Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
Am J Cancer Res ; 14(7): 3584-3599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113879

RESUMO

Triple-negative breast cancer (TNBC) treatment is challenging due to its aggressive nature and heterogeneity of this type of cancer, characterized by various subtypes and intratumoral diversity. Doxorubicin (DOX) plays a crucial role in TNBC chemotherapy reducing the tumor size and improving patient survival. However, decreased drug uptake and increased resistance in specific cell subpopulations reduce the effectiveness of the treatment. This study explored the differences in DOX transport in MDA-MB-231 phenotypic sublines in cell monolayer (2D model) and cell spheroids (3D cultures). Cell spheroids were formed using magnetic 3D Bioprinting method. DOX transport into cells and spheroids was evaluated using fluorescence microscopy after different incubation durations with DOX in normoxia and hypoxia. In hypoxia, DOX transport into cells was 2.5 to 5-fold lower than in normoxia. The subline F5 monolayer-cultured cells exhibited the highest DOX uptake, while subline H2 cells showed the lowest uptake in normoxia and hypoxia. In 3D cultures, DOX transport was up to 2-fold lower in spheroids formed from subline H2 cells. Spheroids from subline D8 and MDA-MB-231 parent cells had the highest DOX uptake. A correlation was observed between the characteristics of the cells and their resistance to anticancer drugs. The results indicate that different cancer cell subpopulations in tumours due to differences in drug uptake could significantly impact treatment efficacy.

2.
Colloids Surf B Biointerfaces ; 243: 114128, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39094210

RESUMO

Plasmonic photothermal therapy (PPTT) employing plasmonic gold nanorods (GNRs) presents a potent strategy for eradication of tumors including aggressive brain gliomas. Despite its promise, there is a pressing need for a more comprehensive evaluation of PPTT using sophisticated in vitro models that closely resemble tumor tissues, thereby facilitating the elucidation of therapeutic mechanisms. In this study, we exposed 3D glioma spheroids (tumoroids) to (16-mercaptohexadecyl)trimethylammonium bromide-functionalized gold nanorods (MTAB-GNRs) and a near-infrared (NIR) laser. We demonstrate that the photothermal effect can be fine-tuned by adjusting the nanoparticle concentration and laser power. Depending on the selected parameters, the laser can trigger either regulated or non-regulated cell death (necrosis) in both mouse GL261 and human U-87 MG glioma cell lines, accompanied by translocation of phosphatidylserine in the membrane. Our investigation into the mechanism of regulated cell death induced by PPTT revealed an absence of markers associated with classical apoptosis pathways, such as cleaved caspase 3. Instead, we observed the presence of cleaved caspase 1, gasdermin D, and elevated levels of NLRP3 in NIR-irradiated tumoroids, indicating the activation of pyroptosis. This finding correlates with previous observations of lysosomal accumulation of MTAB-GNRs and the known lysosomal pathway of pyroptosis activation. We further confirmed the absence of toxic breakdown products of GNRs using electron microscopy, which showed no melting or fragmentation of gold nanoparticles under the conditions causing regulated cell death. In conclusion, PPTT using coated gold nanorods offers significant potential for glioma cell elimination occurring through the activation of pyroptosis rather than classical apoptosis pathways.

3.
Int J Nanomedicine ; 19: 6547-6575, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957180

RESUMO

The development of therapeutic drugs and methods has been greatly facilitated by the emergence of tumor models. However, due to their inherent complexity, establishing a model that can fully replicate the tumor tissue situation remains extremely challenging. With the development of tissue engineering, the advancement of bioprinting technology has facilitated the upgrading of tumor models. This article focuses on the latest advancements in bioprinting, specifically highlighting the construction of 3D tumor models, and underscores the integration of these two technologies. Furthermore, it discusses the challenges and future directions of related techniques, while also emphasizing the effective recreation of the tumor microenvironment through the emergence of 3D tumor models that resemble in vitro organs, thereby accelerating the development of new anticancer therapies.


Assuntos
Bioimpressão , Neoplasias , Impressão Tridimensional , Engenharia Tecidual , Microambiente Tumoral , Humanos , Bioimpressão/métodos , Engenharia Tecidual/métodos , Microambiente Tumoral/efeitos dos fármacos , Neoplasias/terapia , Animais , Modelos Biológicos
4.
Mol Ther Methods Clin Dev ; 32(3): 101279, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-38993326

RESUMO

Systemic delivery of oncolytic and immunomodulatory adenoviruses may be required for optimal effects on human malignancies. Mesenchymal stromal cells (MSCs) can serve as delivery systems for cancer therapeutics due to their ability to transport and shield these agents while homing to tumors. We now use MSCs to deliver a clinically validated binary oncolytic and helper-dependent adenovirus combination (CAdVEC) to tumor cells. We show successful oncolysis and helper-dependent virus function in tumor cells even in the presence of plasma from adenovirus-seropositive donors. In both two- and three-dimensional cultures, CAdVEC function is eliminated even at high dilutions of seropositive plasma but is well sustained when CAdVEC is delivered by MSCs. These results provide a robust in vitro model to measure oncolytic and helper-dependent virus spread and demonstrate a beneficial role of using MSCs for systemic delivery of CAdVEC even in the presence of a neutralizing humoral response.

5.
Exp Cell Res ; 441(1): 114155, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39002689

RESUMO

At least one-third of patients with epithelial ovarian cancer (OC) present ascites at diagnosis and almost all have ascites at recurrence especially because of the propensity of the OC cells to spread in the abdominal cavity leading to peritoneal metastasis. The influence of ascites on the development of pre-metastatic niches, and on the biological mechanisms leading to cancer cell colonization of the mesothelium, remains poorly understood. Here, we show that ascites weakens the mesothelium by affecting the morphology of mesothelial cells and by destabilizing their distribution in the cell cycle. Ascites also causes destabilization of the integrity of mesothelium by modifying the organization of cell junctions, but it does not affect the synthesis of N-cadherin and ZO-1 by mesothelial cells. Moreover, ascites induces disorganization of focal contacts and causes actin cytoskeletal reorganization potentially dependent on the activity of Rac1. Ascites allows the densification and reorganization of ECM proteins of the mesothelium, especially fibrinogen/fibrin, and indicates that it is a source of the fibrinogen and fibrin surrounding OC spheroids. The fibrin in ascites leads to the adhesion of OC spheroids to the mesothelium, and ascites promotes their disaggregation followed by the clearance of mesothelial cells. Both αV and α5ß1 integrins are involved. In conclusion ascites and its fibrinogen/fibrin composition affects the integrity of the mesothelium and promotes the integrin-dependent implantation of OC spheroids in the mesothelium.


Assuntos
Ascite , Fibrina , Fibrinogênio , Integrina alfa5beta1 , Neoplasias Ovarianas , Esferoides Celulares , Microambiente Tumoral , Humanos , Feminino , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Ascite/patologia , Ascite/metabolismo , Integrina alfa5beta1/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Fibrinogênio/metabolismo , Fibrina/metabolismo , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/patologia , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Receptores de Vitronectina/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Adesão Celular , Peritônio/patologia , Peritônio/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Caderinas/metabolismo , Células Tumorais Cultivadas
6.
ACS Sens ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038809

RESUMO

In the intricate landscape of the tumor microenvironment, both cancer and stromal cells undergo rapid metabolic adaptations to support their growth. Given the relevant role of the metabolic secretome in fueling tumor progression, its unique metabolic characteristics have gained prominence as potential biomarkers and therapeutic targets. As a result, rapid and accurate tools have been developed to track metabolic changes in the tumor microenvironment with high sensitivity and resolution. Surface-enhanced Raman scattering (SERS) is a highly sensitive analytical technique and has been proven efficient toward the detection of metabolites in biological media. However, profiling secreted metabolites in complex cellular environments such as those in tumor-stroma 3D in vitro models remains challenging. To address this limitation, we employed a SERS-based strategy to investigate the metabolic secretome of pancreatic tumor models within 3D cultures. We aimed to monitor the immunosuppressive potential of stratified pancreatic cancer-stroma spheroids as compared to 3D cultures of either pancreatic cancer cells or cancer-associated fibroblasts, focusing on the metabolic conversion of tryptophan into kynurenine by the IDO-1 enzyme. We additionally sought to elucidate the dynamics of tryptophan consumption in correlation with the size, temporal evolution, and composition of the spheroids, as well as assessing the effects of different drugs targeting the IDO-1 machinery. As a result, we confirm that SERS can be a valuable tool toward the optimization of cancer spheroids, in connection with their tryptophan metabolizing capacity, potentially allowing high-throughput spheroid analysis.

7.
Biochem Genet ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039322

RESUMO

Increasing studies have shown that nuclear respiratory factor 1 (NRF1) deficiency frequently occurs in many human diseases, and its activation can protect neurons and other cells from degenerative diseases and malignant tumors. However, how NRF1 is regulated in bladder cancer remains unknown. Our research aims to reveal the role of leavage and polyadenylation-specific factor 4 (CPSF4) on the growth inhibition effect of bladder cancer and clarify its relationship with NRF1. Here, cell proliferation assay, transwell migration assay and multicellular tumor spheroids (MCTS) formation assay in the bladder cancer cell lines were carried out to measure tumor cell growth. Western bolt assay was carried out to identify the relationship between NRF1 and CPSF4. Also, subcutaneous xenograft tumors in nude mice were established to further validate the inhibition effect of CPSF4 on bladder tumor and the regulation on NRF1. The results in vitro showed that knockdown of CPSF4 strongly reduced the proliferation and migration, and inhibited MCTS formation in 5637 and HT1376 cell lines, while an additional knockdown of increased NRF1 induced by CPSF4 knockdown partially abolished these effects. The results in vivo showed that knockdown of CPSF4 strongly reduced the volume and weight of subcutaneous tumor, and decreased the expression of Ki-67 in tumor tissue, while NRF1 knockdown partially reversed these effects induced by CPSF4 knockdown. Western bolt assay demonstrated that CPSF4 could negatively regulate NRF1. Our results indicated that knock-down of CPSF4 inhibited bladder cancer cell growth by upregulating NRF1, which might provide evidence of CPSF4 as a therapeutic target for bladder cancer.

8.
Talanta ; 278: 126473, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950503

RESUMO

Tumor spheroids are widely studied for in vitro modeling of tumor growth and responses to anticancer drugs. However, current methods are mostly limited to static and perfusion-based cultures, which can be improved by more accurately mimicking pathological conditions. Here, we developed a diffusion-based dynamic culture system for tumor spheroids studies using a thin membrane of hydrogel microwells and a microfluidic device. This allows for effective exchange of nutrients and metabolites between the tumors and the culture medium flowing underneath, resulting in uniform tumor spheroids. To monitor the growth and drug response of the spheroids in real-time, we performed spectroscopic analyses of the system's impedance, demonstrating a close correlation between the tumor size and the resistance and capacitance of the system. Our results also indicate an enhanced drug effect on the tumor spheroids in the presence of a low AC electric field, suggesting a weakening mechanism of the spheroids induced by external perturbation.


Assuntos
Impedância Elétrica , Hidrogéis , Esferoides Celulares , Esferoides Celulares/metabolismo , Humanos , Hidrogéis/química , Difusão , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Membranas Artificiais , Linhagem Celular Tumoral
9.
J Inorg Biochem ; 259: 112661, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39018748

RESUMO

In search of potential anticancer agents, we synthesized SNO-donor salicylaldimine main ligand-based Pt(II) complexes bearing NH3 as co-ligand at trans-position (C1-C6). These complexes showed similarity in structure with transplatin as the two N donor atoms of the main ligand and NH3 co-ligand were coordinated to Pt in trans position to each other. Each complex with different substituents on the main ligand was characterized thoroughly by detailed spectroscopic and spectrophotometric methods. Four of these complexes were studied in solid state by single crystal X-ray analysis. The stability of reference complex C1 was measured in solution state in DMSO­d6 or its mixture with D2O using 1H NMR methods. These complexes were further investigated for their anticancer activity in triple-negative-breast (TNBC) cells including MDA-MB-231, MDA-MB-468 and MDA-MB-436 cells. All these complexes showed satisfactory cytotoxic effect as revealed by the MTT results. Importantly, the highly active complex C4 anticancer effect was compared to the standard chemotherapeutic agents including cisplatin, oxaliplatin and 5-fluorouracil (5-FU). Functionally, C4 suppressed invasion, spheroids formation ability and clonogenic potential of cancer cells. C4 showed synergistic anticancer effect when used in combination with palbociclib, JQ1 and paclitaxel in TNBC cells. Mechanistically, C4 inhibited cyclin-dependent kinase (CDK)4/6 pathway and targeted the expressions of MYC/STAT3/CCND1/CNNE1 axis. Furthermore, C4 suppressed the EMT signaling pathway that suggested a role of C4 in the inhibition of TNBC metastasis. Our findings may pave further in detailed mechanistic study on these complexes as potential chemotherapeutic agents in different types of human cancers.


Assuntos
Antineoplásicos , Ciclina D1 , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Transição Epitelial-Mesenquimal , Fator de Transcrição STAT3 , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Feminino , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Ligantes , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Platina/química , Platina/farmacologia , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/síntese química
10.
Med Oncol ; 41(7): 185, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38910198

RESUMO

The purpose of the present study was in vitro determination of the combined effects of doxorubucin and 5-fluorouracil by 2D and 3D culture conditions on breast cancer using MCF-7 cell line and CSCs isolated from these cells. In the first stage of this study, CSC isolation and their characterization were performed. In the next experimental period, the antiproliferative effects of 5-Fu and Dox on the MCF-7 and CSCs were demonstrated on 2D. To evaluate the synergistic/antagonistic effects of these chemotherapeutics, the CI was calculated. Additionally, 3D tumor spheroids were used as another model. In the last step, qRT-PCR analysis was performed to examine apoptosis-related gene expressions. In this study, it was clearly seen that CSCs obtained from the breast cancer cell line express stemness factors. In addition, the antiproliferative effects of 5-Fu and Dox on breast cancer and associated CSCs were very clear. Their synergistic effects were determined by CI values. Moreover, it was seen that combined theraphy changed the expression levels of genes related to apoptosis. Additionally, it was molecularly demonstrated that 3D tumoroids were more resistant than the others. In conclusion, the polychemotherapeutic approach was much more effective than the monotherapy. The fact that this effect was seen not only in breast cancer cells, but also in breast cancer stem cells. In addition, it was very promising that the results obtained were similar in both two-dimensional and three-dimensional tumoroids.


Assuntos
Apoptose , Neoplasias da Mama , Doxorrubicina , Fluoruracila , Células-Tronco Neoplásicas , Esferoides Celulares , Humanos , Fluoruracila/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Doxorrubicina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Células MCF-7 , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Apoptose/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico
11.
Adv Healthc Mater ; : e2400938, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829702

RESUMO

Ovarian cancer is the most lethal gynecologic cancer in developed countries. In the tumor microenvironment, the extracellular matrix (ECM) and flow shear stress are key players in directing ovarian cancer cells invasion. Artificial ECM models based only on ECM proteins are used to build an ovarian tumor-on-chip to decipher the crosstalk between ECM and shear stress on the migratory behavior and cellular heterogeneity of ovarian tumor cells. This work shows that in the shear stress regime of the peritoneal cavity, the ECM plays a major role in driving individual or collective ovarian tumor cells migration. In the presence of basement membrane proteins, migration is more collective than on type I collagen regardless of shear stress. With increasing shear stress, individual cell migration is enhanced; while, no significant impact on collective migration is measured. This highlights the central position that ECM and flow shear stress should hold in in vitro ovarian cancer models to deepen understanding of cellular responses and improve development of ovarian cancer therapeutic platforms. In this frame, adding flow provides significant improvement in biological relevance over the authors' previous work. Further steps for enhanced clinical relevance require not only multiple cell lines but also patient-derived cells and sera.

12.
Chem Biol Interact ; 398: 111113, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908813

RESUMO

Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, for which targeted therapy regimens are lacking. The traditional Chinese medicine Menispermum dauricum DC (M. dauricum) and its compounds have been reported to have antitumor activity against various cancers; however, their anti-TNBC activity is unknown. In this work, dauricine and N-desmethyldauricine from M. dauricum were separated and identified to have anti-TNBC via a multi-component bioactivity and structure-guided method. The cell counting kit 8 assay showed that dauricine and N-desmethyldauricine inhibited the proliferation of four tested TNBC cell lines, with half maximal inhibitory concentration values ranging from 5.01 µM to 13.16 µM. Further research suggested that N-desmethyldauricine induced cell apoptosis, arrested cell cycle progression in the G0/G1 phase, and inhibited cell migration. Western blot analysis revealed that the proapoptotic protein cleaved-poly-ADP-ribose polymerase 1 was upregulated, and the G0/G1 phase-related proteins cyclin-dependent kinase 2 and cyclin D1 and the migration-related protein matrix metallopeptidase 9 were downregulated. Furthermore, N-desmethyldauricine decreased the protein expression of p65, an important subunit of nuclear factor kappa-beta (NF-κB). Moreover, an antiproliferation assay of three-dimensional (3D) tumor spheroids showed that N-desmethyldauricine diminished cell‒cell adhesion and suppressed the growth of TNBC 3D spheroids. Taken together, these findings indicate that N-desmethyldauricine inhibited the proliferation of TNBC cells and decreased the expression of p65 in the NF-κB pathway.


Assuntos
Apoptose , Benzilisoquinolinas , Proliferação de Células , Regulação para Baixo , Menispermum , NF-kappa B , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/química , Apoptose/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Menispermum/química , Movimento Celular/efeitos dos fármacos , Feminino , Ciclina D1/metabolismo , Tetra-Hidroisoquinolinas
13.
Methods Mol Biol ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38700833

RESUMO

Compared with traditional 2D cell culture, 3D cell culture more closely resembles the original state of cells in vivo and enables the establishment of in vivo-like microenvironments and cell-cell interactions, thereby providing valuable cellular materials for numerous studies. The direct establishment of in vitro patient tumor models can enhance drug testing, cancer research, and individualized precision therapy. In this study, we propose a microfluidic chip based on microwell arrays for 3D tumor cell culture. This chip combines nanoscale channels and microwell arrays to precisely control cell distribution and nutrient diffusion, thus closely mimicking the tumor microenvironment. The incorporation of microwell arrays allows for simple and rapid high-throughput preparation of tumor spheroids, while promoting the formation of cell-cell and cell-matrix interactions, ultimately enhancing cell viability and function. Preliminary experiments using tumor cell lines validate the ability of the chip to support 3D tumor growth with enhanced physiological relevance. The microfluidic chip serves as a reliable and scalable platform for studying tumor biology and evaluating therapeutic efficacy and is anticipated to expedite cancer research and drug discovery.

14.
Methods Mol Biol ; 2804: 223-235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753151

RESUMO

Reliable predictions for the route and accumulation of nanotherapeutics in vivo are limited by the huge gap between the 2D in vitro assays used for drug screening and the 3D physiological in vivo environment. While developing a standard 3D in vitro model for screening nanotherapeutics remains challenging, multi-cellular tumor spheroids (MCTS) are a promising in vitro model for such screening. Here, we present a straightforward and flexible 3D-model microsystem made out of agarose-based micro-wells, which enables the formation of hundreds of reproducible spheroids in a single pipetting. Immunostaining and fluorescent imaging, including live high-resolution optical microscopy, can be done in situ without manipulating spheroids.


Assuntos
Hidrogéis , Nanopartículas , Esferoides Celulares , Humanos , Nanopartículas/química , Hidrogéis/química , Linhagem Celular Tumoral , Microfluídica/métodos , Microfluídica/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Microscopia de Fluorescência/métodos
15.
Chem Biol Interact ; 396: 111047, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735454

RESUMO

Lung adenocarcinoma stands as a leading global cause of cancer-related fatalities, with current therapeutic approaches remaining unsatisfactory. Given the association between elevated oxidative markers and the aggressive nature of cancer cells (including multidrug resistance and metastatic potential) that can predict poor outcome of lung adenocarcinoma patients, any compounds that interfere with their aberrant redox biology should be rationally explored as innovative intervention strategies. This study was designed to screen potential anticancer activities within nine newly synthesized organochalcogen - compounds characterized by the presence of oxygen, sulfur, or selenium elements in their structure and exhibiting antioxidant activity - and systematically evaluated their performance against cisplatin, the cornerstone therapeutic agent for lung adenocarcinoma. Our methodology involved the establishment of optimal conditions for generating single tumor spheroids using A549 human lung adenocarcinoma cell line. The initiation interval for spheroid formation was determined to be four days in vitro (DIV), and these single spheroids demonstrated sustained growth over a period of 20 DIV. Toxic dose-response curves were subsequently performed for each compound after 24 and 48 h of incubation at the 12th DIV. Our findings reveal that at least two of the synthetic organochalcogen compounds exhibited noteworthy anticancer activity, surpassing cisplatin in key parameters such as lower LD (Lethal Dose) 50, larger drug activity area, and maximum amplitude of effect, and are promising drugs for futures studies in the treatment of lung adenocarcinomas. Physicochemical descriptors and prediction ADME (absorption, distribution, metabolism, and excretion) parameters of selected compounds were obtained using SwissADME computational tool; Molinspiration server was used to calculate a biological activity score, and possible molecule targets were evaluated by prediction with the SwissTargetPrediction server. This research not only sheds light on novel avenues for therapeutic exploration but also underscores the potential of synthetic organochalcogen compounds as agents with superior efficacy compared to established treatments.


Assuntos
Adenocarcinoma de Pulmão , Antineoplásicos , Calcogênios , Cisplatino , Neoplasias Pulmonares , Esferoides Celulares , Humanos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Calcogênios/química , Calcogênios/farmacologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Células A549 , Cisplatino/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Sobrevivência Celular/efeitos dos fármacos
16.
Biomaterials ; 306: 122482, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301325

RESUMO

One of the hurdles to the development of new anticancer therapies is the lack of in vitro models which faithfully reproduce the in vivo tumor microenvironment (TME). Understanding the dynamic relationships between the components of the TME in a controllable, scalable, and reliable setting would indeed support the discovery of biological targets impacting cancer diagnosis and therapy. Cancer research is increasingly shifting from traditional two-dimensional (2D) cell culture toward three-dimensional (3D) culture models, which have been demonstrated to increase the significance and predictive value of in vitro data. In this scenario, microphysiological systems (also known as organs-on-chip) have emerged as a relevant technological platform enabling more predictive investigation of cell-cell and cell-ECM interplay in cancer, attracting a significant research effort in the last years. This review illustrates one decade of progress in the field of tumor-microenvironment-on-chip (TMOC) approaches, exploiting either cell-laden microfluidic chambers or microfluidic confined tumor spheroids to model the TME. TMOCs have been designed to recapitulate several aspects of the TME, including tumor cells, the tumor-associated stroma, the immune system, and the vascular component. Significantly, the last aspect has emerged for its pivotal role in orchestrating cellular interactions and modulating drug pharmacokinetics on-chip. A further advancement has been represented by integration of TMOCs into multi-organ microphysiological systems, with the final aim to follow the metastatic cascade to target organs and to study the effects of chemotherapies at a systemic level. We highlight that the increased degree of complexity achieved by the most advanced TMOC models has enabled scientists to shed new light on the role of microenvironmental factors in tumor progression, metastatic cascade, and response to drugs.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Microfluídica , Microambiente Tumoral , Técnicas de Cultura de Células
17.
Biomaterials ; 306: 122504, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377848

RESUMO

This study addresses the demand for research models that can support patient-treatment decisions and clarify the complexities of a tumor microenvironment by developing an advanced non-animal preclinical cancer model. Based on patient-derived tumor spheroids (PDTS), the proposed model reconstructs the tumor microenvironment with emphasis on tumor spheroid-driven angiogenesis. The resulting microfluidic chip system mirrors angiogenic responses elicited by PDTS, recapitulating patient-specific tumor conditions and providing robust, easily quantifiable outcomes. Vascularized PDTS exhibited marked angiogenesis and tumor proliferation on the microfluidic chip. Furthermore, a drug that targets the vascular endothelial growth factor receptor 2 (VEGFR2, ramucirumab) was deployed, which effectively inhibited angiogenesis and impeded tumor invasion. This innovative preclinical model was used for investigating distinct responses for various drug combinations, encompassing HER2 inhibitors and angiogenesis inhibitors, within the context of PDTS. This integrated platform could potentially advance precision medicine by harmonizing diverse data points within the tumor microenvironment with a focus on the interplay between cancer and the vascular system.


Assuntos
Neoplasias , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiogênese , Neovascularização Patológica/metabolismo , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
18.
J Biol Eng ; 18(1): 14, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317174

RESUMO

Bone metastasis is considered as a considerable challenge for breast cancer patients. Various in vitro and in vivo models have been developed to examine this occurrence. In vitro models are employed to simulate the intricate tumor microenvironment, investigate the interplay between cells and their adjacent microenvironment, and evaluate the effectiveness of therapeutic interventions for tumors. The endeavor to replicate the latency period of bone metastasis in animal models has presented a challenge, primarily due to the necessity of primary tumor removal and the presence of multiple potential metastatic sites.The utilization of novel bone metastasis models, including three-dimensional (3D) models, has been proposed as a promising approach to overcome the constraints associated with conventional 2D and animal models. However, existing 3D models are limited by various factors, such as irregular cellular proliferation, autofluorescence, and changes in genetic and epigenetic expression. The imperative for the advancement of future applications of 3D models lies in their standardization and automation. The utilization of artificial intelligence exhibits the capability to predict cellular behavior through the examination of substrate materials' chemical composition, geometry, and mechanical performance. The implementation of these algorithms possesses the capability to predict the progression and proliferation of cancer. This paper reviewed the mechanisms of bone metastasis following primary breast cancer. Current models of breast cancer bone metastasis, along with their challenges, as well as the future perspectives of using these models for translational drug development, were discussed.

19.
Biomech Model Mechanobiol ; 23(1): 145-155, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37770729

RESUMO

Multi-cellular biomimetic models often comprise heterogenic geometries. Therefore, quantification of their mechanical properties-which is crucial for various biomedical applications-is a challenge. Due to its simplicity, linear fitting is traditionally used in analyzing force-displacement data of parallel compression measurements of multi-cellular clusters, such as tumor spheroids. However, the linear assumption would be artificial when the contact geometry is not planar. We propose here the integrated elasticity (IE) regression, which is based on extrapolation of established elastic theories for well-defined geometries, and is free, extremely simple to apply, and optimal for analyzing coarsely concave multi-cellular clusters. We studied here the quality of the data analysis in force measurements of tumor spheroids comprising different types of melanoma cells, using either the IE or the traditional linear regressions. The IE regression maintained excellent precision also when the contact geometry deviated from planarity (as shown by our image analysis). While the quality of the linear fittings was relatively satisfying, these predicted smaller elastic moduli as compared to the IE regression. This was in accordance with previous studies, in which the elastic moduli predicted by linear fits were smaller compared to those obtained by well-established methods. This suggests that linear regressions underestimate the elastic constants of bio-samples even in cases where the fitting precision seems satisfying, and highlights the need in alternative methods as the IE scheme. For comparison between different types of spheroids we further recommend to increase the soundness by regarding relative moduli, using universal reference samples.


Assuntos
Fenômenos Mecânicos , Neoplasias , Humanos , Elasticidade , Módulo de Elasticidade
20.
Artigo em Inglês | MEDLINE | ID: mdl-38062286

RESUMO

While considerable efforts have been made to develop new therapies, progress in the treatment of pancreatic cancer has so far fallen short of patients' expectations. This is due in part to the lack of predictive in vitro models capable of accounting for the heterogeneity of this tumor and its low immunogenicity. To address this point, we have established and characterized a 3D spheroid model of pancreatic cancer composed of tumor cells, cancer-associated fibroblasts, and blood-derived monocytes. The fate of the latter has been followed from their recruitment into the tumor spheroid to their polarization into a tumor-associated macrophage (TAM)-like population, providing evidence for the formation of an immunosuppressive microenvironment.This 3D model well reproduced the multiple roles of TAMs and their influence on drug sensitivity and cell migration. Furthermore, we observed that lipid-based nanosystems consisting of sphingomyelin and vitamin E could affect the phenotype of macrophages, causing a reduction of characteristic markers of TAMs. Overall, this optimized triple coculture model gives a valuable tool that could find useful application for a more comprehensive understanding of TAM plasticity as well as for more predictive drug screening. This could increase the relevance of preclinical studies and help identify effective treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...