Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940190

RESUMO

Chondrosarcoma is a malignant bone tumor that emerges from abnormalities in cartilaginous tissue and is related with lung metastases. Nicotinamide phosphoribosyltransferase (NAMPT) is an adipocytokine reported to enhance tumor metastasis. Our results from clinical samples and the Gene Expression Omnibus data set reveal that NAMPT levels are markedly higher in chondrosarcoma patients than in normal individuals. NAMPT stimulation significantly increased lysyl oxidase (LOX) production in chondrosarcoma cells. Additionally, NAMPT increased LOX-dependent cell migration and invasion in chondrosarcoma by suppressing miR-26b-5p generation through the c-Src and Akt signaling pathways. Overexpression of NAMPT promoted chondrosarcoma metastasis to the lung in vivo. Furthermore, knockdown of LOX counteracted NAMPT-facilitated metastasis. Thus, the NAMPT/LOX axis presents a novel target for treating the metastasis of chondrosarcoma.

2.
Mol Biol Rep ; 51(1): 632, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724827

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play critical roles in the osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs), but the mechanism by which miRNAs indirectly modulate osteogenesis remains unclear. Here, we explored the mechanism by which miRNAs indirectly modulate gene expression through histone demethylases to promote bone regeneration. METHODS AND RESULTS: Bioinformatics analysis was performed on hBMSCs after 7 days of osteogenic induction. The differentially expressed miRNAs were screened, and potential target mRNAs were identified. To determine the bioactivity and stemness of hBMSCs and their potential for bone repair, we performed wound healing, Cell Counting Kit-8 (CCK-8), real-time reverse transcription quantitative polymerase chain reaction (RT‒qPCR), alkaline phosphatase activity, alizarin red S (ARS) staining and radiological and histological analyses on SD rats with calvarial bone defects. Additionally, a dual-luciferase reporter assay was utilized to investigate the interaction between miR-26b-5p and ten-eleven translocation 3 (TET3) in human embryonic kidney 293T cells. The in vitro and in vivo results suggested that miR-26b-5p effectively promoted the migration, proliferation and osteogenic differentiation of hBMSCs, as well as the bone reconstruction of calvarial defects in SD rats. Mechanistically, miR-26b-5p bound to the 3' untranslated region of TET3 mRNA to mediate gene silencing. CONCLUSIONS: MiR-26b-5p downregulated the expression of TET3 to increase the osteogenic differentiation of hBMSCs and bone repair in rat calvarial defects. MiR-26b-5p/TET3 crosstalk might be useful in large-scale critical bone defects.


Assuntos
Dioxigenases , Células-Tronco Mesenquimais , MicroRNAs , Osteogênese , Animais , Feminino , Humanos , Ratos , Regeneração Óssea/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Células HEK293 , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Ratos Sprague-Dawley , Crânio/patologia , Crânio/metabolismo
3.
Arch Med Sci ; 20(2): 655-663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757011

RESUMO

Introduction: Chronic heart failure (CHF) is a leading cause of deaths induced by cardiovascular disease. This study aimed to investigate the protective effects of emodin in CHF rats and explore the related mechanisms. Material and methods: A total of 56 Wistar rats were used to construct CHF model using the coronary artery ligation. The effects of emodin on cardiac function and inflammation were analyzed in the CHF rats. Expression of miR-26b-5p in the CHF model before and after emodin treatment was estimated by quantitative real-time polymerase chain reaction. The effects of miR-26b-5p on cardiac function and inflammation were also assessed, and its target gene was predicted and confirmed in rat cardiomyocyte H9c2. Results: Emodin treatment could significant improve the cardiac function and inflammation evidenced by the increased increased ejection fraction (EF), fractional shortening (FS), left ventricular systolic pressure (LVSP) and maximum of the first differentiation of left ventricular pressure (+LV dP/dtmax) and decreased atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), left ventricular end diastolic pressure (LVEDP), interleukin (IL)-6, tumor necrosis factor α (TNF-α) levels. Expression of miR-26b-5p was downregulated in the CHF rats (CHF 0.442 ±0.131 vs. Sham 1.044 ±0.160), and this suppressive effect was rescued by emodin (Emodin 0.902 ±0.132 vs. CHF 0.442 ±0.131). The overexpression of miR-26b-5p in CHF rats led to improved cardiac function and inflammatory response. In addition, the emodin-induced increased EF, FS, LVSP and +LV dP/dtmax and decreased ANP, BNP, LVEDP, IL-6 and TNF-α were all abrogated by the knockdown of miR-26b-5p. The target prediction results revealed that PTEN was a target gene of miR-26b-5p in H9c2 cells. Conclusions: All the results indicated that emodin serves a protective role in CHF via regulation of the miR-26b-5p/PTEN pathway. Emodin may be an effective therapeutic agent for CHF treatment.

4.
J Transl Med ; 22(1): 439, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720389

RESUMO

Despite advances in treatment strategies, colorectal cancer (CRC) continues to cause significant morbidity and mortality, with mounting evidence a close link between immune system dysfunctions issued. Interleukin-2 receptor gamma (IL-2RG) plays a pivotal role as a common subunit receptor in the IL-2 family cytokines and activates the JAK-STAT pathway. This study delves into the role of Interleukin-2 receptor gamma (IL-2RG) within the tumor microenvironment and investigates potential microRNAs (miRNAs) that directly inhibit IL-2RG, aiming to discern their impact on CRC clinical outcomes. Bioinformatics analysis revealed a significant upregulation of IL-2RG mRNA in TCGA-COAD samples and showed strong correlations with the infiltration of various lymphocytes. Single-cell analysis corroborated these findings, highlighting IL-2RG expression in critical immune cell subsets. To explore miRNA involvement in IL-2RG dysregulation, mRNA was isolated from the tumor tissues and lymphocytes of 258 CRC patients and 30 healthy controls, and IL-2RG was cloned into the pcDNA3.1/CT-GFP-TOPO vector. Human embryonic kidney cell lines (HEK-293T) were transfected with this construct. Our research involved a comprehensive analysis of miRPathDB, miRWalk, and Targetscan databases to identify the miRNAs associated with the 3' UTR of human IL-2RG. The human microRNA (miRNA) molecules, hsa-miR-7-5p and hsa-miR-26b-5p, have been identified as potent suppressors of IL-2RG expression in CRC patients. Specifically, the downregulation of hsa-miR-7-5p and hsa-miR-26b-5p has been shown to result in the upregulation of IL-2RG mRNA expression in these patients. Prognostic evaluation of IL-2RG, hsa-miR-7-5p, and hsa-miR-26b-5p, using TCGA-COAD data and patient samples, established that higher IL-2RG expression and lower expression of both miRNAs were associated with poorer outcomes. Additionally, this study identified several long non-coding RNAs (LncRNAs), such as ZFAS1, SOX21-AS1, SNHG11, SNHG16, SNHG1, DLX6-AS1, GAS5, SNHG6, and MALAT1, which may act as competing endogenous RNA molecules for IL2RG by sequestering shared hsa-miR-7-5p and hsa-miR-26b-5p. In summary, this investigation underscores the potential utility of IL-2RG, hsa-miR-7-5p, and hsa-miR-26b-5p as serum and tissue biomarkers for predicting CRC patient prognosis while also offering promise as targets for immunotherapy in CRC management.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Subunidade gama Comum de Receptores de Interleucina , MicroRNAs , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sequência de Bases , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Células HEK293 , Imunoterapia , Subunidade gama Comum de Receptores de Interleucina/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico
5.
Burns Trauma ; 12: tkad036, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434721

RESUMO

Background: Hypoxia is the typical characteristic of keloids. The development of keloids is closely related to the abnormal phenotypic transition of macrophages. However, the role of exosomal microRNAs (miRNAs) derived from hypoxic macrophages in keloids remains unclear. This study aimed to explore the role of hypoxic macrophage-derived exosomes (HMDE) in the occurrence and development of keloids and identify the critical miRNA. Methods: The expression of CD206+ M2 macrophage in keloids and normal skin tissues was examined through immunofluorescence. The polarization of macrophages under a hypoxia environment was detected through flow cytometry. The internalization of macrophage-derived exosomes in human keloid fibroblasts (HKFs) was detected using a confocal microscope. miRNA sequencing was used to explore the differentially expressed miRNAs in exosomes derived from the normoxic and hypoxic macrophage. Subsequently, the dual-luciferase reporter assay verified that phosphatase and tension homolog (PTEN) was miR-26b-5p's target. The biological function of macrophage-derived exosomes, miR-26b-5p and PTEN were detected using the CCK-8, wound-healing and Transwell assays. Western blot assay was used to confirm the miR-26b-5p's underlying mechanisms and PTEN-PI3K/AKT pathway. Results: We demonstrated that M2-type macrophages were enriched in keloids and that hypoxia treatment could polarize macrophages toward M2-type. Compared with normoxic macrophages-derived exosomes (NMDE), HMDE promote the proliferation, migration and invasion of HKFs. A total of 38 differential miRNAs (18 upregulated and 20 downregulated) were found between the NMDE and HMDE. miR-26b-5p was enriched in HMDE, which could be transmitted to HKFs. According to the results of the functional assay, exosomal miR-26b-5p produced by macrophages facilitated HKFs' migration, invasion and proliferation via the PTEN-PI3K/AKT pathway. Conclusions: The highly expressed miR-26b-5p in HMDE promotes the development of keloids via the PTEN-PI3K/AKT pathway.

6.
J Nanobiotechnology ; 22(1): 72, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374072

RESUMO

Osteoarthritis (OA) is one of the most prevalent chronic musculoskeletal diseases among the elderly population. In this study, macrophage-derived exosomes were isolated and identified. Exosomes were subjected to microRNA (miRNA) sequencing and bioinformatic analysis, and differentially expressed miRNAs were verified. miR-26b-5p target genes were confirmed through target-site mutation combined with a dual-luciferase reporter assay. The effects of miR-26b-5p on macrophage polarization and chondrocyte hypertrophy were assessed in vitro. miR-26b-5p agomir was applied to mice with OA induced by anterior cruciate ligament transection (ACLT). The therapeutic effects of miR-26b-5p were evaluated via pain behavior experiments and histological observations. In vitro, miR-26b-5p repolarized M1 macrophages to an anti-inflammatory M2 type by targeting the TLR3 signaling pathway. miR-26b-5p could target COL10A1, further inhibiting chondrocyte hypertrophy induced by M1 macrophage-conditioned medium (M1-CM). In vivo, miR-26b-5p agomir ameliorated gait abnormalities and mechanical allodynia in OA mice. miR-26b-5p treatment attenuated synovitis and cartilage degeneration, thereby delaying OA progression. In conclusion, M2 macrophage-derived exosomal miR-26b-5p could protect articular cartilage and ameliorate gait abnormalities in OA mice by targeting TLR3 and COL10A1. miR-26b-5p further affected macrophage polarization and chondrocyte hypertrophy. Thus, this exosomal miR-26b-5p-based strategy might be a potential method for OA treatment.


Assuntos
MicroRNAs , Osteoartrite , Idoso , Animais , Humanos , Camundongos , Condrócitos/metabolismo , Hipertrofia/metabolismo , Hipertrofia/patologia , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/metabolismo , Receptor 3 Toll-Like/metabolismo , Colágeno Tipo X/genética , Colágeno Tipo X/metabolismo , Exossomos/genética
7.
Regen Ther ; 25: 35-48, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38058606

RESUMO

Mesenchymal stem cells (MSCs) and extracellular vesicles (EVs) are promising therapies for the treatment of spinal cord injury (SCI). This study sought to explore the epigenetic mechanism of miR-26b-5p-enriched MSCs-EVs in SCI. MSCs and MSCs-EVs were isolated and characterized. The SCI rat model was established, followed by Basso-Beattie-Bresnahan scoring and H&E staining. In vitro cell models were established in PC12 cells with lipopolysaccharide (LPS) treatment, followed by cell viability evaluation using CCK-8 assay. The levels of miR-26b-5p, lysine demethylase 6A (KDM6A), NADPH oxidase 4 (NOX4), reactive oxygen species (ROS), and inflammatory factors (TNF-α/IL-1ß/IL-6) in tissues and cells were detected. The levels of cy3-lablled miR-26b-5p in tissues and cells were observed by confocal microscopy. The binding of miR-26b-5p to KDM6A 3'UTR and the enrichments of KDM6A and H3K27me3 at the NOX4 promoter were analyzed. MSCs-EVs attenuated motor dysfunction, inflammation, and oxidative stress in SCI rats. MSCs-EVs delivered miR-26b-5p into PC12 cells to reduce LPS-induced inflammation and ROS production and enhance cell viability. miR-26b-5p inhibited KDM6A, and KDM6A reduced H3K27me3 at the NOX4 promoter to promote NOX4. Overexpression of KDM6A or NOX4 reversed the alleviative role of MSCs-EVs in SCI or LPS-induced cell injury. Overall, MSCs-EVs delivered miR-26b-5p into cells to target the KDM6A/NOX4 axis and facilitate the recovery from SCI.

8.
J Orthop Surg Res ; 18(1): 890, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993867

RESUMO

Osteosarcoma is a common malignant bone tumor. Cisplatin (DDP) achieves a high response rate in osteosarcoma. Here we aim to study the dysregulation of long non-coding RNA the growth arrest-specific transcript 5 (GAS5), and its roles in DDP-resistance of osteosarcoma. The expression of mRNA and microRNA in osteosarcoma tissues and osteosarcoma cell lines were detected by quantitative reverse-transcription polymerase chain reaction, and protein expression levels were measured by western blotting assay. Cell Counting Kit-8 and 5-Ethynyl-2'-deoxyuridine were used to measure cell proliferation. Flow cytometer assay was used to evaluate cell apoptosis. The interactions between miR-26b-5p and GAS5 or tumor protein p53-induced nuclear protein 1 (TP53INP1) were verified by dual luciferase reporter along with biotin RNA pull-down assays. GAS5 was identified to be significantly lowly expressed in osteosarcoma samples especially in cisplatin-resistant (DDP-resistant) tissues. GAS5 was also downregulated in DDP-resistant cells. Over-expressed GAS5 prominently increased the sensitivity of osteosarcoma cells to DDP in vitro. Furthermore, over-expression of GAS5 suppressed cell proliferation and facilitated apoptosis of DDP-resistant cells. Mechanistically, GAS5 sponged miR-26b-5p, over-expression of which reversed the effects of GAS5 on cell proliferation and apoptosis of DDP-resistant cells. In addition, miR-26b-5p targeted TP53INP1. TP53INP1 abrogated the functions of miR-26b-5p on cell proliferation and apoptosis in DDP-resistant cells. Taken together, GAS5 enhanced the sensitivity of osteosarcoma cells to DDP via GAS5/miR-26b-5p/TP53INP1 axis. Therefore, GAS5 may be a potential indicator for the management of osteosarcoma.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , RNA Longo não Codificante , Humanos , Cisplatino/farmacologia , RNA Longo não Codificante/genética , Proteína Supressora de Tumor p53 , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Proliferação de Células/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Proteínas de Transporte/genética , Proteínas de Choque Térmico/metabolismo
9.
J Bone Oncol ; 41: 100490, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37457846

RESUMO

Osteosarcoma (OS) is the most frequent primary malignant bone tumor. Ferroptosis, a form of regulated cell death, is a key tumor suppression mechanism. Although methionine adenosyltransferase II alpha (MAT2A) has been reported to inhibit several tumor cells, it is unclear whether inhibition of MAT2A in OS cells can reduce ferroptosis. CCK-8, flow cytometry, and Transwell assays were performed to evaluate cell viability, cell apoptosis/cycle, and cell migration, respectively. The levels of ferrous iron and glutathione (GSH) levels in cells were measured to evaluate the degree of cell ferroptosis. Western blot analysis was performed to detect protein levels of MAT2A, p-STAT3 (Ser727)/STAT3, and solute carrier family 7 member 11 (SLC7A11) in OS cells. MAT2A was significantly upregulated in OS specimens and high MAT2A expression was associated with a poorer prognosis in OS patients. shRNA targeting MAT2A significantly increased OS cell apoptosis, triggered cell cycle arrest in the G2 phase, and attenuated migration ability in vitro. MAT2A depletion dramatically inhibited tumor progression of OS in vivo. Overexpression of MAT2A rescued the tumor inhibition caused by miR-26b-5p. MAT2A knockdown promoted OS cell ferroptosis. miR-26b-5p/MAT2A regulates tumor malignant progression and OS cell ferroptosis by controlling p-STAT3 and SLC7A11 expressions. Taken together, our study displayed that miR-26b-5p/MAT2A triggers ferroptosis in OS cells by increasing intracellular ferrous iron levels and inhibiting the STAT3/SLC7A11 axis. Our results reveal a MAT2A-mediated ferroptosis defense mechanism used by OS cells and propose a potential ferroptosis-inducing strategy for the treatment of OS patients.

10.
J Endocrinol Invest ; 46(12): 2583-2599, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37286863

RESUMO

PURPOSE/METHODS: The determination of tumour biomarkers is paramount to advancing personalized medicine, more so in rare tumours like medullary thyroid carcinoma (MTC), whose diagnosis is still challenging. The aim of this study was to identify non-invasive circulating biomarkers in MTC. To achieve this goal, paired MTC tissue and plasma extracellular vesicle samples were collected from multiple centres and microRNA (miRNA) expression levels were evaluated. RESULTS: The samples from a discovery cohort of 23 MTC patients were analysed using miRNA arrays. Lasso logistic regression analysis resulted in the identification of a set of circulating miRNAs as diagnostic biomarkers. Among them, miR-26b-5p and miR-451a, were highly expressed and their expression decreased during follow-up in disease-free patients in the discovery cohort. Circulating miR-26b-5p and miR-451a were validated using droplet digital PCR in a second independent cohort of 12 MTC patients. CONCLUSION: This study allowed the identification and validation of a signature of two circulating miRNAs, miR-26b-5p and miR-451a, in two independent cohorts reporting a significant diagnostic performance for MTC. The results of this study offer advancements in molecular diagnosis of MTC proposing a novel non-invasive tool to use in precision medicine.


Assuntos
MicroRNA Circulante , MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , MicroRNAs/genética , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Biomarcadores , Biomarcadores Tumorais/metabolismo
11.
J Pers Med ; 13(6)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373974

RESUMO

Uterine leiomyosarcomas (uLMS) have a poor prognosis and a high percentage of recurrent disease. Bioinformatics has become an integral element in rare cancer studies by overcoming the inability to collect a large enough study population. This study aimed to investigate and highlight crucial genes, pathways, miRNAs, and transcriptional factors (TF) on uLMS samples from five Gene Expression Omnibus datasets and The Cancer Genome Atlas Sarcoma study. Forty-one common differentially expressed genes (DEGs) were enriched and annotated by the DAVID software. With protein-protein interaction (PPI) network analysis, we selected ten hub genes that were validated with the TNMplotter web tool. We used the USCS Xena browser for survival analysis. We also predicted TF-gene and miRNA-gene regulatory networks along with potential drug molecules. TYMS and TK1 correlated with overall survival in uLMS patients. Finally, our results propose further validation of hub genes (TYMS and TK1), miR-26b-5p, and Sp1 as biomarkers of pathogenesis, prognosis, and differentiation of uLMS. Regarding the aggressive behavior and poor prognosis of uLMS, with the lack of standard therapeutic regimens, in our opinion, the results of our study provide enough evidence for further investigation of the molecular basis of uLMS occurrence and its implication in the diagnosis and therapy of this rare gynecological malignancy.

12.
Life Sci ; 322: 121649, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011873

RESUMO

AIMS: Ferroptosis promotes myocardial injury in acute myocardial infarction (AMI). Increasing evidence suggests the crucial role of exosomes in post-AMI pathophysiological regulation. We aimed to investigate the effects and underlying mechanisms of plasma exosomes derived from patients with AMI in inhibiting ferroptosis after AMI. METHODS: Plasma exosomes were isolated from controls (Con-Exo) and patients with AMI (MI-Exo). These exosomes were incubated with hypoxic cardiomyocytes or intramyocardially injected into the AMI mice. Histopathological changes, cell viability, and cell death were measured to evaluate the myocardial injury. For the ferroptosis evaluation, iron particle deposition, Fe2+, ROS, MDA, GSH, and GPX4 levels were detected. Exosomal miR-26b-5p expression was detected by qRT-PCR, and the targeting relationship between miR-26b-5p and SLC7A11 was confirmed by dual luciferase reporter gene assay. The role of the miR-26b-5p/SLC7A11 axis in the regulation of ferroptosis was validated by rescue experiments in cardiomyocytes. FINDINGS: Hypoxia-treatment induced ferroptosis and injury in H9C2 cells and primary cardiomyocytes. MI-Exo performed better than Con-Exo in inhibiting hypoxia-induced ferroptosis. miR-26b-5p expression was downregulated in MI-Exo, and miR-26b-5p overexpression significantly eliminated the inhibitory effect of MI-Exo on ferroptosis. Mechanistically, knockdown of miR-26b-5p upregulated SLC7A11/GSH/GPX4 expressions by directly targeting SLC7A11. Moreover, SLC7A11 silencing also reversed the inhibitory effect of MI-Exo on hypoxia-induced ferroptosis. In vivo, MI-Exo significantly inhibited ferroptosis, reduced myocardial injury, and improved the cardiac function of AMI mice. SIGNIFICANCE: Our findings revealed a novel mechanism of myocardial protection that downregulation of miR-26b-5p in MI-Exo notably upregulated SLC7A11 expression, thereby inhibiting post-AMI ferroptosis and alleviating myocardial injury.


Assuntos
Exossomos , Ferroptose , Traumatismos Cardíacos , MicroRNAs , Infarto do Miocárdio , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Exossomos/metabolismo , Apoptose/genética , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Hipóxia/metabolismo , Traumatismos Cardíacos/metabolismo
13.
BMC Musculoskelet Disord ; 24(1): 262, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016415

RESUMO

BACKGROUND: Osteoporosis (OP) is a common bone disease marked by decreased bone strength. Increasing evidence suggests that long non-coding RNA (lncRNAs) play important roles in the occurrence and progression of OP. This study aimed to investigate the role and mechanism of LINC00205 in the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and OP. METHODS: Bone tissue samples were obtained from healthy controls and patients with osteoporosis with a spinal fracture (OP-Frx) or without a spinal fracture (OP-no-Frx). HMSCs were cultured and induced to undergo osteogenic differentiation. The expression of LINC00205, lysine (K)-specific methyltransferase 2C (KMT2C), and miR-26b-5p in bone tissues and cells was evaluated using western blotting and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The effects of LINC00205, miR-26b-5p, and KMT2C on calcium deposition, alkaline phosphatase (ALP) activity, and mRNA levels of the osteogenic differentiation marker genes [ALP, osteocalcin (OCN), and runt-related transcription factor 2 (RUNX2)] were investigated using alizarin red S staining, an ALP activity assay, and qRT-PCR, respectively. Dual-luciferase reporter assay was performed to ascertain the binding relationship between miR-26b-5p and LINC00205/KMT2C. RESULTS: LINC00205 and KMT2C were upregulated in patients with OP-Frx and OP-no-Frx, whereas miR-26b-5p was downregulated. Furthermore, LINC00205 and KMT2C expression decreased, whereas that of miR-26b-5p increased over time from day 7 to 21 of the osteogenic differentiation of hMSCs. The knockdown of LINC00205 and KMT2C significantly increased ALP activity, calcium deposition, and the expression of RUNX2, ALP, and OCN. In contrast, the inhibition of miR-26b-5p yielded the opposite result. These data suggest that LINC00205 inhibits the osteogenic differentiation of hMSCs by modulating the miR-26b-5p/KMT2C signaling axis. CONCLUSION: LINC00205 promotes OP and is involved in spinal fractures. LINC00205 is also a potential negative regulator of the osteogenic differentiation of hMSCs.


Assuntos
MicroRNAs , Osteoporose , RNA Longo não Codificante , Fraturas da Coluna Vertebral , Humanos , Cálcio , Diferenciação Celular/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo , RNA Longo não Codificante/genética , Fraturas da Coluna Vertebral/genética
14.
J Transl Med ; 21(1): 77, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737782

RESUMO

BACKGROUND: Chronic inflammation is a well-known risk factor for the development of gastric cancer (GC). Nevertheless, the molecular mechanisms underlying inflammation-related GC progression are incompletely defined. METHODS: Bioinformatic analysis was performed based on data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), and the expression of miR-26b-5p in GC cells and tissues was validated by quantitative real-time PCR (qRT-PCR). Cell proliferation was examined through Cell Counting Kit-8 (CCK8), 5-Ethynyl-2'-deoxyuridine (EdU), colony formation, flow cytometry, and tumor xenografts. Correlation between miR-26b-5p and Cyclin dependent kinase 8 (CDK8) or Phosphodiesterase 4B (PDE4B) was analyzed by dual-luciferase reporter assays, qRT-PCR, and Western blot. The effect of miR-26b-5p on the Signal transducer and activator of transcription 3 (STAT3) pathway was investigated using Western blot, immunofluorescence (IF), and immunohistochemistry (IHC). The impact of STAT3 on miR-26b-5p was determined by dual-luciferase reporter assays and qRT-PCR. RESULTS: The expression of miR-26b-5p was significantly downregulated in Helicobacter Pylori (H. pylori)-infected GC cells. The decreased expression of miR-26b-5p was also detected in GC cells and tissues compared to normal gastric epithelium cells (GES1) and normal adjacent gastric tissues. The low expression of miR-26b-5p promoted GC proliferation in vitro and in vivo and was related to the poor outcome of GC patients. In terms of mechanism, miR-26b-5p directly targeted PDE4B and CDK8, resulting in decreased phosphorylation and nuclear translocation of STAT3, which was associated with the regulation of GC proliferation by miR-26b-5p. Notably, miR-26b-5p was transcriptionally suppressed by STAT3, thus forming the miR-26b-5p-PDE4B/CDK8-STAT3 positive feedback loop. CONCLUSION: The newly identified miR-26b-5p-PDE4B/CDK8-STAT3 feedback loop plays an important role in inflammation-related GC progression and may serve as a promising therapeutic target for GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Retroalimentação , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/patologia , Animais
15.
J Bone Miner Metab ; 40(4): 581-593, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35648221

RESUMO

INTRODUCTION: Osteosarcoma (OS) is the most aggressive malignancy among the bone tumors in the world. Circular RNAs (circRNAs) have been reported to be participated in multiple cancers, including OS. Meanwhile, circPVT1 has been proved to be upregulated in OS. However, the mechanism by which circPVT1 mediates the tumorigenesis of OS remains to be further explored. MATERIALS AND METHODS: Protein and gene expressions in OS cells were measured by western blot and RT-qPCR, respectively. Cell growth was assessed by flow cytometry and colony formation, respectively. In addition, cell migration was assessed by wound healing, and invasion was evaluated by Transwell assay. Meanwhile, the correlation among circPVT1, miR-26b-5p and CCNB1 was explored by RNA pull-down and dual luciferase assay. Finally, in vivo model was established to explore the role of circPVT1 in OS in vivo. RESULTS: CircPVT1 and CCNB1 were significantly upregulated in OS cells, while miR-26b-5p was downregulated. Knockdown of circPVT1 notably inhibited proliferation and induced apoptosis of OS cells. CircPVT1 shRNA significantly suppressed the OS cell invasion and migration. Meanwhile, circPVT1 sponged miR-26b-5p and CCNB1 was found to be the direct target of miR-26b-5p. Furthermore, silencing of circPVT1 inhibited the growth and metastasis of OS in vivo. CONCLUSION: Silencing of circPVT1 notably suppressed the tumorigenesis and metastasis of OS via miR-26b-5p/CCNB1 axis. Therefore, circPVT1 might be used as a target for OS treatment.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Neoplasias Ósseas/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina B1/genética , Ciclina B1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteossarcoma/genética , Osteossarcoma/patologia
16.
Front Pharmacol ; 13: 881855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721153

RESUMO

Kaempferol, a natural flavonoid molecule, has demonstrated anti-inflammatory, antimicrobial and antioxidant activities. Recent studies have shown the beneficial effects of kaempferol on liver fibrosis. Notch pathway has been reported to be involved in the aberrant activation of hepatic stellate cells (HSCs). However, whether Notch pathway plays a key role in the anti-fibrotic effects of kaempferol is largely unknown. In this study, kaempferol significantly suppressed liver fibrosis in CCl4 mice, with reduced collagen deposition as well as restored liver function. In vitro, kaempferol enhanced the suppression of HSC activation, with a decrease in α-SMA as well as collagen level. It was found that Notch pathway played an important role in kaempferol-reduced the activation of HSCs. Jag1, a ligand of Notch pathway, was obviously inhibited by kaempferol. Overexpression of Jag1 effectively abolished kaempferol-induced HSC inactivation. Furthermore, Jag1 was demonstrated as a target of microRNA-26b-5p (miR-26b-5p). Interestingly, miR-26b-5p inhibitor prevented HSC activation inhibition caused by kaempferol. Further studies indicated that kaempferol inhibited Notch pathway via miR-26b-5p and Jag1, leading to HSC inactivation. Collectively, we demonstrate that kaempferol could inhibit HSC activation, at least in part, via miR-26b-5p-mediated Jag1 axis and Notch pathway. Kaempferol may serve as a promising drug in the application of treating liver fibrosis.

17.
Bioengineered ; 13(3): 7829-7846, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35291921

RESUMO

Hepatocellular carcinoma (HCC) is a principal histologic type of liver cancer with high mortality. Long non-coding RNAs (LncRNAs) exert a crucial role in the pathogenesis of human tumors. To date, the functions and mechanisms of lncRNA HAGLROS in HCC are rarely reported. In the current study, HAGLROS exhibited a higher level in HCC tissues and cells. HAGLROS expression was positively correlated with tumor size, TNM stage and poor clinical prognosis. Loss-of-function experiments showed that knockdown of HAGLROS significantly lowered cell proliferation, cell cycle progression, migration, invasion and epithelial to mesenchymal transition (EMT) but induced apoptosis in vitro. Consistently, tumor growth in the nude mice was effectively slowed by the depletion of HAGLROS. Mechanistically, HAGLROS could competitively bind to miR-26b-5p to prevent the suppression of miR-26b-5p on its downstream target gene Karyopherin α2 (KPNA2). Moreover, the inhibitory effects of HAGLROS knockdown on cell malignant behaviors were reversed due to the miR-26b-5p down-regulation or KPNA2 overexpression. It was interesting to note that HAGLROS inactivated p53 signaling through targeting miR-26b-5p/KPNA2. In conclusion, our results demonstrated that HAGLROS contributed to the malignant progression of HCC via serving as a sponge for miR-26b-5p to facilitate KPNA2 expression and inactivate p53 signaling. Targeting HAGLROS/miR-26b-5p/KPNA2 axis might be an alternative therapeutic strategy for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , alfa Carioferinas
18.
Comb Chem High Throughput Screen ; 25(5): 877-882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33593252

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is a severe complication of diabetes; however, the pathogenesis of DR has not been completely clarified, which is mostly dependent on the molecular pathology. This study aimed to investigate key serum-derived miRNAs associated with DR. METHODS: miRNA expression profile arrays of human umbilical vein endothelial cells (HUVECs) treated with glucose were downloaded from the Gene Expression Omnibus (GEO) database (GSE74296). Weighted gene co-expression network analysis (WGCNA) was performed to obtain hub miRNAs, which were verified in HUVECs treated with 40 mM and 5 mM glucose, respectively. Meanwhile, serum samples of patients with DR and healthy controls were collected, and EVs were extracted from the patients' serum by ultracentrifugation. Hub miRNAs associated with endothelial dysfunction were verified in healthy individuals before and after treatment of patients with DR, by qRT-PCR. RESULTS: These miRNAs were categorized into six modules, among which miR-26b-5p had a strong association with other modules. This miRNA was also one of the hyperglycemia-induced miRNAs related to endothelial dysfunction. miR-26b-5p was up-regulated in HUVECs treated with 40 mM glucose and in the serum of patients with DR before and after treatment. Furthermore, miR- 26b-5p was slightly up-regulated in serum-derived EVs but not in serum without EVs in DM patients. CONCLUSION: Our results suggest that EVs derived from miR-26b-5p are up-regulated in the serum of patients with DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Vesículas Extracelulares , MicroRNAs , Biomarcadores , Diabetes Mellitus/metabolismo , Retinopatia Diabética/genética , Células Endoteliais/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , MicroRNAs/metabolismo
19.
Dig Dis Sci ; 67(5): 1794-1805, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33839982

RESUMO

BACKGROUND: Emerging evidence has suggested that miRNAs are important regulators of intestinal I/R injury, but their function in this context remains elusive. AIMS: To evaluate the role of miR-26b-5p in intestinal I/R injury. METHODS: We utilized in vivo murine models of intestinal I/R and in vitro Mode-K cell-based models of oxygen and glucose deprivation/reperfusion (OGD/R) to examine the function of miR-26b-5p in intestinal I/R injury. The expression of miR-26b-5p in intestinal mucosa and Mode-K cell was detected by RT-PCR. HE staining and Chiu's score were used to evaluate intestinal mucosa injury severity. Apoptosis was detected by TUNEL stain, flow cytometry, and western blot. TargetScan and StarBase prediction algorithms were applied to predict putative target genes of miR-26b-5p and validated by luciferase reporter analyses. RESULTS: We found that the expression of miR-26b-5p in intestinal mucosa was markedly decreased during I/R injury. We additionally found miR-26b-5p overexpression to markedly disrupt intestinal I/R- or OGD/R-induced injury in vivo and in vitro, whereas inhibiting this miRNA had an adverse impact and resulted in increased intestinal tissue injury and Mode-K cell damage. From a mechanistic perspective, miR-26b-5p was predicted to target DAPK1, which was related to cellular apoptosis. Luciferase reporter assay results confirmed that miR-26b-5p directly targets DAPK1 in Mode-K cells, thereby suppressing OGD/R-induced cell apoptosis. CONCLUSION: Our findings show that miR-26b-5p may prevent intestinal I/R injury via targeting DAPK1 and inhibiting intestinal mucosal cell apoptosis, suggesting that this miRNA may be a viable target for the treatment of intestinal I/R injury.


Assuntos
MicroRNAs , Traumatismo por Reperfusão , Animais , Apoptose/genética , Proteínas Quinases Associadas com Morte Celular/genética , Glucose , Humanos , Mucosa Intestinal/metabolismo , Isquemia , Camundongos , MicroRNAs/metabolismo , Oxigênio , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle
20.
Rheumatology (Oxford) ; 61(6): 2631-2643, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34559207

RESUMO

OBJECTIVES: This study aimed to investigate the role and mechanism of asporin in modulating chondrocyte senescence in OA pathology. METHODS: Asporin and senescence-related hallmark expression were examined in human and experimental OA mouse cartilage samples. Twelve-week-old male C57 mice were administered with recombinant protein (rm-asporin)- or asporin-siRNA-expressing lentiviruses via intra-articular injection once a week after destabilization of the medial meniscus (DMM) surgery to induce OA. Cartilage damage was measured using the Osteoarthritis Research Society International score. Senescence-associated ß-galactosidase (SA-ß-Gal) staining, γH2AX, p21 and p16INK4a were analysed by immunofluorescence staining and western blot to assess the specific role of asporin in chondrocyte senescence. The TGF-ß1-Smad2 signalling pathway and miR-26b-5p were further evaluated to explore the mechanism of asporin in OA. RESULTS: Asporin was upregulated in articular chondrocytes of OA patients and DMM mice and accompanied by accumulation of senescent cells. Asporin overexpression exaggerated OA progression, whereas silencing asporin restored chondrocyte homeostasis and deferred chondrocyte senescence, leading to markedly attenuated DMM-induced OA. Cellular and molecular analyses showed that asporin can be inhibited by miR-26b-5p, which was significantly downregulated in OA cartilage, leading to exacerbation of experimental OA partially through inhibition of TGF-ß1-Smad2 signalling in chondrocytes. CONCLUSIONS: Our findings indicate that asporin plays an essential role in chondrocyte senescence and OA pathogenesis. Upregulated by miR-26b-5p, asporin inhibits the TGF-ß1-Smad2 pathway to accelerate chondrocyte senescence and exacerbate cartilage degeneration. Targeting the miR-26b-5p-asporin-Smad2 axis may serve as a practical therapeutic strategy to delay chondrocyte senescence and OA development.


Assuntos
Cartilagem Articular , MicroRNAs , Osteoartrite , Animais , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Humanos , Masculino , Meniscos Tibiais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/metabolismo , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...