Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 244, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822348

RESUMO

BACKGROUND: Snails of the Lymnaeidae family are the intermediate hosts of Fasciola species, the causative agents of fascioliasis. The purpose of this study was to determine the prevalence of Fasciola species in lymnaeid snails and to investigate the association of geoclimatic factors and Fasciola species distribution in northwestern provinces of Iran using geographical information system (GIS) data. METHODS: A total of 2000 lymnaeid snails were collected from 33 permanent and seasonal habitats in northwestern Iran during the period from June to November 2021. After identification by standard morphological keys, they were subjected to shedding and crushing methods. Different stages of Fasciola obtained from these snails were subjected to the ITS1 polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for species identification. The associations of weather temperature, rainfall, humidity, evaporation, air pressure, wind speed, elevation, and land cover with the distribution of Fasciola species were investigated. Geographical and statistical analysis was performed using ArcMap and SPSS software, respectively, to determine factors related to Fasciola species distribution. RESULTS: Of the 2000 snails collected, 19 were infected with Fasciola hepatica (0.09%), six with F. gigantica (0.03%), and 13 with other trematodes. Among geoclimatic and environmental factors, mean humidity, maximum humidity, and wind speed were significantly higher in areas where F. hepatica was more common than F. gigantica. The altitude of F. hepatica-prevalent areas was generally lower than F. gigantica areas. No significant relationship was observed between other investigated geoclimatic factors and the distribution of infected snails. CONCLUSIONS: The present study showed the relationship of humidity and wind speed with the distribution of snails infected with F. hepatica or F. gigantica in the northwestern regions of Iran. In contrast to F. gigantica, F. hepatica was more prevalent in low-altitude areas. Further research is recommended to elucidate the relationship between geoclimatic factors and the presence of intermediate hosts of the two Fasciola species.


Assuntos
Fasciola , Fasciolíase , Caramujos , Animais , Irã (Geográfico)/epidemiologia , Fasciolíase/epidemiologia , Fasciolíase/veterinária , Fasciolíase/parasitologia , Caramujos/parasitologia , Fasciola/genética , Fasciola/isolamento & purificação , Fasciola/classificação , Fasciola hepatica/genética , Fasciola hepatica/isolamento & purificação , Fasciola hepatica/fisiologia , Fasciola hepatica/classificação , Clima , Ecossistema , Estações do Ano , Polimorfismo de Fragmento de Restrição
2.
BMC Vet Res ; 20(1): 252, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851737

RESUMO

BACKGROUND: The insulin/insulin-like signalling (IIS) pathway is common in mammals and invertebrates, and the IIS pathway is unknown in Fasciola gigantica. In the present study, the IIS pathway was reconstructed in F. gigantica. We defined the components involved in the IIS pathway and investigated the transcription profiles of these genes for all developmental stages of F. gigantica. In addition, the presence of these components in excretory and secretory products (ESPs) was predicted via signal peptide annotation. RESULTS: The core components of the IIS pathway were detected in F. gigantica. Among these proteins, one ligand (FgILP) and one insulin-like molecule binding protein (FgIGFBP) were analysed. Interestingly, three receptors (FgIR-1/FgIR-2/FgIR-3) were detected, and a novel receptor, FgIR-3, was screened, suggesting novel functions. Fg14-3-3ζ, Fgirs, and Fgpp2a exhibited increased transcription in 42-day-old juveniles and 70-day-old juveniles, while Fgilp, Fgigfb, Fgsgk-1, Fgakt-1, Fgir-3, Fgpten, and Fgaap-1 exhibited increased transcription in metacercariae. FgILP, FgIGFBP, FgIR-2, FgIR-3, and two transcription factors (FgHSF-1 and FgSKN-1) were predicted to be present in FgESPs, indicating their exogenous roles. CONCLUSIONS: This study helps to elucidate the signal transduction pathway of IIS in F. gigantica, which will aid in understanding the interaction between flukes and hosts, as well as in understanding fluke developmental regulation, and will also lay a foundation for further characterisation of the IIS pathways of trematodes.


Assuntos
Fasciola , Proteínas de Helminto , Insulina , Transdução de Sinais , Animais , Fasciola/genética , Fasciola/metabolismo , Insulina/metabolismo , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética
3.
Sci Rep ; 14(1): 12347, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811840

RESUMO

Fascioliasis is a parasitic infection in animals and humans caused by the parasitic flatworm genus Fasciola, which has two major species, F. hepatica and F. gigantica. A major concern regarding this disease is drug resistance, which is increasingly reported worldwide. Hence, the discovery of a novel drug as well as drug targets is crucially required. Therefore, this study aims to characterize the novel drug target in the adult F. gigantica. In the beginning, we hypothesized that the parasite might interact with some host molecules when it lives inside the liver parenchyma or bile ducts, specifically hormones and hormone-like molecules, through the specific receptors, primarily nuclear receptors (NRs), which are recognized as a major drug target in various diseases. The retinoid X receptor (RXR) is a member of subfamily 2 NRs that plays multitudinous roles in organisms by forming homodimers or heterodimers with other NRs. We obtained the full-length amino acid sequences of F. gigantica retinoid X receptor-alpha (FgRXRα-A) from the transcriptome of F. gigantica that existed in the NCBI database. The FgRXRα-A were computationally predicted for the basic properties, multiple aligned, phylogeny analyzed, and generated of 2D and 3D models. Moreover, FgRXRα-A was molecular cloned and expressed as a recombinant protein (rFgRXRα-A), then used for immunization for specific polyclonal antibodies. The native FgRXRα-A was detected in the parasite extracts and tissues, and the function was investigated by in vitro binding assay. The results demonstrated the conservation of FgRXRα-A to the other RXRs, especially RXRs from the trematodes. Interestingly, the native FgRXRα-A could be detected in the testes of the parasite, where the sex hormones are accumulated. Moreover, the binding assay revealed the interaction of 9-cis retinoic acid and FgRXRα-A, suggesting the function of FgRXRα-A. Our findings suggested that FgRXRα-A will be involved with the sexual reproduction of the parasite by forming heterodimers with other NRs, and it could be the potential target for further drug development of fascioliasis.


Assuntos
Fasciola , Receptor X Retinoide alfa , Animais , Fasciola/metabolismo , Fasciola/genética , Receptor X Retinoide alfa/metabolismo , Receptor X Retinoide alfa/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Filogenia , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/química , Fasciolíase/parasitologia , Sequência de Aminoácidos
4.
Parasitol Res ; 123(5): 210, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743097

RESUMO

Fasciola gigantica is a widespread parasite that causes neglected disease in livestock worldwide. Its high transmissibility and dispersion are attributed to its ability to infect intermediate snail hosts and adapt to various mammalian definitive hosts. This study investigated the variation and population dynamics of F. gigantica in cattle, sheep, and goats from three states in Sudan. Mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 1 (ND1) genes were sequenced successfully to examine intra and interspecific differences. ND1 exhibited higher diversity than COI, with 15 haplotypes and 10 haplotypes, respectively. Both genes had high haplotype diversity but low nucleotide diversity, with 21 and 11 polymorphic sites for ND1 and COI, respectively. Mismatch distribution analysis and neutrality tests revealed that F. gigantica from different host species was in a state of population expansion. Maximum likelihood phylogenetic trees and median networks revealed that F. gigantica in Sudan and other African countries had host-specific and country-specific lineages for both genes. The study also indicated that F. gigantica-infected small ruminants were evolutionarily distant, suggesting deep and historical interspecies adaptation.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Fasciola , Fasciolíase , Variação Genética , Cabras , Haplótipos , NADH Desidrogenase , Filogenia , Dinâmica Populacional , Animais , Sudão/epidemiologia , Fasciola/genética , Fasciola/classificação , Fasciola/isolamento & purificação , Fasciolíase/veterinária , Fasciolíase/parasitologia , Fasciolíase/epidemiologia , Ovinos/parasitologia , Cabras/parasitologia , Bovinos , NADH Desidrogenase/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Doenças das Cabras/parasitologia , Doenças das Cabras/epidemiologia , Ruminantes/parasitologia , Doenças dos Ovinos/parasitologia , Doenças dos Ovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/epidemiologia , Análise de Sequência de DNA
5.
Sci Rep ; 14(1): 3865, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366006

RESUMO

Fascioliasis is a zoonotic parasitic infection caused by Fasciola species in humans and animals. Despite significant advances in vaccination and new therapeutic agents, little attention has been paid to validating methods for the diagnosis of fascioliasis in humans. Serological techniques are convenient assays that significantly improves the diagnosis of Fasciola infection. However, a more sensitive method is required. The aim of this study was to compare the Real-Time PCR technique with the indirect-ELISA for the detection of Fasciola hepatica in human. Using a panel of sera from patients infected with Fasciola hepatica (n = 51), other parasitic infections (n = 7), and uninfected controls (n = 12), we optimized an ELISA which employs an excretory-secretory antigens from F. hepatica for the detection of human fascioliasis. After DNA extraction from the samples, molecular analysis was done using Real-Time PCR technique based on the Fasciola ribosomal ITS1 sequence. Of 70 patient serum samples, 44 (62.86%) samples were identified as positive F. hepatica infection using ELISA and Real-Time PCR assays. There was no cross-reaction with other parasitic diseases such as toxoplasmosis, leishmaniasis, taeniasis, hydatidosis, trichinosis, toxocariasis, and strongyloidiasis. The significant difference between the agreement and similarity of the results of patients with indirect ELISA and Real-Time PCR was 94.4% and 99.2%, respectively (Cohen's kappa ≥ 0.7; P = 0.02). Based on the Kappa agreement findings, the significant agreement between the results of ELISA and Real-Time PCR indicates the accuracy and reliability of these tests in the diagnosis of F. hepatica in humans.


Assuntos
Fasciola hepatica , Fasciola , Fasciolíase , Animais , Humanos , Fasciolíase/diagnóstico , Fasciolíase/parasitologia , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Antígenos de Helmintos , Fasciola hepatica/genética , Zoonoses , Fasciola/genética , Ensaio de Imunoadsorção Enzimática/métodos , Sensibilidade e Especificidade , Anticorpos Anti-Helmínticos
6.
Acta Parasitol ; 69(1): 599-608, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38261242

RESUMO

PURPOSE: The objective of this study is to study the secondary structure analysis of Fasciola flukes from a rare mithun host from Manipur. Fascioliasis, a neglected tropical trematodiasis, is poorly studied in India and is widely believed to be predominantly caused by F. gigantica. Through this study, we want to assess the flukes from the rare semi-wild ruminants of Northeast India. This study is important as the mithun population is semi-wild and its population is declining in Manipur. METHODS: Sample collected from the difficult and challenging terrain of Northeast India. The sample was collected from mithun and observed under the microscope. DNA was isolated, sequenced, and analyzed using various bioinformatics tools. The secondary structure analysis of the Internal Transcribed Spacer 2 (ITS2) region was also performed. RESULTS: The secondary structure species tree corroborated the Bayesian inference and, hence, strengthened the phylogeny reconstructed. The annotated ITS2 sequence and RNA secondary of the Manipur isolate displayed the typical four-helix or four-domain model. Helix III reveals the presence of the UGGU motif with other deviations like UGG and GGU. CONCLUSION: This is an in-depth analysis of the secondary structure of Fasciola species. The present study has demonstrated the usefulness of ITS2 and its secondary structures for characterizing parasites. The information on fascioliasis in the mithun's population presents itself useful with regards to their conservation strategy as their populations in both Manipur and Nagaland are dwindling.


Assuntos
Fasciola , Fasciolíase , Conformação de Ácido Nucleico , Filogenia , Ruminantes , Animais , Índia/epidemiologia , Fasciola/genética , Fasciola/classificação , Fasciola/isolamento & purificação , Fasciolíase/veterinária , Fasciolíase/parasitologia , Fasciolíase/epidemiologia , Ruminantes/parasitologia , DNA de Helmintos/genética , DNA de Helmintos/química , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/química , Análise de Sequência de DNA
7.
J Helminthol ; 98: e12, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269544

RESUMO

Fasciolosis, caused by Fasciola hepatica and F. gigantica, is an impediment to the livestock industry's expansion and has a massively negative socio-economic impact due to its widespread prevalence in livestock. It is a waterborne zoonosis affecting human populations in the countries where rural economies are associated with livestock rearing. Conventional diagnosis of Fasciola infection is done by detecting parasite eggs in the faeces of infected animals or by immunological methods. Accurate and quick immunodiagnosis of Fasciola infection in animals and humans is based on the detection of antibodies and specific antigens expressed in the prepatent stage of the parasite. Both molecular and serodiagnostic tests developed thus far have enhanced the reliability of Fasciola diagnosis in both man and animals but are not widely available in resource-poor nations. A pen-side diagnostic test based on a lateral flow assay or a DNA test like loop-mediated isothermal amplification (LAMP) would be simple, fast, and cost-effective, enabling clinicians to treat animals in a targeted manner and avoid the development of drug resistance to the limited flukicides. This review focuses on the recent advances made in the diagnosis of this parasite infection in animals and humans.


Assuntos
Fasciola hepatica , Fasciola , Fasciolíase , Animais , Masculino , Humanos , Fasciolíase/diagnóstico , Fasciolíase/veterinária , Reprodutibilidade dos Testes , Zoonoses/diagnóstico , Fasciola/genética , Gado
8.
Parasitol Res ; 123(1): 51, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095703

RESUMO

In the present study, we reconstructed the transforming growth factor beta (TGF-ß) signaling pathway for Fasciola gigantica, which is a neglected tropical pathogen. We defined the components involved in the TGF-ß signaling pathway and investigated the transcription profiles of these genes for all developmental stages of F. gigantica. In addition, the presence of these components in excretory and secretory products (FgESP) was predicted via signal peptide annotation. The core components of the TGF-ß signaling pathway have been detected in F. gigantica; classical and nonclassical single transduction pathways were constructed. Four ligands have been detected, which may mediate the TGF-ß signaling pathway and BMP signaling pathway. Two ligand-binding type II receptors were detected, and inhibitory Smad7 was not detected. TLP, BMP-3, BMP-1, and ActRIb showed higher transcription in 42-day juvenile and 70-day juvenile, while ActRIIa, Smad1, ActRIIb, Smad8, KAT2B, and PP2A showed higher transcription in egg. TLM, Ski, Smad6, BMPRI, p70S6K, Smad2, Smad3, TgfßRI, Smad4, and p300 showed higher transcription in metacercariae. Four ligands, 2 receptors and 3 Smads are predicted to be present in the FgESP, suggesting their potential extrinsic function. This study should help to understand signal transduction in the TGF-ß signaling pathway in F. gigantica. In addition, this study helps to illustrate the complex mechanisms involved in developmental processes and F. gigantica - host interaction and paves the way for further characterization of the signaling pathway in trematodes.


Assuntos
Fasciola , Animais , Fasciola/genética , Fasciola/metabolismo , Fator de Crescimento Transformador beta/genética , Transdução de Sinais
9.
Acta Parasitol ; 68(4): 891-902, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37934346

RESUMO

PURPOSE: Fascioliasis is caused by Fasciola hepatica of almost worldwide distribution and F. gigantica in wide regions of Asia and Africa. Their adult stage develops in the biliary canals and gallbladder. Infection follows an initial, 3-4 month long invasive, migratory or acute phase, and a several year-long biliary, chronic or obstructive phase. METHODS: The unexpected finding of a fasciolid inside the gallbladder during a cholecystectomy for obstructive lithiasis suspicion in a patient is reported from an area of Iran where human infection had been never reported before and studies on fascioliasis in livestock are absent. RESULTS: The fluke obtained was phenotypically classified as F. hepatica by morphometry and genotypically as F. gigantica by mtDNA cox1 fragment sequencing, although with F. hepatica scattered mutations in species-differing nucleotide positions. The clinical, radiological, and biological signs observed at the acute and chronic phases often lead to some misdiagnosis. Serological methods may be useful in cases of negative coprology. Diagnostic techniques with insufficient resolution leading to unnecessary invasive interventions are analyzed. The way to avoid unnecessary surgery is described, including analyses to be made, diagnostic tools to be used, and aspects to be considered. CONCLUSION: Reaching a correct diagnosis in the confusing presentations avoids procedure delays and unnecessary surgery. A correct drug treatment may be sufficient. Except in extreme pathological presentations, lesions decrease in number and size and finally disappear or calcify after a successful treatment. Finally, the need to increase awareness of physicians about fascioliasis is highlighted, mainly in non-human endemic areas.


Assuntos
Fasciola hepatica , Fasciola , Fasciolíase , Animais , Adulto , Humanos , Fasciolíase/diagnóstico , Fasciolíase/epidemiologia , Fasciola/genética , Fasciola hepatica/genética , Ásia , Colecistectomia
10.
Parasitol Res ; 122(11): 2467-2476, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37642769

RESUMO

The aim of this study was to characterize the Tunisian Fasciola spp. flukes by morphometric and molecular analyses. Flukes were collected from livers of sheep slaughtered in Sejnane slaughterhouses (Bizerte gouvernorate, Northwest Tunisia) between January and March 2021.Five morphometric parameters were determined for all the liver flukes, as follows: (i) total body length (BL), (ii) distance between ventral sucker and the tail (VS-T), (iii) distance between oral sucker and ventral sucker (OS-VS), (iv) abdomen diameter (AD), (v) tail diameter (TD) and the body length to width ratio (BL/BW). Molecular identification of the fluke specimens was carried out by polymerase chain reaction, restriction fragment polymorphism (PCR-RFLP) of a 680 bp sequence of the internal transcribes spacer 1 (ITS1) gene and by amplification, sequencing, and phylogenetic analysis of a 500 bp sequence of the ITS2 gene. Morphometric measurements showed that the mean of the total body length of the adult flukes was 21.1 ± 2.7 mm with minimum and maximum lengths of 13 and 31 mm, respectively. The PCR-RFLP analysis revealed a single profile consisting of three bands of approximately 370, 100, and 60 bp. Fasciola sequences described in the present study (GenBank numbers: OQ457027 and OQ457028) showed 99.58-100% identity to Fasciola hepatica. In conclusion, the results of this study show that molecular and phylogenetic analyses confirm the presence of a single species of F. hepatica in the Sejnane region Northwest of Tunisia. However, further studies are needed to identify the occurrence of Fasciola species in other Tunisian regions.


Assuntos
Doenças dos Bovinos , Fasciola hepatica , Fasciola , Fasciolíase , Ovinos/genética , Animais , Bovinos , Fasciola/genética , Filogenia , Tunísia/epidemiologia , Fasciolíase/epidemiologia , Fasciolíase/veterinária , Fasciola hepatica/genética , Doenças dos Bovinos/epidemiologia , DNA de Helmintos/genética
11.
Vet Parasitol ; 320: 109978, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37364501

RESUMO

Trematodiases are diseases caused by snail-borne trematode parasites that infect both animals and humans. Fascioliasis, schistosomiasis and paramphistomosis are some of these diseases and they affect millions of livestock, leading to significant economic losses. The aim of the study was to document freshwater snails occurring in selected study sites in the Free State and Gauteng provinces as well as identify and detect larval trematodes that they harbour. Samples were collected from a total of five study sites within two provinces of South Africa. Morphological features were used to identify snail species and were further confirmed genetically by polymerase chain reaction (PCR), sequencing and phylogenetic analysis. The larval trematodes were also detected by PCR, PCR-Restriction Length Fragment Polymorphism (PCR-RLFP), sequencing and phylogenetic analysis. A total of 887 freshwater snails were collected from Free State (n = 343) and Gauteng (n = 544). Five different genera of snails as well as species in the Succineidae family were documented. The snails in descending order of abundance were identified as: Physa (P.) spp. (51%), Succineidae spp. (20%), Galba (G.) truncatula (12%), Pseudosuccinea (Ps.) columella (10%), Planorbella (Pl.) duryi (6%) and Bulinus (B.) truncatus (1%). Approximately 272 DNA pools were created for genetic identification of snails and detection of trematode parasites. Schistosoma species were not detected from any of the snail species. A total prevalence of 46% was obtained for Fasciola hepatica in the identified snail species across all study sites. Overall, the highest prevalence of F. hepatica was obtained in Physa species (24%), whilst the lowest was observed in B. truncatus snails (1%). Forty three percent (43%) of the snail samples were PCR positive for Paramphistomum DNA. This is the first report of P. mexicana in South Africa. Fasciola hepatica was confirmed from all obtained snail species per study site. This is the first reported detection of F. hepatica in Pl. duryi and P. mexicana snails as well as the first confirmation of natural infection from P. acuta in South Africa.


Assuntos
Fasciola hepatica , Fasciola , Paramphistomatidae , Trematódeos , Infecções por Trematódeos , Humanos , Animais , Fasciola/genética , Paramphistomatidae/genética , África do Sul/epidemiologia , Filogenia , Fasciola hepatica/genética , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/veterinária , Infecções por Trematódeos/parasitologia , Schistosoma/genética , Água Doce/parasitologia , Larva
12.
Vet Med Sci ; 9(4): 1824-1832, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37317979

RESUMO

BACKGROUND: Fascioliasis, caused by the liver flukes Fasciola hepatica and Fasciola gigantica, is a global zoonotic helminthic disease. The livestock and human are the final hosts of the parasites. Northern Iran is an important endemic region for fascioliasis. Few studies have been conducted on the characterization of Fasciola isolates from eastern regions of the Caspian littoral of the country. OBJECTIVE: The aim of the present study was to identify F. hepatica, F. gigantica and intermediate/hybrid forms of Fasciola isolates from livestock in Golestan province, northern Iran, using morphometric and molecular tools. METHODS: Livestock livers naturally infected with Fasciola spp. were collected from Golestan slaughterhouse during 2019-2020. The worms were morphometrically studied using a calibrated stereomicroscope. Genomic DNA was extracted from all samples, and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed on internal transcribed spacer (ITS1) region using Rsa1 restriction enzyme. All the isolates were then analysed by multiplex PCR on Pepck region. RESULTS: A total of 110 Fasciola isolates were collected from the infected livers, including 94 sheep, 12 cattle and 4 goats. Morphometric analysis of 61 adult Fasciola isolates indicated that, 44 and 17 isolates belonged to F. hepatica and F. gigantica, respectively. Eighty-one and 29 isolates belonged to F. hepatica and F. gigantica using ITS1-RFLP, respectively. However, Pepck Multiplex PCR indicated 72 F. hepatica, 26 F. gigantica and 12 intermediate/hybrid forms. All 12 hybrid isolates were found in sheep host. Two isolates were identified as F. gigantica using morphometry and F. hepatica using both molecular methods. CONCLUSION: The present study confirmed the existence of both F. hepatica and F. gigantica species and reported the first molecular evidence of hybrid Fasciola isolates in ruminants of Golestan province.


Assuntos
Doenças dos Bovinos , Fasciola hepatica , Fasciola , Fasciolíase , Doenças dos Ovinos , Ovinos , Animais , Humanos , Bovinos , Fasciola/genética , Fasciolíase/epidemiologia , Fasciolíase/veterinária , Fasciolíase/parasitologia , Gado/parasitologia , Irã (Geográfico)/epidemiologia , Fasciola hepatica/genética , Zoonoses , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/parasitologia
13.
Parasitol Res ; 122(3): 769-779, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36604333

RESUMO

Paramphistomosis is caused by paramphistome or amphistome parasites, including Fischoederius elongatus, Gastrothylax crumenifer, Orthocoelium parvipapillatum, and Paramphistomum epiclitum. The control and prevention of these parasite outbreaks are difficult because of the wide occurrence of these species. Besides, the clinical manifestations and their egg characteristics are similar to those of other intestinal flukes in the paramphistome group, leading to misdiagnosis. Here, we employed DNA barcoding using NADH dehydrogenase (ubiquinone, alpha 1) (ND1) and cytochrome c oxidase subunit I (COI), coupled with high-resolution melting analysis (Bar-HRM), for species differentiation. As a result, ParND1_3 and ParCOI4 resulted in positive amplification in the paramphistomes and Fasciola gigantica, with significantly different melting curves for each species. The melting temperatures of each species obtained clearly differed. Regarding sensitivity, the limit of detection (LoD) for all species of paramphistomes was 1 pg/µl. Our findings suggest that Bar-HRM using ParND1_3 is highly suitable for the differentiation of paramphistome species. This approach can be used in parasite detection and epidemiological studies in cattle.


Assuntos
Doenças dos Bovinos , Fasciola , Paramphistomatidae , Infecções por Trematódeos , Bovinos , Animais , Código de Barras de DNA Taxonômico , Infecções por Trematódeos/parasitologia , Reação em Cadeia da Polimerase , Paramphistomatidae/genética , Fasciola/genética , Doenças dos Bovinos/parasitologia
14.
Vet Med Sci ; 9(2): 924-933, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36343016

RESUMO

BACKGROUND: Several markers have been described to characterise the population structure and genetic diversity of Fasciola species (Fasciola hepatica (F. hepatica) and Fasciola gigantica (F. gigantica). However, sequence analysis of a single genomic locus cannot provide sufficient resolution for the genetic diversity of the Fasciola parasite whose genomes are ∼1.3 GB in size. OBJECTIVES: To gain a better understanding of the gene diversity of Fasciola isolates from western Iran and to identify the most informative markers as candidates for epidemiological studies, five housekeeping genes were evaluated using a multilocus sequence typing (MLST) approach. METHODS: MLST analysis was developed based on five genes (ND1, Pepck, Pold, Cyt b and HSP70) after genomic DNA extraction, amplification and sequencing. Nucleotide diversity and phylogeny analysis were conducted on both concatenated MLST loci and each individual locus. A median joining haplotype network was created to examine the haplotypes relationship among Fasciola isolates. RESULTS: Thirty-three Fasciola isolates (19 F. hepatica and 14 F. gigantica) were included in the study. A total of 2971 bp was analysed for each isolate and 31 sequence types (STs) were identified among the 33 isolates (19 for F. hepatica and 14 for F. gigantica isolates). The STs produced 44 and 42 polymorphic sites and 17 and 14 haplotypes for F. hepatica and F. gigantica, respectively. Haplotype diversity was 0.982 ± 0.026 and 1.000 ± 0.027 and nucleotide diversity was 0.00200 and 0.00353 ± 0.00088 for F. hepatica and F. gigantica, respectively. There was a high degree of genetic diversity with a Simpson's index of diversity of 0.98 and 1 for F. hepatica and F. gigantica, respectively. While HSP70 and Pold haplotypes from Fasciola species were separated by one to three mutational steps, the haplotype networks of ND1 and Cyt b were more complex and numerous mutational steps were found, likely due to recombination. CONCLUSIONS: Although HSP70 and Pold genes from F. gigantica were invariant over the entire region of sequence coverage, MLST was useful for investigating the phylogenetic relationship of Fasciola species. The present study also provided insight into markers more suitable for phylogenetic studies and the genetic structure of Fasciola parasites.


Assuntos
Fasciola hepatica , Fasciola , Fasciolíase , Animais , Fasciola/genética , Tipagem de Sequências Multilocus/veterinária , Fasciolíase/epidemiologia , Fasciolíase/veterinária , Marcadores Genéticos , Irã (Geográfico)/epidemiologia , Filogenia , Citocromos b/genética , Fasciola hepatica/genética , Nucleotídeos
15.
Ann Parasitol ; 69(2): 67-74, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164746

RESUMO

We aimed to present an alternate method instead of PCR-RFLP and also develop an optimized method for rapid, time-saving and affordable molecular-based approach to discriminate species of liver fluke, Fasciola hepatica and F. gigantica. Seventy-six samples of F. hepatica and 28 F. gigantica were collected from the slaughterhouses of endemic regions in Iran. Following a comprehensive analysis of the mitochondrial complete sequences of both F. hepatica and F. gigantica, the extracted DNAs from all samples were used as templates in multiplex PCR reactions containing two sets of primers specific for cytochrome c oxidase I (cox I) gene of both species. In a parallel experiment, PCR-RFLP was performed for each sample using internal transcribed spacer (ITS1) sequence. Furthermore, following a PCR amplification for cox I gene, the amplicons were purified for sequencing. To assess the validity of the multiplex PCR approach, the obtained data from the multiplex PCR and PCR-RFLP experiments were compared with each other. By sequence analysis of 104 samples, 76 and 28 samples were identified as F. hepatica and F. gigantica, respectively. Results revealed 100% and 92% of accuracy as for multiplex PCR and PCR-RFLP. The designed multiplex PCR strategy offers a valid alternative approach to the conventional methods with distinctive features including convenience, cost-effectiveness, time-saving (3 hours from sampling to obtain final results) and high efficacy.


Assuntos
Fasciola hepatica , Fasciola , Fasciolíase , Animais , Fasciola hepatica/genética , Fasciola/genética , Fasciolíase/diagnóstico , Fasciolíase/epidemiologia , Fasciolíase/veterinária , Reação em Cadeia da Polimerase Multiplex , DNA Espaçador Ribossômico/genética
16.
PLoS Negl Trop Dis ; 16(12): e0011000, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36576925

RESUMO

BACKGROUND: Fascioliasis is a significant vector-borne disease that has emerged in numerous tropical and subtropical countries causing severe health problems. Egypt is one of the fascioliasis endemic regions; however, the current situation in Upper Egypt is understudied, with only sporadic human cases or outbreaks. This study aims to highlight the sociodemographic characteristics of human fascioliasis in a newly emerged endemic area in Upper Egypt, along with risk factors analysis and the molecular characteristics of the fasciolid population in humans, animals, and lymnaeid snails. METHODOLOGY/PRINCIPAL FINDINGS: The study reported Fasciola infection in patients and their close relatives by analyzing the risk of human infection. Morphological and molecular characterization was performed on lymnaeid snails. Multigene sequencing was also used to characterize fasciolids from human cases, cattle, and pooled snail samples. The study identified asymptomatic Fasciola infection among family members and identified the presence of peridomestic animals as a significant risk factor for infection. This is the first genetic evidence that Radix auricularia exists as the snail intermediate host in Egypt. CONCLUSIONS/SIGNIFICANCE: This study revealed that Assiut Governorate in Upper Egypt is a high-risk area for human fascioliasis that requires additional control measures. Fasciola hepatica was the main causative agent infecting humans and snail vectors in this newly emerged endemic area. In addition, this is the first report of R. auricularia as the snail intermediate host transmitting fascioliasis in Upper Egypt. Further research is required to clarify the widespread distribution of Fasciola in Egypt's various animal hosts. This provides insight into the mode of transmission, epidemiological criteria, and genetic diversity of fasciolid populations in Upper Egypt.\.


Assuntos
Fasciola hepatica , Fasciola , Fasciolíase , Animais , Bovinos , Humanos , Fasciolíase/epidemiologia , Fasciolíase/veterinária , Fasciola/genética , Filogenia , Egito/epidemiologia , Fasciola hepatica/genética , Caramujos
17.
Korean J Parasitol ; 60(5): 367-370, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36320115

RESUMO

Fascioliasis is a parasitic infection caused by liver flukes. Although several cases have been reported in Korea, phylogenetic analysis of isolates is lacking. In this study, a 66-year-old woman with right upper quadrant (RUQ) abdominal pain was diagnosed as fascioliasis involving abdominal muscle by imaging study. She received praziquantel treatment, but symptoms were not improved. Lateral movement of the abscess lesion was followed. Trematode parasite was surgically removed from the patient's rectus abdominis muscle. The fluke was identified as Fasciola hepatica based on sequence analysis of 18S rDNA. To determine the phylogenetic position of this Fasciola strain (named Korean Fasciola 1; KF1), the cox1 gene (273 bp) was analyzed and compared with the genes of 17 F. hepatica strains isolated from cows, sheep, goats, and humans from various countries. Phylogenetic analysis showed that KF1 was closely related with the isolates from China goat.


Assuntos
Fasciola hepatica , Fasciola , Fasciolíase , Doenças dos Ovinos , Feminino , Humanos , Ovinos , Bovinos , Animais , Idoso , Fasciola hepatica/genética , Fasciolíase/parasitologia , Filogenia , Fasciola/genética , DNA Ribossômico/genética , Cabras , Doenças dos Ovinos/parasitologia
18.
Genes (Basel) ; 13(10)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36292739

RESUMO

The helminth parasites, Fasciola hepatica and Fasciola gigantica, are the causative agents of fasciolosis, a global and economically important disease of people and their livestock. Proteases are pivotal to an array of biological processes related to parasitism (development, feeding, immune evasion, virulence) and therefore their action requires strict regulation by parasite anti-proteases (protease inhibitors). By interrogating the current publicly available Fasciola spp. large sequencing datasets, including several genome assemblies and life cycle stage-specific transcriptome and proteome datasets, we reveal the complex profile and structure of proteases and anti-proteases families operating at various stages of the parasite's life cycle. Moreover, we have discovered distinct profiles of peptidases and their cognate inhibitors expressed by the parasite stages in the intermediate snail host, reflecting the different environmental niches in which they move, develop and extract nutrients. Comparative genomics revealed a similar cohort of peptidase inhibitors in F. hepatica and F. gigantica but a surprisingly reduced number of cathepsin peptidases genes in the F. gigantica genome assemblies. Chromosomal location of the F. gigantica genes provides new insights into the evolution of these gene families, and critical data for the future analysis and interrogation of Fasciola spp. hybrids spreading throughout the Asian and African continents.


Assuntos
Fasciola hepatica , Fasciola , Parasitos , Animais , Fasciola/genética , Fasciola hepatica/genética , Peptídeo Hidrolases/genética , Virulência , Proteoma , Estágios do Ciclo de Vida , Inibidores de Proteases , Catepsinas
19.
Parasit Vectors ; 15(1): 379, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266710

RESUMO

BACKGROUND: Multiplex polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP) for nuclear phosphoenolpyruvate carboxykinase (pepck) and polymerase delta (pold), respectively, have been used to differentiate Fasciola hepatica, F. gigantica, and hybrid Fasciola flukes. However, discrimination errors have been reported in both methods. This study aimed to develop a multiplex PCR based on a novel nuclear marker, the fatty acid binding protein type I (FABP) type I gene. METHODS: Nucleotide sequence variations of FABP type I were analyzed using DNA samples of F. hepatica, F. gigantica, and hybrid Fasciola flukes obtained from 11 countries in Europe, Latin America, Africa, and Asia. A common forward primer for F. hepatica and F. gigantica and two specific reverse primers for F. hepatica and F. gigantica were designed for multiplex PCR. RESULTS: Specific fragments of F. hepatica (290 bp) and F. gigantica (190 bp) were successfully amplified using multiplex PCR. However, the hybrid flukes contained fragments of both species. The multiplex PCR for FABP type I could precisely discriminate the 1312 Fasciola samples used in this study. Notably, no discrimination errors were observed with this novel method. CONCLUSIONS: Multiplex PCR for FABP type I can be used as a species discrimination marker in place of pepck and pold. The robustness of the species-specific primer should be continuously examined using a larger number of Fasciola flukes worldwide in the future since nucleotide substitutions in the primer regions may cause amplification errors.


Assuntos
Fasciola , Fasciolíase , Animais , Fasciola/genética , Marcadores Genéticos , Proteínas de Ligação a Ácido Graxo/genética , Fosfoenolpiruvato , DNA de Helmintos/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Nucleotídeos
20.
Trends Parasitol ; 38(12): 1068-1079, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36270885

RESUMO

In the past decade significant advances in our understanding of liver fluke biology have been made through in-depth interrogation and analysis of evolving Fasciola hepatica and Fasciola gigantica omics datasets. This information is crucial for developing novel control strategies, particularly vaccines necessitated by the global spread of anthelmintic resistance. Distilling them down to a manageable number of testable vaccines requires combined rational, empirical, and collaborative approaches. Despite a lack of clear outstanding vaccine candidate(s), we must continue to identify salient parasite-host interacting molecules, likely in the secretory products, tegument, or extracellular vesicles, and perform robust trials especially in livestock, using present and emerging vaccinology technologies to discover that elusive liver fluke vaccine. Omics tools are bringing this prospect ever closer.


Assuntos
Anti-Helmínticos , Fasciola hepatica , Fasciola , Fasciolíase , Vacinas , Animais , Fasciolíase/prevenção & controle , Fasciola hepatica/genética , Fasciola/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...