Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.335
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 416, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995331

RESUMO

A large number of recombinant plasmids for the yeast Saccharomyces cerevisiae have been constructed and accumulated over the past four decades. It is desirable to apply the recombinant plasmid resources to Saccharomyces sensu stricto species group, which contains an increasing number of natural isolate and industrial strains. The application to the group encounters a difficulty. Natural isolates and industrial strains are exclusively prototrophic and polyploid, whereas direct application of most conventional plasmid resources imposes a prerequisite in host yeast strains of an auxotrophic mutation (i.e., leu2) that is rescued by a selection gene (e.g., LEU2) on the recombinant plasmids. To solve the difficulty, we aimed to generate leu2 mutants from yeast strains belonging to the yeast Saccharomyces sensu stricto species group by DNA editing. First, we modified an all-in-one type CRISPR-Cas9 plasmid pML104 by adding an antibiotic-resistance gene and designing guide sequences to target the LEU2 gene and to enable wide application in this yeast group. Then, the resulting CRISPR-Cas9 plasmids were exploited to seven strains belonging to five species of the group, including natural isolate, industrial, and allopolyploid strains. Colonies having the designed mutations in the gene appeared successfully by introducing the plasmids and assisting oligonucleotides to the strains. Most of the plasmids and resultant leu2- mutants produced in this study will be deposited in several repository organizations. KEY POINTS: • All-in-one type CRISPR-Cas9 plasmids targeting LEU2 gene were designed for broad application to Saccharomyces sensu stricto group species strains • Application of the plasmids generated leu2 mutants from strains including natural isolates, industrial, and allopolyploid strains • The easy conversion to leu2 mutants permits free access to recombinant plasmids having a LEU2 gene.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Mutação , Plasmídeos , Poliploidia , Plasmídeos/genética , Edição de Genes/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces/genética , Saccharomyces cerevisiae/genética , 3-Isopropilmalato Desidrogenase/genética , 3-Isopropilmalato Desidrogenase/metabolismo , Genoma Fúngico/genética
2.
Microb Cell Fact ; 23(1): 203, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030609

RESUMO

BACKGROUND: Over the last two decades, hybridization has been a powerful tool used to construct superior yeast for brewing and winemaking. Novel hybrids were primarily constructed using at least one Saccharomyces cerevisiae parent. However, little is known about hybrids used for other purposes, such as targeted flavor production, for example, 2-phenylethanol (2-PE). 2-PE, an aromatic compound widely utilised in the food, cosmetic, and pharmaceutical industries, presents challenges in biotechnological production due to its toxic nature. Consequently, to enhance productivity and tolerance to 2-PE, various strategies such as mutagenesis and genetic engineering are extensively explored to improved yeast strains. While biotechnological efforts have predominantly focused on S. cerevisiae for 2-PE production, other Saccharomyces species and their hybrids remain insufficiently described. RESULTS: To address this gap, in this study, we analysed a new interspecies yeast hybrid, II/6, derived from S. uvarum and S. kudriavzevii parents, in terms of 2-PE bioconversion and resistance to its high concentration, comparing it with the parental strains. Two known media for 2-PE biotransformation and three different temperatures were used during this study to determine optimal conditions. In 72 h batch cultures, the II/6 hybrid achieved a maximum of 2.36 ± 0.03 g/L 2-PE, which was 2-20 times higher than the productivity of the parental strains. Our interest lay not only in determining whether the hybrid improved in productivity but also in assessing whether its susceptibility to high 2-PE titers was also mitigated. The results showed that the hybrid exhibited significantly greater resistance to the toxic product than the original strains. CONCLUSIONS: The conducted experiments have confirmed that hybridization is a promising method for modifying yeast strains. As a result, both 2-PE production yield and tolerance to its inhibitory effects can be increased. Furthermore, this strategy allows for the acquisition of non-GMO strains, alleviating concerns related to additional legislative requirements or consumer acceptance issues for producers. The findings obtained have the potential to contribute to the development of practical solutions in the future.


Assuntos
Álcool Feniletílico , Saccharomyces , Álcool Feniletílico/metabolismo , Álcool Feniletílico/análogos & derivados , Saccharomyces/genética , Saccharomyces/metabolismo , Fermentação , Hibridização Genética , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Pichia
3.
Appl Environ Microbiol ; 90(7): e0039724, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38975758

RESUMO

Beer brewing is a well-known process that still faces great challenges, such as the total consumption of sugars present in the fermentation media. Lager-style beer, a major worldwide beer type, is elaborated by Saccharomyces pastorianus (Sp) yeast, which must ferment high maltotriose content worts, but its consumption represents a notable problem, especially among Sp strains belonging to group I. Factors, such as fermentation conditions, presence of maltotriose transporters, transporter copy number variation, and genetic regulation variations contribute to this issue. We assess the factors affecting fermentation in two Sp yeast strains: SpIB1, with limited maltotriose uptake, and SpIB2, known for efficient maltotriose transport. Here, SpIB2 transported significantly more maltose (28%) and maltotriose (32%) compared with SpIB1. Furthermore, SpIB2 expressed all MAL transporters (ScMALx1, SeMALx1, ScAGT1, SeAGT1, MTT1, and MPHx) on the first day of fermentation, whereas SpIB1 only exhibited ScMalx1, ScAGT1, and MPH2/3 genes. Some SpIB2 transporters had polymorphic transmembrane domains (TMD) resembling MTT1, accompanied by higher expression of these transporters and its positive regulator genes, such as MAL63. These findings suggest that, in addition to the factors mentioned above, positive regulators of Mal transporters contribute significantly to phenotypic diversity in maltose and maltotriose consumption among the studied lager yeast strains.IMPORTANCEBeer, the third most popular beverage globally with a 90% market share in the alcoholic beverage industry, relies on Saccharomyces pastorianus (Sp) strains for lager beer production. These strains exhibit phenotypic diversity in maltotriose consumption, a crucial process for the acceptable organoleptic profile in lager beer. This diversity ranges from Sp group II strains with a notable maltotriose-consuming ability to Sp group I strains with limited capacity. Our study highlights that differential gene expression of maltose and maltotriose transporters and its upstream trans-elements, such as MAL gene-positive regulators, adds complexity to this variation. This insight can contribute to a more comprehensive analysis needed to the development of controlled and efficient biotechnological processes in the beer brewing industry.


Assuntos
Cerveja , Fermentação , Proteínas Fúngicas , Maltose , Saccharomyces , Trissacarídeos , Maltose/metabolismo , Trissacarídeos/metabolismo , Saccharomyces/genética , Saccharomyces/metabolismo , Cerveja/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Transporte Biológico , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Regulação Fúngica da Expressão Gênica
4.
PLoS Genet ; 20(6): e1011154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900713

RESUMO

Lager yeasts are limited to a few strains worldwide, imposing restrictions on flavour and aroma diversity and hindering our understanding of the complex evolutionary mechanisms during yeast domestication. The recent finding of diverse S. eubayanus lineages from Patagonia offers potential for generating new lager yeasts with different flavour profiles. Here, we leverage the natural genetic diversity of S. eubayanus and expand the lager yeast repertoire by including three distinct Patagonian S. eubayanus lineages. We used experimental evolution and selection on desirable traits to enhance the fermentation profiles of novel S. cerevisiae x S. eubayanus hybrids. Our analyses reveal an intricate interplay of pre-existing diversity, selection on species-specific mitochondria, de-novo mutations, and gene copy variations in sugar metabolism genes, resulting in high ethanol production and unique aroma profiles. Hybrids with S. eubayanus mitochondria exhibited greater evolutionary potential and superior fitness post-evolution, analogous to commercial lager hybrids. Using genome-wide screens of the parental subgenomes, we identified genetic changes in IRA2, IMA1, and MALX genes that influence maltose metabolism, and increase glycolytic flux and sugar consumption in the evolved hybrids. Functional validation and transcriptome analyses confirmed increased maltose-related gene expression, influencing greater maltotriose consumption in evolved hybrids. This study demonstrates the potential for generating industrially viable lager yeast hybrids from wild Patagonian strains. Our hybridization, evolution, and mitochondrial selection approach produced hybrids with high fermentation capacity and expands lager beer brewing options.


Assuntos
Cerveja , Fermentação , Hibridização Genética , Saccharomyces cerevisiae , Cerveja/microbiologia , Fermentação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces/genética , Saccharomyces/metabolismo , Etanol/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Genoma Fúngico , Evolução Molecular , Variação Genética , Maltose/metabolismo , Mutação
5.
Bioresour Technol ; 403: 130867, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777235

RESUMO

2-Phenylethanol (2-PE) is a highly valuable aromatic alcohol utilized in fragrance, cosmetics and food industries. Due to the toxic by-products from chemical synthesis and the low productivity of the extraction method, bioproduction of 2-PE by yeast is considered promising. In this study, a wild-type Saccharomyces bayanus L1 strain producing 2-PE was isolated from soy sauce mash. Transcriptional analysis showed that 2-PE was synthesized via the Ehrlich pathway and Shikimate pathway in S. bayanus L1. By improving the fermentation conditions in shaking flasks, the maximum 2-PE titer reached 4.2 g/L with a productivity of 0.058 g/L/h within 72 h. In fed-batch fermentation, S. bayanus L1 strain produced 6.5 g/L of 2-PE within 60 h, achieving a productivity of 0.108 g/L/h. These findings suggest that S. bayanus L1 strain is an efficient 2-PE producer, paving the way for highly efficient 2-PE production.


Assuntos
Fermentação , Álcool Feniletílico , Saccharomyces , Álcool Feniletílico/metabolismo , Saccharomyces/metabolismo , Saccharomyces/genética , Alimentos de Soja
6.
Microb Biotechnol ; 17(5): e14476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38801338

RESUMO

This study aimed to investigate how parental genomes contribute to yeast hybrid metabolism using a metabolomic approach. Previous studies have explored central carbon and nitrogen metabolism in Saccharomyces species during wine fermentation, but this study analyses the metabolomes of Saccharomyces hybrids for the first time. We evaluated the oenological performance and intra- and extracellular metabolomes, and we compared the strains according to nutrient consumption and production of the main fermentative by-products. Surprisingly, no common pattern was observed for hybrid genome influence; each strain behaved differently during wine fermentation. However, this study suggests that the genome of the S. cerevisiae species may play a more relevant role in fermentative metabolism. Variations in biomass/nitrogen ratios were also noted, potentially linked to S. kudriavzevii and S. uvarum genome contributions. These results open up possibilities for further research using different "omics" approaches to comprehend better metabolic regulation in hybrid strains with genomes from different species.


Assuntos
Fermentação , Nitrogênio , Saccharomyces , Vinho , Vinho/microbiologia , Vinho/análise , Saccharomyces/genética , Saccharomyces/metabolismo , Saccharomyces/classificação , Nitrogênio/metabolismo , Metaboloma , Carbono/metabolismo , Hibridização Genética
7.
N Biotechnol ; 82: 92-106, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38788897

RESUMO

Species of Saccharomyces genus have played an irreplaceable role in alcoholic beverage and baking industry for centuries. S. cerevisiae has also become an organism of choice for industrial production of alcohol and other valuable chemicals and a model organism shaping the rise of modern genetics and genomics in the past few decades. Today´s brewing industry faces challenges of decreasing consumption of traditional beer styles and increasing consumer demand for new styles, flavors and aromas. The number of currently used brewer's strains and their genetic diversity is yet limited and implementation of more genetic and phenotypic variation is seen as a solution to cope with the market challenges. This requires modification of current production strains or introduction of novel strains from other settings, e.g. industrial or wild habitats into the brewing industry. Due to legal regulation in many countries and negative customer perception of GMO organisms, the production of food and beverages requires non-GMO production organisms, whose development can be difficult and time-consuming. Here, we apply FIND-IT (Fast Identification of Nucleotide variants by DigITal PCR), an ultrafast genome-mining method, for isolation of novel yeast variants with varying flavor profiles. The FIND-IT method uses combination of random mutagenesis, droplet digital PCR with probes that target a specific desired mutation and a sub-isolation of the mutant clone. Such an approach allows the targeted identification and isolation of specific mutant strains with eliminated production of certain flavor and off-flavors and/or changes in the strain metabolism. We demonstrate that the technology is useful for the identification of loss-of function or gain of function mutations in unrelated industrial and wild strains differing in ploidy. Where no other phenotypic selection exists, this technology serves together with standard breeding techniques as a modern tool facilitating a modification of (brewer's) yeast strains leading to diversification of the product portfolio.


Assuntos
Cerveja , Engenharia Metabólica , Saccharomyces , Cerveja/microbiologia , Saccharomyces/genética , Saccharomyces/metabolismo , Aromatizantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética
8.
mSystems ; 9(6): e0042924, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38819150

RESUMO

In silico tools such as genome-scale metabolic models have shown to be powerful for metabolic engineering of microorganisms. Saccharomyces pastorianus is a complex aneuploid hybrid between the mesophilic Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. This species is of biotechnological importance because it is the primary yeast used in lager beer fermentation and is also a key model for studying the evolution of hybrid genomes, including expression pattern of ortholog genes, composition of protein complexes, and phenotypic plasticity. Here, we created the iSP_1513 GSMM for S. pastorianus CBS1513 to allow top-down computational approaches to predict the evolution of metabolic pathways and to aid strain optimization in production processes. The iSP_1513 comprises 4,062 reactions, 1,808 alleles, and 2,747 metabolites, and takes into account the functional redundancy in the gene-protein-reaction rule caused by the presence of orthologous genes. Moreover, a universal algorithm to constrain GSMM reactions using transcriptome data was developed as a python library and enabled the integration of temperature as parameter. Essentiality data sets, growth data on various carbohydrates and volatile metabolites secretion were used to validate the model and showed the potential of media engineering to improve specific flavor compounds. The iSP_1513 also highlighted the different contributions of the parental sub-genomes to the oxidative and non-oxidative parts of the pentose phosphate pathway. Overall, the iSP_1513 GSMM represent an important step toward understanding the metabolic capabilities, evolutionary trajectories, and adaptation potential of S. pastorianus in different industrial settings. IMPORTANCE: Genome-scale metabolic models (GSMM) have been successfully applied to predict cellular behavior and design cell factories in several model organisms, but no models to date are currently available for hybrid species due to their more complex genetics and general lack of molecular data. In this study, we generated a bespoke GSMM, iSP_1513, for this industrial aneuploid hybrid Saccharomyces pastorianus, which takes into account the aneuploidy and functional redundancy from orthologous parental alleles. This model will (i) help understand the metabolic capabilities and adaptive potential of S. pastorianus (domestication processes), (ii) aid top-down predictions for strain development (industrial biotechnology), and (iii) allow predictions of evolutionary trajectories of metabolic pathways in aneuploid hybrids (evolutionary genetics).


Assuntos
Genoma Fúngico , Redes e Vias Metabólicas , Saccharomyces , Saccharomyces/genética , Saccharomyces/metabolismo , Redes e Vias Metabólicas/genética , Genoma Fúngico/genética , Modelos Biológicos , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Evolução Molecular , Microbiologia Industrial/métodos
9.
Food Microbiol ; 121: 104520, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637082

RESUMO

Sequence-based analysis of fermented foods and beverages' microbiomes offers insights into their impact on taste and consumer health. High-throughput metagenomics provide detailed taxonomic and functional community profiling, but bacterial and yeast genome reconstruction and mobile genetic elements tracking are to be improved. We established a pipeline for exploring fermented foods microbiomes using metagenomics coupled with chromosome conformation capture (Hi-C metagenomics). The approach was applied to analyze a collection of spontaneously fermented beers and ciders (n = 12). The Hi-C reads were used to reconstruct the metagenome-assembled genomes (MAGs) of bacteria and yeasts facilitating subsequent comparative genomic analysis, assembly scaffolding and exploration of "plasmid-bacteria" links. For a subset of beverages, yeasts were isolated and characterized phenotypically. The reconstructed Hi-C MAGs primarily belonged to the Lactobacillaceae family in beers, along with Acetobacteraceae and Enterobacteriaceae in ciders, exhibiting improved quality compared to conventional metagenomic MAGs. Comparative genomic analysis of Lactobacillaceae Hi-C MAGs revealed clustering by niche and suggested genetic determinants of survival and probiotic potential. For Pediococcus damnosus, Hi-C-based networks of contigs enabled linking bacteria with plasmids. Analyzing phylogeny and accessory genes in the context of known reference genomes offered insights into the niche specialization of beer lactobacilli. The subspecies-level diversity of cider Tatumella spp. was disentangled using a Hi-C-based graph. We obtained highly complete yeast Hi-C MAGs primarily represented by Brettanomyces and Saccharomyces, with Hi-C-facilitated chromosome-level genome assembly for the former. Utilizing Hi-C metagenomics to unravel the genomic content of individual species can provide a deeper understanding of the ecological interactions within the food microbiome, aid in bioprospecting beneficial microorganisms, improving quality control and improving innovative fermented products.


Assuntos
Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/genética , Cerveja/microbiologia , Bactérias/genética , Plasmídeos , Saccharomyces/genética , Metagenoma , Metagenômica , Enterobacteriaceae/genética
10.
Food Microbiol ; 120: 104479, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431325

RESUMO

Saccharomyces pastorianus, hybrids of Saccharomyces cerevisiae and Saccharomyces eubayanus, were generally regarded as authentic lager beer yeasts. In recent years, with more new findings of other Saccharomyces genus hybrids, yeasts used in lager beer brewing have been proved much more complicated than previous cognition. In this study, we analyzed the different fermentation characteristics of 54 yeast strains used for lager brewing in normal and very high gravity brewing based on group classification. The difference between Group Ⅰ and Group Ⅱ lager yeasts were more striking in very high gravity brewing. However, during our research progress, we realized that some yeasts used in this study were actually hybrids of S. cerevisiae and Saccharomyces kudriavzevii. Features of these hybrids could be beneficial to very high gravity brewing. We further discussed about the mechanism behind their outstanding characteristics and the reason why group classification methods of lager beer yeasts had limitations. Hybridization in yeasts is constantly getting richer. Lager yeasts could have more possibilities based on better understandings of their genetic background and roles of other Saccharomyces genus hybrids. Their heterosis shed light on innovation in brewing and other diverse fermentation industries.


Assuntos
Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/genética , Fermentação , Saccharomyces/genética , Cerveja
11.
Food Microbiol ; 120: 104463, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431337

RESUMO

This study aimed to explore the non-volatile metabolomic variability of a large panel of strains (44) belonging to the Saccharomyces cerevisiae and Saccharomyces uvarum species in the context of the wine alcoholic fermentation. For the S. cerevisiae strains flor, fruit and wine strains isolated from different anthropic niches were compared. This phenotypic survey was achieved with a special focus on acidity management by using natural grape juices showing opposite level of acidity. A 1H NMR based metabolomics approach was developed for quantifying fifteen wine metabolites that showed important quantitative variability within the strains. Thanks to the robustness of the assay and the low amount of sample required, this tool is relevant for the analysis of the metabolomic profile of numerous wines. The S. cerevisiae and S. uvarum species displayed significant differences for malic, succinic, and pyruvic acids, as well as for glycerol and 2,3-butanediol production. As expected, S. uvarum showed weaker fermentation fitness but interesting acidifying properties. The three groups of S. cerevisiae strains showed different metabolic profiles mostly related to their production and consumption of organic acids. More specifically, flor yeast consumed more malic acid and produced more acetic acid than the other S. cerevisiae strains which was never reported before. These features might be linked to the ability of flor yeasts to shift their metabolism during wine oxidation.


Assuntos
Saccharomyces , Vitis , Vinho , Saccharomyces cerevisiae/metabolismo , Saccharomyces/genética , Vinho/análise , Vitis/metabolismo , Fermentação , Ácido Acético/metabolismo
12.
Genome Biol Evol ; 15(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972247

RESUMO

The Saccharomyces species have diverged in their thermal growth profile. Both Saccharomyces cerevisiae and Saccharomyces paradoxus grow at temperatures well above the maximum growth temperature of Saccharomyces kudriavzevii and Saccharomyces uvarum but grow more poorly at lower temperatures. In response to thermal shifts, organisms activate a stress response that includes heat shock proteins involved in protein homeostasis and acquisition of thermal tolerance. To determine whether Saccharomyces species have diverged in their response to temperature, we measured changes in gene expression in response to a 12 °C increase or decrease in temperature for four Saccharomyces species and their six pairwise hybrids. To ensure coverage of subtelomeric gene families, we sequenced, assembled, and annotated a complete S. uvarum genome. In response to heat, the cryophilic species showed a stronger stress response than the thermophilic species, and the hybrids showed a mixture of parental responses that depended on the time point. After an initial strong response indicative of high thermal stress, hybrids with a thermophilic parent resolved their heat shock response to become similar to their thermophilic parent. Within the hybrids, only a small number of temperature-responsive genes showed consistent differences between alleles from the thermophilic and cryophilic species. Our results show that divergence in the heat shock response is mainly a consequence of a strain's thermal tolerance, suggesting that cellular factors that signal heat stress or resolve heat-induced changes are relevant to thermal divergence in the Saccharomyces species.


Assuntos
Saccharomyces , Saccharomyces/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Temperatura , Resposta ao Choque Térmico/genética , Proteínas de Choque Térmico/genética
13.
J Agric Food Chem ; 71(41): 15417-15428, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37814909

RESUMO

Yeast flocculation and viability are critical factors in beer production. Adequate flocculation of yeast at the end of fermentation helps to reduce off-flavors and cell separation, while high viability is beneficial for yeast reuse. In this study, we used comparative genomics to analyze the genome information on Saccharomyces pastorianus W01, and its spontaneous mutant W02 with appropriate weakened flocculation ability (better off-flavor reduction performance) and unwanted decreased viability, to investigate the effect of different gene expressions on yeast flocculation or/and viability. Our results indicate that knockout of CNE1, CIN5, SIN3, HP-3, YPR170W-B, and SCEPF1_0274000100 and overexpression of CNE1 and ALD2 significantly decreased the flocculation ability of W01, while knockout of EPL1 increased the flocculation ability of W01. Meanwhile, knockout of CIN5, YPR170W-B, OST5, SFT1, SCEPF1_0274000100, and EPL1 and overexpression of SWC3, ALD2, and HP-2 decreased the viability of W01. CIN5, EPL1, SCEPF1_0274000100, ALD2, and YPR170W-B have all been shown to affect yeast flocculation ability and viability.


Assuntos
Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Floculação , Saccharomyces/genética , Saccharomyces/metabolismo , Genômica , Cerveja/análise , Fermentação
14.
Food Microbiol ; 116: 104357, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37689417

RESUMO

Kombucha is a fermented beverage derived from a sweetened tea fermentation inoculated with a bacteria-yeast consortium referred to as Symbiotic Culture of Bacteria and Yeast (SCOBY). Different SCOBY cultures can impact the beverage's quality and make the whole process highly variable. Adding Saccharomyces yeast cultures to the fermentation process can avoid stalled fermentations, providing a reproducible beverage. Here, we explored using different Saccharomyces eubayanus strains together with SCOBY in the context of kombucha fermentation. Our results show that yeast x SCOBY co-cultures exhibited a robust fermentation profile, providing ethanol and acetic acid levels ranging from 0,18-1,81 %v/v and 0,35-1,15 g/L, respectively. The kombucha volatile compound profile of co-cultures was unique, where compounds such as Isopentyl acetate where only found in yeast x SCOBY fermentations. Metabarcoding revealed that the SCOBY composition was also dependent on the S. eubayanus genotype, where besides Saccharomyces, amplicon sequence variants belonging to Brettanomyces and Starmerella were detected. These differences concomitated global changes in transcript levels in S. eubayanus related to the metabolism of organic molecules used in kombucha fermentation. This study highlights the potential for exploring different S. eubayanus strains for kombucha fermentation, and the significant yeast genotype effect in the profile differentiation in this process.


Assuntos
Brettanomyces , Saccharomyces , Saccharomycetales , Fermentação , Saccharomyces/genética , Saccharomycetales/genética
15.
Biotechnol J ; 18(11): e2300240, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37522392

RESUMO

Ribonucleic acid (RNA) and its degradation products are important biomolecules widely used in the food and pharmaceutical industries for their flavoring and nutritional functions. In this study, we used a genome-scale metabolic network model (GSMM) to explore genetic targets for nucleic acid synthesis in a Saccharomyces pastorianus strain (G03). Yeast 8.5.0 was used as the base model, which accurately predicted G03's growth. Using OptForce, we found that overexpression of ARO8 and ATP1 among six different strategies increased the RNA content of G03 by 58.0% and 74.8%, respectively. We also identified new metabolic targets for improved RNA production using a modified GSMM called TissueModel, constructed using the GIMME transcriptome constraint tool to remove low-expressed reactions in the model. After running OptKnock, the RNA content of G03-△BNA1 and G03-△PMA1 increased by 44.6% and 39.8%, respectively, compared to G03. We suggest that ATP1, ARO8, BNA1, and PMA1 regulate cell fitness, which affects RNA content. This study is the first to identify strategies for RNA overproduction using GSMM and to report that regulation of ATP1, ARO8, BNA1, and PMA1 can increase RNA content in S. pastorianus. These findings also provide valuable knowledge on model reconstruction for S. pastorianus.


Assuntos
RNA , Saccharomyces , RNA/metabolismo , Genoma Fúngico/genética , Saccharomyces/genética , Saccharomyces/metabolismo , Saccharomyces cerevisiae/genética , Redes e Vias Metabólicas , Fermentação
16.
Microb Biotechnol ; 16(9): 1858-1871, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37449952

RESUMO

Erythritol is produced in yeasts via the reduction of erythrose into erythritol by erythrose reductases (ERs). However, the genes codifying for the ERs involved in this reaction have not been described in any Saccharomyces species yet. In our laboratory, we recently showed that, during alcoholic fermentation, erythritol is differentially produced by Saccharomyces cerevisiae and S. uvarum species, the latter being the largest producer. In this study, by using BLAST analysis and phylogenetic approaches the genes GRE3, GCY1, YPR1, ARA1 and YJR096W were identified as putative ERs in Saccharomyces cerevisiae Then, these genes were knocked out in our S. uvarum strain (BMV58) with higher erythritol biosynthesis compared to control S. cerevisiae wine strain, to evaluate their impact on erythritol synthesis and global metabolism. Among the mutants, the single deletion of GRE3 markedly impacts erythritol production, although ΔYPR1ΔGCY1ΔGRE3 was the combination that most decreased erythritol synthesis. Consistent with the increased production of fermentative by-products involved in redox balance in the Saccharomyces uvarum strain BMV58, erythritol synthesis increases at higher sugar concentrations, hinting it might be a response to osmotic stress. However, the expression of GRE3 in the S. uvarum strain was found to peak just before the start of the stationary phase, being consistent with the observation that erythritol increases at the start of the stationary phase, when there is low sugar in the medium and nitrogen sources are depleted. This suggests that GRE3 plays its primary function to help the yeast cells to maintain the redox balance during the last phases of fermentation.


Assuntos
Eritritol , Saccharomyces , Eritritol/metabolismo , Fermentação , Homeostase , Osmorregulação , Oxirredução , Filogenia , Saccharomyces/genética , Saccharomyces/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Açúcares/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo
17.
Microb Cell Fact ; 22(1): 109, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287064

RESUMO

The probiotic yeast Saccharomyces boulardii (Sb) is a promising chassis to deliver therapeutic proteins to the gut due to Sb's innate therapeutic properties, resistance to phage and antibiotics, and high protein secretion capacity. To maintain therapeutic efficacy in the context of challenges such as washout, low rates of diffusion, weak target binding, and/or high rates of proteolysis, it is desirable to engineer Sb strains with enhanced levels of protein secretion. In this work, we explored genetic modifications in both cis- (i.e. to the expression cassette of the secreted protein) and trans- (i.e. to the Sb genome) that enhance Sb's ability to secrete proteins, taking a Clostridioides difficile Toxin A neutralizing peptide (NPA) as our model therapeutic. First, by modulating the copy number of the NPA expression cassette, we found NPA concentrations in the supernatant could be varied by sixfold (76-458 mg/L) in microbioreactor fermentations. In the context of high NPA copy number, we found a previously-developed collection of native and synthetic secretion signals could further tune NPA secretion between 121 and 463 mg/L. Then, guided by prior knowledge of S. cerevisiae's secretion mechanisms, we generated a library of homozygous single gene deletion strains, the most productive of which achieved 2297 mg/L secretory production of NPA. We then expanded on this library by performing combinatorial gene deletions, supplemented by proteomics experiments. We ultimately constructed a quadruple protease-deficient Sb strain that produces 5045 mg/L secretory NPA, an improvement of > tenfold over wild-type Sb. Overall, this work systematically explores a broad collection of engineering strategies to improve protein secretion in Sb and highlights the ability of proteomics to highlight under-explored mediators of this process. In doing so, we created a set of probiotic strains that are capable of delivering a wide range of protein titers and therefore furthers the ability of Sb to deliver therapeutics to the gut and other settings to which it is adapted.


Assuntos
Probióticos , Saccharomyces boulardii , Saccharomyces , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces boulardii/genética , Saccharomyces boulardii/metabolismo , Saccharomyces/genética , Saccharomyces/metabolismo , Probióticos/metabolismo , Endopeptidases/metabolismo
18.
BMC Biol ; 21(1): 102, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158891

RESUMO

BACKGROUND: Horizontal gene transfer (HGT) is an evolutionary mechanism of adaptive importance, which has been deeply studied in wine S. cerevisiae strains, where those acquired genes conferred improved traits related to both transport and metabolism of the nutrients present in the grape must. However, little is known about HGT events that occurred in wild Saccharomyces yeasts and how they determine their phenotypes. RESULTS: Through a comparative genomic approach among Saccharomyces species, we detected a subtelomeric segment present in the S. uvarum, S. kudriavzevii, and S. eubayanus species, belonging to the first species to diverge in the Saccharomyces genus, but absent in the other Saccharomyces species. The segment contains three genes, two of which were characterized, named DGD1 and DGD2. DGD1 encodes dialkylglicine decarboxylase, whose specific substrate is the non-proteinogenic amino acid 2-aminoisobutyric acid (AIB), a rare amino acid present in some antimicrobial peptides of fungal origin. DGD2 encodes putative zinc finger transcription factor, which is essential to induce the AIB-dependent expression of DGD1. Phylogenetic analysis showed that DGD1 and DGD2 are closely related to two adjacent genes present in Zygosaccharomyces. CONCLUSIONS: The presented results show evidence of an early HGT event conferring new traits to the ancestor of the Saccharomyces genus that could be lost in the evolutionary more recent Saccharomyces species, perhaps due to loss of function during the colonization of new habitats.


Assuntos
Saccharomyces , Transaminases , Saccharomyces/genética , Transferência Genética Horizontal , Filogenia , Saccharomyces cerevisiae , Aminoácidos , Ácidos Aminoisobutíricos
19.
Food Microbiol ; 113: 104270, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37098430

RESUMO

Saccharomyces cerevisiae is the yeast of choice for most inoculated wine fermentations worldwide. However, many other yeast species and genera display phenotypes of interest that may help address the environmental and commercial challenges the wine industry has been facing in recent years. This work aimed to provide, for the first time, a systematic phenotyping of all Saccharomyces species under winemaking conditions. For this purpose, we characterized the fermentative and metabolic properties of 92 Saccharomyces strains in synthetic grape must at two different temperatures. The fermentative potential of alternative yeasts was higher than expected, as nearly all strains were able to complete fermentation, in some cases more efficiently than commercial S. cerevisiae strains. Various species showed interesting metabolic traits, such as high glycerol, succinate and odour-active compound production, or low acetic acid production, compared to S. cerevisiae. Altogether, these results reveal that non-cerevisiae Saccharomyces yeasts are especially interesting for wine fermentation, as they may offer advantages over both S. cerevisiae and non-Saccharomyces strains. This study highlights the potential of alternative Saccharomyces species for winemaking, paving the way for further research and, potentially, for their industrial exploitation.


Assuntos
Saccharomyces , Vitis , Vinho , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentação , Saccharomyces/genética , Saccharomyces/metabolismo , Vinho/análise , Vitis/metabolismo , Ácido Acético/metabolismo , Fenótipo
20.
G3 (Bethesda) ; 13(8)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37103477

RESUMO

Probiotic yeasts are emerging as preventative and therapeutic solutions for disease. Often ingested via cultured foods and beverages, they can survive the harsh conditions of the gastrointestinal tract and adhere to it, where they provide nutrients and inhibit pathogens like Candida albicans. Yet, little is known of the genomic determinants of these beneficial traits. To this end, we have sequenced 2 food-derived probiotic yeast isolates that mitigate fungal infections. We find that the first strain, KTP, is a strain of Saccharomyces cerevisiae within a small clade that lacks any apparent ancestry from common European/wine S. cerevisiae strains. Significantly, we show that S. cerevisiae KTP genes involved in general stress, pH tolerance, and adherence are markedly different from S. cerevisiae S288C but are similar to the commercial probiotic yeast species S. boulardii. This suggests that even though S. cerevisiae KTP and S. boulardii are from different clades, they may achieve probiotic effect through similar genetic mechanisms. We find that the second strain, ApC, is a strain of Issatchenkia occidentalis, one of the few of this family of yeasts to be sequenced. Because of the dissimilarity of its genome structure and gene organization, we infer that I. occidentalis ApC likely achieves a probiotic effect through a different mechanism than the Saccharomyces strains. Therefore, this work establishes a strong genetic link among probiotic Saccharomycetes, advances the genomics of Issatchenkia yeasts, and indicates that probiotic activity is not monophyletic and complimentary mixtures of probiotics could enhance health benefits beyond a single species.


Assuntos
Sequenciamento por Nanoporos , Probióticos , Saccharomyces , Saccharomyces cerevisiae/genética , Saccharomyces/genética , Candida albicans/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...