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965410

RESUMO

To detect and analyze the changes of microorganisms in expressed prostatic secretion (EPS) of patients with IIIB prostatitis before and after low-intensity pulsed ultrasound (LIPUS) treatment, and to explore the mechanism of LIPUS in the treatment of chronic prostatitis (CP). 25 patients (study power was estimated using a Dirichlet-multinomial approach and reached 96.5% at α = 0.05 using a sample size of 25) with IIIB prostatitis who were effective in LIPUS treatment were divided into two groups before and after LIPUS treatment. High throughput second-generation sequencing technique was used to detect and analyze the relative abundance of bacterial 16 s ribosomal variable regions in EPS before and after treatment. The data were analyzed by bioinformatics software and database, and differences with P < 0.05 were considered statistically significant. Beta diversity analysis showed that there was a significant difference between groups (P = 0.046). LEfSe detected four kinds of characteristic microorganisms in the EPS of patients with IIIB prostatitis before and after LIPUS treatment. After multiple comparisons among groups by DESeq2 method, six different microorganisms were found. LIPUS may improve patients' clinical symptoms by changing the flora structure of EPS, stabilizing and affecting resident bacteria or opportunistic pathogens.


Assuntos
Próstata , Prostatite , Ondas Ultrassônicas , Humanos , Masculino , Prostatite/terapia , Prostatite/microbiologia , Prostatite/metabolismo , Próstata/microbiologia , Próstata/metabolismo , Próstata/patologia , Adulto , Bactérias/metabolismo , Bactérias/genética , Pessoa de Meia-Idade , Terapia por Ultrassom/métodos , Microbiota , RNA Ribossômico 16S/genética
7.
AIMS Microbiol ; 10(2): 391-414, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919718

RESUMO

The oral microbiome represents an essential component of the oral ecosystem whose symbiotic relationship contributes to health maintenance. The biofilm represents a state of living of microorganisms surrounding themselves with a complex and tridimensional organized polymeric support and defense matrix. The substrates where the oral biofilm adhere can suffer from damages due to the microbial community metabolisms. Therefore, microbial biofilm represents the main etiological factor of the two pathologies of dental interest with the highest incidence, such as carious pathology and periodontal pathology. The study, analysis, and understanding of the characteristics of the biofilm, starting from the macroscopic structure up to the microscopic architecture, appear essential. This review examined the morphological methods used through the years to identify species, adhesion mechanisms that contribute to biofilm formation and stability, and how the action of microbicidal molecules is effective against pathological biofilm. Microscopy is the primary technique for the morphological characterization of biofilm. Light microscopy, which includes the stereomicroscope and confocal laser microscopy (CLSM), allows the visualization of microbial communities in their natural state, providing valuable information on the spatial arrangement of different microorganisms within the biofilm and revealing microbial diversity in the biofilm matrix. The stereomicroscope provides a three-dimensional view of the sample, allowing detailed observation of the structure, thickness, morphology, and distribution of the various species in the biofilm while CLSM provides information on its three-dimensional architecture, microbial composition, and dynamic development. Electron microscopy, scanning (SEM) or transmission (TEM), allows the high-resolution investigation of the architecture of the biofilm, analyzing the bacterial population, the extracellular polymeric matrix (EPS), and the mechanisms of the physical and chemical forces that contribute to the adhesion of the biofilm to the substrates, on a nanometric scale. More advanced microscopic methodologies, such as scanning transmission electron microscopy (STEM), high-resolution transmission electron microscopy (HR-TEM), and correlative microscopy, have enabled the evaluation of antibacterial treatments, due to the potential to reveal the efficacy of different molecules in breaking down the biofilm. In conclusion, evidence based on scientific literature shows that established microscopic methods represent the most common tools used to characterize biofilm and its morphology in oral microbiology. Further protocols and studies on the application of advanced microscopic techniques are needed to obtain precise details on the microbiological and pathological aspects of oral biofilm.

8.
Front Genome Ed ; 6: 1376927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938511

RESUMO

With scientific progress and the development of new genomic techniques (NGTs), the spectrum of organisms modified for various purposes is rapidly expanding and includes a wide range of taxonomic groups. An improved understanding of which newly developed products may be introduced into the market and released into the environment in the near and more distant future is of particular interest for policymakers, regulatory authorities, and risk assessors. To address this information need, we conducted a horizon scanning (HS) of potential environmental applications in four groups of organisms: terrestrial animals (excluding insects and applications with gene drives), fish, algae and microorganisms. We applied a formal scoping review methodology comprising a structured search of the scientific literature followed by eligibility screening, complemented by a survey of grey literature, and regulatory websites and databases. In all four groups of organisms we identified a broad range of potential applications in stages of basic as well as advanced research, and a limited number of applications which are on, or ready to be placed on, the market. Research on GM animals including fish is focused on farmed animals and primarily targets traits which increase performance, influence reproduction, or convey resistance against diseases. GM algae identified in the HS were all unicellular, with more than half of the articles concerning biofuel production. GM algae applications for use in the environment include biocontrol and bioremediation, which are also the main applications identified for GM microorganisms. From a risk assessor's perspective these potential applications entail a multitude of possible pathways to harm. The current limited level of experience and limited amount of available scientific information could constitute a significant challenge in the near future, for which risk assessors and competent authorities urgently need to prepare.

9.
Acta Biomater ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942189

RESUMO

A wide variety of microorganisms have been closely linked to metal corrosion in the form of adherent surface biofilms. Biofilms allow the development and maintenance of locally corrosive environments and/or permit direct corrosion including pitting corrosion. The presence of numerous genetically distinct microorganisms in the oral environment poses a threat to the integrity and durability of the surface of metallic prostheses and implants used in routine dentistry. However, the association between oral microorganisms and specific corrosion mechanisms is not clear. It is of practical importance to understand how microbial corrosion occurs and the associated risks to metallic materials in the oral environment. This knowledge is also important for researchers and clinicians who are increasingly concerned about the biological activity of the released corrosion products. Accordingly, the main goal was to comprehensively review the current literature regarding oral microbiologically influenced corrosion (MIC) including characteristics of biofilms and of the oral environment, MIC mechanisms, corrosion behavior in the presence of oral microorganisms and potentially mitigating technologies. Findings included that oral MIC has been ascribed mostly to aggressive metabolites secreted during microbial metabolism (metabolite-mediated MIC). However, from a thermodynamic point of view, extracellular electron transfer mechanisms (EET-MIC) through pili or electron transfer compounds cannot be ruled out. Various MIC mitigating methods have been demonstrated to be effective in short term, but long term evaluations are necessary before clinical applications can be considered. Currently most in-vitro studies fail to simulate the complexity of intraoral physiological conditions which may either reduce or exacerbate corrosion risk, which must be addressed in future studies. STATEMENT OF SIGNIFICANCE: A thorough analysis on literature regarding oral MIC (microbiologically influenced corrosion) of biomedical metallic materials has been carried out, including characteristics of oral environment, MIC mechanisms, corrosion behaviors in the presence of typical oral microorganisms and potential mitigating methods (materials design and surface design). There is currently a lack of mechanistic understanding of oral MIC which is very important not only to corrosion researchers but also to dentists and clinicians. This paper discusses the significance of biofilms from a biocorrosion perspective and summarizes several aspects of MIC mechanisms which could be caused by oral microorganisms. Oral MIC has been closely associated with not only the materials research but also the dental/clinical research fields in this work.

10.
Heliyon ; 10(11): e31962, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38933979

RESUMO

This study conducted sterilization testing under different conditions using different strains for sterilization and crushing, the intermediate healthcare waste treatment phase, and proposed strategies for diversifying corresponding facilities in addition to promoting their installation. Five indicator microorganisms were selected to test the sterilization efficiency of steam, microwave, and chemical methods. Steam sterilization testing was conducted in accordance with legal and technological standards, microwave testing was carried out according to the legal standard, and chemical sterilization employed three typical compounds. Steam and microwave sterilization achieved 99.9999 % inactivation rates for all five strains under both conditions used; whereas under the chemical sterilization analyses, sodium hypochlorite (1000 ppm) failed to meet the inactivation requirement of the fungal strain Candida albicans, requiring further investigation. Based on these findings, this study presents strategies for diversifying sterilization·crushing facilities and promoting their installation.

11.
Foods ; 13(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928768

RESUMO

Brassica campestris (syn. Brassica rapa) is often known as mustard and is grown worldwide owing to its health-promoting characteristics associated with the presence of nutrients and phytochemicals. Along with the nutritional components, B. campestris also contains anti-nutrients (phytates, oxalates, tannins, alkaloids, saponins) that can cause adverse severe health effects to consumers, including rashes, nausea, headaches, bloating and nutritional deficiencies. In the present study, heating (blanching) and fermentation (Lactiplantibacillus plantarum) treatments were applied to reduce the load of the anti-nutrients of B. campestris leaves harvested at three different growth stages: the first stage (fourth week), the second stage (sixth week) and the third stage (eighth week). Results revealed that fermentation treatment using Lp. plantarum increases the ash (5.4 to 6%), protein (9 to 10.4%) and fiber (9.6 to 10.7%) contents, whereas moisture (0.91 to 0.82%), fat (9.9 to 9.1%) and carbohydrate (64.5 to 64.2%) contents decreased among B. campestris samples, and the trend was similar for all three stages. Blanching and fermentation lead to the reduction in phytates (46, 42%), saponins (34, 49%), tannins (1, 10%), oxalates (15, 7%) and alkaloids (10, 6%), separately as compared to raw samples of B. campestris leaves. In contrast, fermentation had no considerable effect on phytochemical contents (total phenolic and total flavonoids) and antioxidant potential (DPPH and FRAP). The action of blanching followed by fermentation caused more decline in the aforementioned toxicants load as compared to blanching or fermentation alone. Structural modifications in blanching and the biochemical conversions in fermentation lead to enhanced stability of nutrients and antioxidant potential. Taken together, these findings suggest blanching followed by fermentation treatments as a reliable, cost-effective and safer approach to curtail the anti-nutrient load without affecting the proximate composition, phytochemical attributes and antioxidant activity.

12.
J Clin Med ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930023

RESUMO

Background: this prospective study investigated the correlation between the oral bacterial microflora and the microflora found in voice prostheses (VPs) among 20 patients who had undergone laryngectomy. The aim was to explore the associations between the microflora's presence and the malfunction of VPs, along with the association between the predominant microorganism and the longevity of VPs. Methods: the research process included gathering medical histories, conducting ENT examinations, replacing VPs, and performing check-ups every four months for a period of 15.5 months. Additionally, microbiological examinations, blood tests, and voice change surveys were conducted. Results: a correlation between the microflora isolated from VPs and that from oral rinses was demonstrated in a large percentage of patients who experienced a loss of prosthetic functional efficiency. The correlation analysis between the type of microorganism and the lifespan of VPs showed a non-significant Pearson correlation coefficient (r = 0.043, p = 0.678). Conclusions: there is no significant linear correlation between the predominant microorganism and the average lifespan of VPs.

13.
Microorganisms ; 12(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38930441

RESUMO

The lack of efficient ways to dispose of lignocellulosic agricultural residues is a serious environmental issue. Low temperatures greatly impact the ability of organisms to degrade these wastes and convert them into nutrients. Here, we report the isolation and genomic characterization of a microbial consortium capable of degrading corn straw at low temperatures. The microorganisms isolated showed fast cellulose-degrading capabilities, as confirmed by scanning electron microscopy and the weight loss in corn straw. Bacteria in the consortium behaved as three diverse and functionally distinct populations, while fungi behaved as a single population in both diversity and functions overtime. The bacterial genus Pseudomonas and the fungal genus Thermoascus had prominent roles in the microbial consortium, showing significant lignocellulose waste-degrading functions. Bacteria and fungi present in the consortium contained high relative abundance of genes for membrane components, with amino acid breakdown and carbohydrate degradation being the most important metabolic pathways for bacteria, while fungi contained more genes involved in energy use, carbohydrate degradation, lipid and fatty acid decomposition, and biosynthesis.

14.
Microorganisms ; 12(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38930482

RESUMO

Due to its adsorption with aluminum and iron hydroxides, phosphorus viability is low in acidic soils; thus, the aim of this study was to isolate and identify bacteria from the rhizosphere of four legumes growing in acidic soils of the Cumbaza Sub-basin, San Martín, Peru, as well as to characterize their ability to solubilize aluminum phosphate and iron phosphate. The isolation process was conducted on TSA medium and the isolates were classified based on their origin and morphocolonial characteristics, with the bacillary shape being the most frequent, followed by cocci. To assess the solubilization of aluminum and iron phosphates, the liquid medium GELP was employed. Sixteen strains were selected, among which three stood out for their effectiveness in solubilizing AlPO4 (Sfcv-098-02, 22.65 mg L-1; Sfc-093-04, 26.50 mg L-1; and Sfcv-041-01-2, 55.98 mg L-1) and one for its ability to solubilize FePO4 (Sfcr-043-02, 32.61 mg L-1). These four strains were molecularly characterized, being identified as Enterobacter sp., Pseudomonas sp., and Staphylococcus sp. Additionally, a decrease in pH was observed in the reactions, with values ranging from 5.23 to 3.29, which enhanced the phosphate of solubilization. This suggests that the selected bacteria could be used to improve phosphorus availability in agricultural soils.

15.
Plants (Basel) ; 13(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38931099

RESUMO

Water deficiency has been recognized as a major abiotic stress that causes losses in maize crops around the world. The maize crop is very important due to the range of products that are derived from this plant. A potential way to reduce the damages caused by water deficiency in maize crops is through the association with plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF). To define the mechanisms developed by associative PGPB and AMF in maize that are involved in protection against moderate drought (MD), this study evaluated the biometrical, anatomical, biochemical, and physiological parameters of maize grown under MD and inoculated with different PGPB (Azospirillum brasilense strain Ab-V5 and Bacillus sp. strain ZK) and with AMF. The relative water content did not change in the treatments. The association with ZK increased the shoot:total ratio, total dry weight, maximum quantum yield of photosystem II, vascular cylinder thickness, and vascular cylinder area. The Ab-V5 inoculation led to an increment in root dry weight, the area of metaxylem vessel elements, and nitrate reductase activity. The AMF association did not lead to changes in the measured parameters. The results indicate that the association with PGPB is a relevant alternative to contribute to reducing losses in maize crops under drought. However, AMF is not indicated for this crop under drought.

16.
Biomedicines ; 12(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38927396

RESUMO

The aim of this study was to evaluate the effect of the combination of neovestitol-vestitol (CNV) compounds obtained from Brazilian red propolis on the microbiological profile of a mature multispecies subgingival biofilm. The biofilm with 32 bacterial species associated with periodontitis was formed for seven days using a Calgary device. Treatment with CNV (1600, 800, 400, and 200 µg/mL), amoxicillin (54 µg/mL), and vehicle control was performed for 24 h on the last day of biofilm formation. Biofilm metabolic activity and DNA-DNA hybridization (checkerboard) assays were performed. The groups treated with CNV 1600 and amoxicillin reduced 25 and 13 species, respectively, compared to the control vehicle treatment (p ≤ 0.05); both reduced P. gingivalis, while only CNV reduced T. forsythia. When the data from the two treatments (CNV and AMOXI) were compared, a statistically significant difference was observed in 13 species, particularly members of Socransky's orange complex. Our results showed that CNV at 1600 µg/mL showed the best results regarding the metabolic activity of mature biofilms and obtained a reduction in species associated with the disease, such as T. forsythia, showing a better reduction than amoxicillin. Therefore, CNV seems to be a promising alternative to eradicate biofilms and reduce their pathogenicity.

17.
Water Sci Technol ; 89(11): 2907-2920, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877621

RESUMO

In this study, three sequencing batch biofilter granular reactors (SBBGRs) were employed to treat model lignin wastewater containing different lignin models (2,6-dimethoxyphenol, 4-methoxyphenol, and vanillin). After 40 days of cultivation, uniform-shaped aerobic granular sludge (AGS) was successfully developed through nutrient supplementation with synthetic wastewater. During the acclimation stage, the chemical oxygen demand (COD) reduction efficiencies of the three reactors showed a trend of initial decreasing (5-20%) and then recovering to a high reduction efficiency (exceeding 90%) in a short period of time. During the stable operation stage, all three reactors achieved COD reduction efficiencies exceeding 90%. These findings indicated the cultivated AGS's robust resistance to changes in lignin models in water. UV-Vis spectra analysis confirmed the effective degradation of the three lignin models. Microbiological analysis showed that Proteobacteria and Bacteroidetes were always the dominant phyla. At the genus level, while Acinetobacter (15.46%) dominated in the inoculation sludge, Kapabacteriales (7.93%), SBR1031 (11.77%), and Chlorobium (25.37%) were dominant in the three reactors (for 2,6-dimethoxyphenol, 4-methoxyphenol, and vanillin) after degradation, respectively. These findings demonstrate that AGS cultured with SBBGR effectively degrades lignin models, with different dominant strains observed for various lignin models.


Assuntos
Reatores Biológicos , Lignina , Esgotos , Esgotos/microbiologia , Lignina/metabolismo , Lignina/química , Aerobiose , Filtração/métodos , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo
18.
BMC Plant Biol ; 24(1): 582, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898415

RESUMO

BACKGROUND: Crop-associated microorganisms play a crucial role in soil nutrient cycling, and crop growth, and health. Fine-scale patterns in soil microbial community diversity and composition are commonly regulated by plant species or genotype. Despite extensive reports in different crop or its cultivar effects on the microbial community, it is uncertain how rhizoma peanut (RP, Arachis glabrata Benth.), a perennial warm-season legume forage that is well-adapted in the southern USA, affects soil microbial community across different cultivars. RESULTS: This study explored the influence of seven different RP cultivars on the taxonomic composition, diversity, and functional groups of soil fungal communities through a field trial in Marianna, Florida, Southern USA, using next-generation sequencing technique. Our results showed that the taxonomic diversity and composition of the fungal community differed significantly across RP cultivars. Alpha diversity (Shannon, Simpson, and Pielou's evenness) was significantly higher in Ecoturf but lower in UF_Peace and Florigraze compared to other cultivars (p < 0.001). Phylogenetic diversity (Faith's PD) was lowest in Latitude compared to other cultivars (p < 0.0001). The dominant phyla were Ascomycota (13.34%), Mortierellomycota (3.82%), and Basidiomycota (2.99%), which were significantly greater in Florigraze, UF_Peace, and Ecoturf, respectively. The relative abundance of Neocosmospora was markedly high (21.45%) in UF_Tito and showed large variations across cultivars. The relative abundance of the dominant genera was significantly greater in Arbrook than in other cultivars. There were also significant differences in the co-occurrence network, showing different keystone taxa and more positive correlations than the negative correlations across cultivars. FUNGuild analysis showed that the relative abundance of functional guilds including pathogenic, saprotrophic, endophytic, mycorrhizal and parasitic fungi significantly differed among cultivars. Ecoturf had the greatest relative abundance of mycorrhizal fungal group (5.10 ± 0.44), whereas UF_Peace had the greatest relative abundance of endophytic (4.52 ± 0.56) and parasitic fungi (1.67 ± 0.30) compared to other cultivars. CONCLUSIONS: Our findings provide evidence of crop cultivar's effect in shaping fine-scale fungal community patterns in legume-based forage systems.


Assuntos
Arachis , Microbiologia do Solo , Arachis/microbiologia , Arachis/genética , Micobioma , Fungos/fisiologia , Fungos/genética , Florida , Rizoma/microbiologia , Filogenia
19.
Sci Total Environ ; 942: 173771, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38851351

RESUMO

The impact of microplastics and their additives on soil nutrient cycling, particularly through microbial mechanisms, remains underexplored. This study investigated the effects of polyethylene microplastics, polyethylene resin, and plastic additives on soil nitrogen content, physicochemical properties, nitrogen cycling functional genes, microbial composition, and nitrogen transformation rates. Results showed that all amendments increased total nitrogen but decreased dissolved total nitrogen. Polyethylene microplastics and additives increased dissolved organic nitrogen, while polyethylene resin reduced it and exhibited higher microbial biomass. Amendments reduced or did not change inorganic nitrogen levels, with additives showing the lowest values. Polyethylene resin favored microbial nitrogen immobilization, while additives were more inhibitory. Amendment type and content significantly interacted with nitrogen cycling genes and microbial composition. Distinct functional microbial biomarkers and network structures were identified for different amendments. Polyethylene microplastics had higher gross ammonification, nitrification, and immobilization rates, followed by polyethylene resin and additives. Nitrogen transformation was driven by multiple functional genes, with Proteobacteria playing a significant role. Soil physicochemical properties affected nitrogen content through transformation rates, with C/N ratio having an indirect effect and water holding capacity directly impacting it. In summary, plastic additives, compared to polyethylene microplastics and resin, are less conducive to nitrogen degradation and microbial immobilization, exert significant effects on microbial community structure, inhibit transformation rates, and ultimately impact nitrogen cycling.


Assuntos
Microplásticos , Ciclo do Nitrogênio , Nitrogênio , Polietileno , Microbiologia do Solo , Poluentes do Solo , Solo , Solo/química , Interações Microbianas
20.
Huan Jing Ke Xue ; 45(6): 3571-3583, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897777

RESUMO

In arid areas, fresh water resources are insufficient, and agricultural water mainly depends on shallow saline groundwater. However, long-term saline irrigation will cause soil salt accumulation and soil environment deterioration, which is not conducive to crop growth. In this study, based on the long-term irrigation of fresh water (0.35 dS·m-1, FW) and saline water (8.04 dS·m-1, SW), biochar (3.7 t·hm-2, BC) and straw (6 t·hm-2, ST) were added to the soil by an equal-carbon design. The aim was to clarify the effects of biochar and straw returning on the physical and chemical properties and microbial community structure of salinized soil. The results showed that saline irrigation significantly increased soil water content, electrical conductivity, available phosphorus, and total carbon content but significantly decreased pH value and available potassium content. The contents of available phosphorus, available potassium, and total carbon in soil were significantly increased by biochar and straw returning, but the conductivity value of soil irrigated with saline water was significantly decreased. The dominant bacteria in each treatment were Proteobacteria, Actinomycetes, Acidobacteria, Chloromycetes, and Blastomonas. Saline water irrigation significantly increased the relative abundance of Blastomonas and Proteobacteria but significantly decreased the relative abundance of Acidobacteria and Actinobacteria. Under the condition of fresh water irrigation, the relative abundance of Chlorocurvula was significantly reduced by the return of biochar. Straw returning significantly increased the relative abundance of Proteobacteria but significantly decreased the relative abundance of Acidobacteria, Actinomyces, Chloromyces, and Blastomonas. Under saline irrigation, the relative abundance of Chlorocurvula and Blastomonas were significantly reduced by biochar return to field. Straw returning significantly increased the relative abundance of Proteobacteria but significantly decreased the relative abundance of Acidobacteria, Actinomyces, Chloromyces, and Blastomonas. LEfSe analysis showed that saline irrigation decreased the potential markers and functional numbers of soil microorganisms.Under saline irrigation, biochar returning increased the number of potential markers and functions of soil microorganisms. Straw returning to field increases the number of potential markers of soil microorganisms. RDA results showed that soil microbial community and functional structure were significantly correlated with EC1:5, SWC, and pH. Saline water irrigation will deteriorate the soil environment, which is not conducive to agricultural production, among which EC1:5, SWC, and pH are important factors driving changes in soil microbial community and functional structure. Using biochar and straw to return to the field can reduce the harm of salt to soil and crops, laying a foundation for improving agricultural productivity.


Assuntos
Irrigação Agrícola , Carvão Vegetal , Gossypium , Caules de Planta , Microbiologia do Solo , Solo , Irrigação Agrícola/métodos , Solo/química , Gossypium/crescimento & desenvolvimento , Caules de Planta/química , Águas Salinas , Microbiota , Bactérias/classificação , Bactérias/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...