Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 62(7): 984-997, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32320136

RESUMO

On acid soils, the trivalent aluminium ion (Al3+ ) predominates and is very rhizotoxic to most plant species. For some native plant species adapted to acid soils including tea (Camellia sinensis), Al3+ has been regarded as a beneficial mineral element. In this study, we discovered that Al3+ is actually essential for tea root growth and development in all the tested varieties. Aluminum ion promoted new root growth in five representative tea varieties with dose-dependent responses to Al3+ availability. In the absence of Al3+ , the tea plants failed to generate new roots, and the root tips were damaged within 1 d of Al deprivation. Structural analysis of root tips demonstrated that Al was required for root meristem development and activity. In situ morin staining of Al3+ in roots revealed that Al mainly localized to nuclei in root meristem cells, but then gradually moved to the cytosol when Al3+ was subsequently withdrawn. This movement of Al3+ from nuclei to cytosols was accompanied by exacerbated DNA damage, which suggests that the nuclear-targeted Al primarily acts to maintain DNA integrity. Taken together, these results provide novel evidence that Al3+ is essential for root growth in tea plants through maintenance of DNA integrity in meristematic cells.


Assuntos
Alumínio/farmacologia , Camellia sinensis/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Camellia sinensis/efeitos dos fármacos , Camellia sinensis/ultraestrutura , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Dano ao DNA , DNA de Plantas/metabolismo , Concentração de Íons de Hidrogênio , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/ultraestrutura , Prótons
2.
Sci Rep ; 8(1): 14944, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297696

RESUMO

The goal of the present study was to compare the structural and compositional differences of cuticle between tender leaf and fully-expanded leaf in Camellia sinensis, and provide metabolic base for the further characterization of wax biosynthesis in this economically important crop species. The tender second leaf and the fully-expanded fifth leaf from new twig were demonstrated to represent two different developmental stages, their cuticle thickness were measured by transmission electron microscopy. The thickness of the adaxial cuticle on the second and fifth leaf was 1.15 µm and 2.48 µm, respectively; the thickness of the abaxial cuticle on the second and fifth leaf was 0.47 µm and 1.05 µm, respectively. The thickness of the epicuticular wax layer from different leaf position or different sides of same leaf were similar. However, the intracuticular wax layer of the fifth leaf was much thicker than that of the second leaf. Total wax lipids were isolated from the second leaf and the fifth leaf, respectively. Gas chromatography-mass spectrometry analysis identified 51 wax constituents belonging to 13 chemical classes, including esters, glycols, terpenoids, fatty acids and their derivatives. Wax coverage on the second and fifth leaf was 4.76 µg/cm2 and 15.38 µg/cm2, respectively. Primary alcohols dominated in the tender second leaf. However, triterpenoids were the major components from the fully-expanded fifth leaf. The predominant carbon chains varied depending on chemical class. These data showed that the wax profiles of Camellia sinensis leaves are development stage dependent, suggesting distinct developmental dependent metabolic pathways and regulatory mechanisms.


Assuntos
Camellia sinensis/química , Lipídeos/análise , Folhas de Planta/química , Chá/química , Ceras/química , Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/metabolismo , Camellia sinensis/ultraestrutura , Esterificação , Ésteres/análise , Ésteres/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Chá/crescimento & desenvolvimento , Chá/metabolismo , Chá/ultraestrutura , Terpenos/análise , Terpenos/metabolismo , Ceras/metabolismo
3.
Exp Appl Acarol ; 73(3-4): 339-351, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29188400

RESUMO

Tuckerella japonica Ehara (Acari: Tuckerellidae) feeds on predigested plant cells beneath exposed periderm tissue of 1- to 3+-year-old stems of Camellia sinensis (L.) O. Kuntze (Theaceae) where longitudinal bark splitting occurs. Control samples from these tissues were compared with areas fed upon by T. japonica adults and immatures to characterize types of cellular injury. Stylet diameters ranged from 1.6 to 2.3 µm and were consistent with observed stylet punctures in the stems. Mite saliva was injected along tracts within the cortical tissue and resulted in cell wall disruption, collapsed cells and, in older tissue, hyperplasia. The range of potential stylet penetration into plant tissues was from 92 to 150 µm. Tuckerella japonica injects saliva in the cortical tissues. The paired stylet lengths would allow for possible injection of saliva into the upper areas of phloem tissue but not in the cambium area of wood exposed by splitting of the outer epidermis.


Assuntos
Camellia sinensis/fisiologia , Herbivoria , Ácaros/fisiologia , Animais , Camellia sinensis/ultraestrutura , Cadeia Alimentar , Microscopia Eletrônica de Varredura , Caules de Planta/fisiologia , Caules de Planta/ultraestrutura
4.
Sci Rep ; 7: 45062, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28332598

RESUMO

In this study, shade-induced conversion from a young pale/yellow leaf phenotype to a green leaf phenotype was studied using metabolic and transcriptomic profiling and the albino cultivar 'Yu-Jin-Xiang' ('YJX') of Camellia sinensis for a better understanding of mechanisms underlying the phenotype shift and the altered catechin and theanine production. Shaded leaf greening resulted from an increase in leaf chlorophyll and carotenoid abundance and chloroplast development. A total of 1,196 differentially expressed genes (DEGs) were identified between the 'YJX' pale and shaded green leaves, and these DEGs affected 'chloroplast organization' and 'response to high light' besides many other biological processes and pathways. Metabolic flux redirection and transcriptomic reprogramming were found in flavonoid and carotenoid pathways of the 'YJX' pale leaves and shaded green leaves to different extents compared to the green cultivar 'Shu-Cha-Zao'. Enhanced production of the antioxidant quercetin rather than catechin biosynthesis was correlated positively with the enhanced transcription of FLAVONOL SYNTHASE and FLAVANONE/FLAVONOL HYDROXYLASES leading to quercetin accumulation and negatively correlated to suppressed LEUCOANTHOCYANIDIN REDUCTASE, ANTHOCYANIDIN REDUCTASE and SYNTHASE leading to catechin biosynthesis. The altered levels of quercetin and catechins in 'YJX' will impact on its tea flavor and health benefits.


Assuntos
Camellia sinensis/genética , Camellia sinensis/metabolismo , Catequina/biossíntese , Metabolismo Energético/genética , Transcriptoma , Camellia sinensis/ultraestrutura , Reprogramação Celular , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Biologia Computacional/métodos , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Glutamatos/biossíntese , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Fenótipo , Pigmentação , Folhas de Planta , Reprodutibilidade dos Testes
5.
J Environ Biol ; 36(4): 875-82, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26364464

RESUMO

Drought is the major yield-limiting abiotic factor of tea cultivation. In the present study, influence of drought stress on cellular ultrastructure and antioxidants was studied drought-tolerant (TV-23) and -sensitive (S.3/A3) tea cultivars by imposing drought stress for 21 days. Drought stress led to considerable structural alterations in mitochondria, chloroplast and vacuole. Lesser membrane integrity and higher structural damage was observed in S.3/A3. Chlorophyll a, chl-b and carotenoids content in leaves decreased in each cultivar; however, the decrement was more brisk in S.3/A3. Proline, total soluble sugar, ascorbic acid and abscisic acid were elevated in TV-23 whereas hydrogen peroxide, superoxide anion, lipid peroxidation and electrolyte leakage increased rapidly in S.3/A3. Starch content decreased both in leaves and roots of each cultivar and was more pronounced in roots of TV-23. Under drought, enhanced activities of ascorbate peroxidase, catalase, peroxidase and superoxide dismutase were recorded in both roots and leaves of each cultivar, but the rate of enhancement was more in TV-23. This indicated that tolerant cultivar exhibited higher antioxidant capacity and a stronger protective mechanism such that their ultrastructural integrity was better maintained during exposure to drought stress.


Assuntos
Antioxidantes/metabolismo , Camellia sinensis/metabolismo , Camellia sinensis/ultraestrutura , Água/fisiologia , Secas , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Especificidade da Espécie
6.
J Sci Food Agric ; 91(13): 2412-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21656777

RESUMO

BACKGROUND: Theabrownin (TB) is a main bioactive component in Pu-erh tea, and the total amount is between 100 and 140 g kg(-1). However, reports on the mechanism of formation of TB are sparse because it has a high molecular weight and complex composition. Hence, the mechanism of formation of TB in Pu-erh tea during solid state fermentation was investigated using an exogenous enzyme method. RESULTS: It was found that, in the presence of exogenous enzymes, the tea liquor prepared from the resulting leaves changed considerably in colour. In addition, the TB, total carbohydrate, polysaccharide, amino acid and protein contents were all increased, while the tea polyphenol content decreased sharply; the surfaces of leaves before fermentation appeared to be smooth and intact, and the structures of the cell, cellulose and lignin were complete, while after fermentation their surfaces were covered by microorganisms and the structures of the cells were largely disrupted. CONCLUSION: The enzymatic actions are closely related to the compositional changes occurring during Pu-erh tea manufacture, and its quality. Enzymes produced by microorganisms were found to be the main cause of TB formation during the fermentation of Pu-erh tea.


Assuntos
Catequina/análogos & derivados , Catecol Oxidase/metabolismo , Celulase/metabolismo , Manipulação de Alimentos , Poligalacturonase/metabolismo , Chá/química , Biflavonoides/metabolismo , Camellia sinensis/química , Camellia sinensis/microbiologia , Camellia sinensis/ultraestrutura , Catequina/metabolismo , China , Dieta/etnologia , Fermentação , Alimento Funcional/análise , Microscopia Eletrônica de Varredura , Fenóis/metabolismo , Pigmentação , Folhas de Planta/química , Folhas de Planta/microbiologia , Folhas de Planta/ultraestrutura , Polifenóis/metabolismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...