Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.015
Filtrar
1.
J Orthop Surg Res ; 19(1): 371, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909252

RESUMO

BACKGROUND: Basicervical femoral neck fracture is a rare proximal femur fracture with a high implant failure rate. Biomechanical comparisons between cephalomedullary nails (CMNs) and dynamic hip screws (DHSs) under torsion loading are lacking. This study compared the biomechanical performance of three fixations for basicervical femoral neck fractures under torsion load during early ambulation. METHODS: The biomechanical study models used three fixations: a DHS, a DHS with an anti-rotation screw, and a short CMN. Finite element analysis was used to simulate hip rotation with muscle forces related to leg swing applied to the femur. The equivalent von Mises stress (EQV) on fixation, fragment displacement, and strain energy density at the proximal cancellous bone were monitored for fixation stability. RESULTS: The EQV of the short CMN construct (304.63 MPa) was comparable to that of the titanium DHS construct (293.39 MPa) and greater than that of the titanium DHS with an anti-rotation screw construct (200.94 MPa). The proximal fragment displacement in the short CMN construct was approximately 0.13 mm, the greatest among the constructs. The risk of screw cutout for the lag screw in short CMNs was 3.1-5.8 times greater than that for DHSs and DHSs with anti-rotation screw constructs. CONCLUSIONS: Titanium DHS combined with an anti-rotation screw provided lower fragment displacement, stress, and strain energy density in the femoral head than the other fixations under torsion load. Basicervical femoral neck fracture treated with CMNs may increase the risk of lag screw cutout.


Assuntos
Parafusos Ósseos , Fraturas do Colo Femoral , Fraturas do Colo Femoral/cirurgia , Fraturas do Colo Femoral/fisiopatologia , Humanos , Fenômenos Biomecânicos , Análise de Elementos Finitos , Fixação Interna de Fraturas/métodos , Fixação Interna de Fraturas/instrumentação , Pinos Ortopédicos , Torção Mecânica
2.
J Endod ; 50(7): 1011-1016, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642733

RESUMO

INTRODUCTION: The purpose of this study was to evaluate the effect of side flattening of cutting flutes on the cyclic resistance and torsional resistance of nickel-titanium files. METHODS: Both novel flattened Platinum V.EU (PL) and standard nonflattened CC Premium V.EU (CC) rotaries were tested. For cyclic fatigue tests, all the files were rotated in an artificial root canal with a curvature of 45° and a radius of 6.06 mm at 300 rpm (n = 15 in each group). The number of cycles to failure (NCF) was calculated. For torsional tests, the files were rotated at 2 rpm clockwise until fracture occurred. The maximum torque value at fracture was measured and the toughness and distortion angle were computed. Subsequently, 5 fragments were randomly selected in each experiment, the cross-section and longitudinal direction of the fragments were photographed using a scanning electron microscope. An unpaired t-test was performed at a significance level of 95%. RESULTS: There was a statistically significant difference in NCF between CC and PL (P < .05). CC showed higher NCF than PL. There was no statistically significant difference between CC and PL with regards to the parameters related to torsional resistance (distortion angle, ultimate strength, and toughness) (P > .05). CONCLUSION: Within the limitations of this study, side flattening of the file did not improve cyclic resistance or torsional resistance of the files. As side flattening may reduce a file's cyclic resistance, such files should be used with caution in clinical practice.


Assuntos
Falha de Equipamento , Níquel , Preparo de Canal Radicular , Titânio , Torção Mecânica , Preparo de Canal Radicular/instrumentação , Teste de Materiais , Desenho de Equipamento , Torque , Microscopia Eletrônica de Varredura , Instrumentos Odontológicos , Ligas Dentárias/química
3.
Br J Oral Maxillofac Surg ; 62(5): 441-447, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38637215

RESUMO

The parasymphysis area of the mandible is highly dynamic because it is subjected to both occlusal and muscular forces. As a result, the fractures in this transition zone have a special pattern, posing a challenge for surgeons whether to use one miniplate versus two miniplates, as per Champy's recommendations. The commonest complication resulting to treat this area is mental nerve paraesthesia due to the dissection and stretching of the nerve. Hence, an in vitro research study of a newly designed 'Zeta' miniplate is performed, to evaluate the biomechanical behaviour using finite element (FE) analysis and biomechanical analysis along with a comparison study with the conventional miniplate configurations. The results showed that the Zeta miniplate produces the lowest stresses 17.511 MPa and the least total structural deformation of 0.0011 mm after applying the maximum occlusal bite force. On application of torsional load, total structural deformation was 0.0004 mm and von Mises (VM) stress value was 0.24 MPa which was lowest when compared with the two miniplate system. Hence, the newly developed Zeta miniplate is superior in terms of stability. Another benefit of its design is that it helps in preventing mental nerve paraesthesia and tooth root damage while fixing and stabilising the fractured bony segments.


Assuntos
Força de Mordida , Placas Ósseas , Análise de Elementos Finitos , Fixação Interna de Fraturas , Mandíbula , Fraturas Mandibulares , Estresse Mecânico , Fraturas Mandibulares/cirurgia , Humanos , Fenômenos Biomecânicos , Fixação Interna de Fraturas/instrumentação , Fixação Interna de Fraturas/métodos , Mandíbula/cirurgia , Torção Mecânica , Desenho de Equipamento , Teste de Materiais , Parestesia/etiologia , Nervo Mandibular , Titânio/química , Miniaturização
4.
J Orthop Res ; 42(8): 1810-1819, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38491964

RESUMO

In large animal studies, the mechanical reintegration of the bone fragments is measured using postmortem physical testing, but these assessments can only be performed once, after sacrifice. Image-based virtual mechanical testing is an attractive alternative because it could be used to monitor healing longitudinally. However, the procedures and software required to perform finite element analysis (FEA) on subject-specific models for virtual mechanical testing can be time consuming and costly. Accordingly, the goal of this study was to determine whether a simpler image-based geometric measure-the torsion constant, sometimes known as polar moment of inertia-can be reliably used as a surrogate measure of bone healing in large animals. To achieve this, postmortem biomechanical testing and microCT scans were analyzed for a total of 33 operated and 20 intact ovine tibiae. An image-processing procedure to compute the attenuation-weighted torsion constant from the microCT scans was developed in MATLAB and this code has been made freely available. Linear regression analysis was performed between the postmortem biomechanical data, the results of virtual mechanical testing using FEA, and the torsion constants measured from the scans. The results showed that virtual mechanical testing is the most reliable surrogate measure of postmortem torsional rigidity, having strong correlations and high absolute agreement. However, when FEA is not practical, the torsion constant is a viable alternative surrogate measure that is moderately correlated with postmortem torsional rigidity and can be readily calculated.


Assuntos
Consolidação da Fratura , Animais , Ovinos , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/fisiopatologia , Fenômenos Biomecânicos , Análise de Elementos Finitos , Testes Mecânicos , Microtomografia por Raio-X , Torção Mecânica
5.
Int Orthod ; 22(2): 100866, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479220

RESUMO

INTRODUCTION: The aim of this study was to assess the interaction between a 0.019×0.025-inch (″) stainless steel archwire and two types of passive self-ligating brackets with the same slot height (0.022″) and different slot depths (0.028″ and 0.026″, and to measure the archwire/slot play as well as to compare the torque expression with archwire torsions of 12°, 24°, and 36°. MATERIAL AND METHODS: An experimental device was developed along with a universal testing machine to measure torque expression in two types of brackets with 0.028″ and 0.026″ slot depths. Analysis of variance (ANOVA) and Tukey's test were performed to identify the differences between groups. RESULTS: The 0.026″ slot bracket presented greater archwire/slot play when compared to the 0.028″ bracket. Torque expression with torsions of 24° and 36° were significantly higher in the 0.028″ depth brackets when compared to the 0.026″ depth brackets. CONCLUSION: The 0.022″×0.026″ passive self-ligating brackets attached with a 0.019″×0.025″ stainless steel archwire provided no greater torque control when compared to 0.022″×0.028″ passive self-ligating brackets.


Assuntos
Análise do Estresse Dentário , Teste de Materiais , Desenho de Aparelho Ortodôntico , Braquetes Ortodônticos , Fios Ortodônticos , Aço Inoxidável , Torque , Humanos , Ligas Dentárias/química , Técnicas In Vitro , Torção Mecânica
6.
Am J Vet Res ; 85(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537376

RESUMO

OBJECTIVE: The objective of this study is to compare drilling variables and torsional mechanical properties of rabbit femora after bicortical drilling with a 1.5-mm standard surgical drill bit, acrylic drill bit, and K-wire. SAMPLES: 24 pairs of rabbit femora. METHODS: After drilling under controlled axial displacement rate, each bone was biaxially loaded in compression followed by rapid external torsion to failure. Maximum axial thrust force, maximum drill torque, integral of force and displacement, change in temperature, maximum power spectral density of the torque signal, torque vibration, and torque and angle at the yield and failure points were collected. Pre- and postyield stiffness, yield and failure energies, and postyield energy were calculated. RESULTS: The work required to drill through the cis- and transcortices (integral of force and displacement) was greater for the K-wire, followed by the acrylic and then standard drill bits, respectively. The K-wire demonstrated higher maximum torque than the drill bits at the ciscortex, and the force of drilling was significantly greater. The vibration data was greater with the acrylic and standard drill bits than the K-wire. There was no difference in torsional strength between drilling types. CLINICAL RELEVANCE: Mechanical differences exist between different drill bits and K-wire and demonstrate that the K-wire is overall more damaging than the surgical drill bit.


Assuntos
Fios Ortopédicos , Fêmur , Animais , Coelhos , Fêmur/cirurgia , Fenômenos Biomecânicos , Fios Ortopédicos/veterinária , Torção Mecânica , Torque
7.
Int J Cardiovasc Imaging ; 40(4): 921-930, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448705

RESUMO

The relationship between left ventricular (LV) torsion and myocardial fibrosis (MF) in hypertrophic cardiomyopathy (HCM) patients with preserved ejection fraction was still not well understood. New developments in cardiac magnetic resonance (CMR) enable a much fuller assessment of cardiac characteristics. This study sought to assess the impact of HCM on myocardial function as assessed by LV torsion and its relationship with MF. HCM (n = 79) and healthy controls (n = 40) underwent CMR. According to whether there was late gadolinium enhancement (LGE), patients were divided into LGE+ group and LGE- group. LV torsion and torsion rate were measured by CMR feature-tracking (CMR-FT). MF was quantitatively evaluated through LGE imaging. LGE was present in 44 patients (56%). Compared with healthy controls, torsion increased in the LGE- group (P < 0.001). Compared with LGE+ group, torsion was higher in the LGE- group (P < 0.001). There was no significant difference in torsion between LGE+ group and healthy controls. Correlation analysis showed that torsion was correlated with LGE% (r = - 0.443) and LGE mass (r = - 0.435) respectively. On multivariable logistic regression analysis, LV torsion was the only feature that was independently associated with the presence of LGE (OR 0.130; 95% CI 0.040 to 0.420, P = 0.01). The best torsion value associated with MF was 1.91 (sensitivity 60.0%, specificity 77.3%, AUC = 0.733). In HCM patients with preserved ejection fraction, CMR-FT derived LV torsion analysis holds promise for myocardial fibrosis detection.


Assuntos
Cardiomiopatia Hipertrófica , Meios de Contraste , Fibrose , Imagem Cinética por Ressonância Magnética , Miocárdio , Valor Preditivo dos Testes , Volume Sistólico , Torção Mecânica , Função Ventricular Esquerda , Humanos , Masculino , Feminino , Cardiomiopatia Hipertrófica/fisiopatologia , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/complicações , Pessoa de Meia-Idade , Miocárdio/patologia , Adulto , Idoso , Estudos de Casos e Controles , Estudos Retrospectivos , Reprodutibilidade dos Testes , Fenômenos Biomecânicos
8.
J Endod ; 50(2): 213-219, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37924940

RESUMO

INTRODUCTION: The aim of this study was to evaluate the torsional resistance, cyclic fatigue resistance, and bending stiffness of nickel-titanium (NiTi) file systems with different heat treatments and cross-sectional designs. METHODS: WaveOne Primary treated with memory-triple (MT) heat treatment (WOMT) was compared with WaveOne Primary (WO) and WaveOne Gold Primary (WOG). Torsional resistance test was performed using a customized device, and the distortion angle, ultimate strength, and toughness were evaluated. For cyclic fatigue resistance test, the instruments were reciprocated with continuous 4 mm up-and-down movement until fracture in a customized device, and the time to fracture was compared. Fracture surfaces of each group were examined under the scanning electron microscope. Bending stiffness was measured using a custom-made device. The results were analyzed using one-way analysis of variance and the Tukey's post hoc comparison at a significance level of 95%. RESULTS: WOMT showed higher ultimate strength and toughness than the other systems (P < .05). WOMT also showed highest cyclic fatigue resistance among the tested groups (P < .05). WO had the highest bending stiffness than others, whereas WOMT had a larger residual angle than others (P < .05). CONCLUSIONS: This new MT heat treatment technique makes NiTi file more flexible and improves its mechanical properties. In addition, the effect of heat treatment on flexibility was found to be more significant than that of the cross-sectional area.


Assuntos
Ligas , Temperatura Alta , Titânio , Níquel , Instrumentos Odontológicos , Desenho de Equipamento , Preparo de Canal Radicular , Estresse Mecânico , Teste de Materiais , Torção Mecânica
9.
J Mol Biol ; 435(22): 168295, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37783285

RESUMO

A variety of biological roles of mechanical forces have been proposed in cell biology, such as cell signaling pathways for survival, development, growth, and differentiation. Mechanical forces alter the mechanical conditions within cells and their environment, which strongly influences the reorganization of the actin cytoskeleton. Single-molecule imaging studies of actin filaments have led to the hypothesis that the actin filament acts as a mechanosensor; e.g., increases in actin filament tension alter their conformation and affinity for regulatory proteins. However, our understanding of the molecular mechanisms underlying how tension modulates the mechanical behavior of a single actin filament is still incomplete. In this study, a direct measurement of the twisting and bending of a fluorescently labeled single actin filament under different tension levels by force application (0.8-3.4 pN) was performed using single-molecule fluorescence polarization (SMFP) microscopy. The results showed that the amplitude of twisting and bending fluctuations of a single actin filament decreased with increasing tension. Electron micrograph analysis of tensed filaments also revealed that the fluctuations in the crossover length of actin filaments decreased with increasing filament tension. Possible molecular mechanisms underlying these results involving the binding of actin-binding proteins, such as cofilin, to the filament are discussed.


Assuntos
Citoesqueleto de Actina , Estresse Mecânico , Citoesqueleto de Actina/química , Fatores de Despolimerização de Actina/química , Imagem Individual de Molécula , Resistência à Tração , Torção Mecânica
10.
Rev. Asoc. Odontol. Argent ; 111(2): 1110871, mayo-ago. 2023. ilus
Artigo em Espanhol | LILACS | ID: biblio-1537147

RESUMO

El objetivo de esta comunicación es describir y analizar el sistema BlueShaper para la preparación quirúrgica mecaniza- da de los conductos radiculares. El sistema dispone de un set básico de 4 limas: Z1, Z2, Z3 y Z4, con un D0 de 0,14 mm, 0,17 mm, 0,19 mm y 0,25 mm respectivamente y conicidad variable que oscila entre el 2 y 10 %. La lima Z1 posee una aleación Pink, que le confiere mayor resistencia a la torsión y una gran capacidad de corte. Las limas Z2, Z3 y Z4 presentan una aleación Blue que aumenta la resistencia a la fatiga cíclica e incrementa su flexibilidad. Para conductos radiculares más amplios se incluyen, además, las limas Z5, Z6 y Z7. La empresa comer- cializa conos de gutapercha BlueShaper que se corresponden con las limas Z3, Z4, Z5, Z6 y Z7. El sistema de limas mul- tialeación Blue Shaper podría considerarse como un nuevo aporte clínico para la preparación mecánica de los conductos radiculares (AU)


The aim of this communication was to describe and analyze the BlueShaper system for the mechanized surgical preparation of root canals. The system has a basic set of 4 files: Z1, Z2, Z3 and Z4, with 0.14 mm, 0.17 mm, 0.19 mm and 0.25 mm DO respective- ly, and variable conicity ranging between 2 and 10 %. Z1 file has a Pink alloy, which gives it greater resistance to torsion and great cutting capacity. The Z2, Z3 and Z4 files feature a Blue alloy that increases resistance to cyclic fatigue and increases their flexibility. For larger root canals, the Z5, Z6 and Z7 files are also included. The company supplies specific BlueShaper ́s gutta-percha cones for Z3, Z4, Z5, Z6 and Z7 files. The BlueShaper multialloy file system could be consid- ered as a new clinical contribution for the mechanical prepa- ration of root canals (AU)


Assuntos
Preparo de Canal Radicular/instrumentação , Ligas Dentárias , Instrumentos Odontológicos , Rotação , Termodinâmica , Torção Mecânica
11.
Soft Matter ; 19(25): 4772-4779, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37318232

RESUMO

The number and strength of mechanical connections of cells to their local environment can be indicative of their migration and invasion potential. Gaining direct access to the mechanical properties of individual connections and bringing them into a relationship with the state of disease, however, is a formidable task. Here, we present a method to directly sense focal adhesions and cell-cell contacts with a force sensor to quantify the lateral forces of their anchoring points. We found local lateral forces of 1.0-1.5 nN for focal adhesions and slightly higher values at the interfaces between cells where cell-cell contacts are located. Interestingly, a modified surface layer was observed exhibiting considerably reduced tip friction directly next to the area of a retracting cell edge on the substrate. We expect that this technique can improve the understanding of the relationship between mechanical properties of cell connections and the pathological state of cells in the future.


Assuntos
Adesões Focais , Junções Intercelulares , Fenômenos Mecânicos , Torção Mecânica , Análise Espectral , Adesão Celular
12.
Braz Dent J ; 34(1): 12-18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36888838

RESUMO

This study aimed to evaluate the influence of temperature on torsional strength and angular deflection of two experimental NiTi rotary instruments manufactured from Blue and Gold thermal treatments and with identical cross-sections. A total of 40 experimental NiTi instruments 25.06 and with a triangular cross-section and manufactured from Blue and Gold thermal treatments were used (n=20). The torsional test was performed in the 3 mm from the tip of the instrument according to ISO 3630-1. The torsional test evaluated the torsional strength and angular deflection to failure at room temperature (21°C ± 1° C) and body temperature (36°C ±1°C). The fractured surface of each fragment was observed by using scanning electron microscopy (SEM). Data were analyzed using an unpaired t test for inter and intra-group comparison and the level of significance was set at 5%. The results showed that the body temperature did not affect the torsional strength and angular deflection of the instruments when compared with room temperature (P>0.05). However, at body temperature, the Blue NiTi instruments presented significantly lower angular deflection in comparison with Gold NiTi instruments (P<0.05). There was no significant difference regarding the torsional strength of the instruments at body temperature (P>0.05). The temperature did not affect the torsional strength of the instruments manufactured from Blue and Gold technology. However, the Blue NiTi instruments presented significantly lower angular deflection than Gold instruments at 36°C temperature.


Assuntos
Instrumentos Odontológicos , Preparo de Canal Radicular , Estresse Mecânico , Temperatura , Desenho de Equipamento , Teste de Materiais , Titânio , Ouro , Torção Mecânica
13.
Aust Endod J ; 49(1): 149-158, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35703893

RESUMO

This study compared the original (ProTaper Next and Reciproc) endodontic systems with their replica-like brands (X File and Only One File) in terms of standardisation, design, phase-transformation behaviour, composition and mechanical behaviour. X File showed greater taper values than ProTaper Next, while Only One File had the greatest tip diameter. Both replica-like files had an active tip and greater dimensions than their reports. There were also significant differences between the original and replica-like systems in terms of their phase-transformation behaviour and the precision of the measurement lines. Only One File showed significantly lower cyclic fatigue and torsional resistance than Reciproc (p < 0.05). There were no significant differences in the cyclic fatigue, torsional resistance and composition of NiTi between X File and ProTaper Next (p > 0.05). Although replica systems show mechanical properties that can be acceptable, they are not consistent in terms of standardisation and design.


Assuntos
Ligas Dentárias , Preparo de Canal Radicular , Estresse Mecânico , Teste de Materiais , Desenho de Equipamento , Titânio , Torção Mecânica
14.
Int Endod J ; 56(4): 530-542, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36508297

RESUMO

AIM: To compare design, metallurgy and mechanical performance of the ProTaper (PT) Ultimate system with instruments of similar dimensions from the ProGlider, PT Gold and PT Universal systems. METHODOLOGY: New PT Ultimate instruments (n = 248) were compared with instruments of similar dimensions from ProGlider (n = 31), PT Gold (n = 155) and PT Universal (n = 155) systems regarding their number of spirals, helical angle, blade symmetry, tip geometry, surface finishing, nickel/titanium ratio, phase transformation temperatures and mechanical performance. One-way anova and nonparametric Mood's median tests were used for statistical comparison (α = 5%). RESULTS: All instruments had symmetrical blades without radial lands or flat sides, similar surface finishing and an almost equiatomic nickel/titanium ratio, whilst the number of spirals, helical angles and the tip geometry were different. PT Ultimate instruments showed 3 distinct heat treatments that matched with the colour of their metal wire. Slider and ProGlider instruments had similar R-phase start (Rs) and R-phase finish (Rf) temperatures. SX, F1, F2, F3 and Shaper instruments showed equivalent heat treatments (Rs ~45.6°C and Rf ~28.3°C) that were similar to their PT Gold counterparts (Rs ~47.9°C and Rf ~28.2°C), but completely distinct to the PT Universal ones (Rs ~16.2°C and Rf ~-18.2°C). Amongst the PT Ultimate instruments, the lowest maximum torques were observed in the SX (0.44 N cm), Slider (0.45 N cm) and Shaper (0.60 N cm) instruments, whilst the highest was noted in the FXL (4.90 N cm). PT Ultimate Slider and ProGlider had similar torsional (~0.40 N cm) and bending loads (~145.0 gf) (p = 1.000), whilst the other PT Ultimate instruments showed statistically significantly lower maximum torque, higher angle of rotation and lower bending load (higher flexibility) than their counterparts of the PT Universal and PT Gold systems. CONCLUSIONS: The PT Ultimate system comprises instruments with 3 distinct heat treatments that showed similar phase transformation temperatures to their heat-treated analogues. PT Ultimate instruments presented lower torsional strength and superior flexibility than their counterparts, whilst maximum torque, angle of rotation and bending loads progressively increased with their sizes.


Assuntos
Níquel , Titânio , Temperatura Alta , Falha de Equipamento , Teste de Materiais , Ligas Dentárias , Preparo de Canal Radicular , Desenho de Equipamento , Torção Mecânica
15.
Belo Horizonte; s.n; 2023. 64 p. ilus, graf, tab.
Tese em Português | LILACS, BBO | ID: biblio-1509346

RESUMO

A introdução da liga NiTi na endodontia proporcionou a fabricação de instrumentos com excelentes propriedades mecânicas, e uma das principais características é a possibilidade de alteração das temperaturas de transformação da liga, o qual pode possibilitar a presença de martensita em temperatura ambiente e consequentemente um efeito memória de forma. Entretanto, alguns dos sistemas comercializados atualmente possuem pouca ou nenhuma informação científica relatando suas propriedades mecânicas, características de design e métodos de fabricação. O objetivo deste trabalho foi comparar características geométricas, metalúrgicas e propriedades mecânicas (resistência à torção e flexão) de instrumentos Reciproc Blue (VDW, Munique, Alemanha), e quatro sistemas reciprocantes réplicas. Um total de 39 instrumentos de cada um dos sistemas reciprocantes, Reciproc Blue (RB), Prodesign R (PDR), V File (VF), V+ File (V+) e Univy One (UO) foram utilizados na pesquisa. O programa de Image J foi utilizado para mensuração dos diâmetros a cada milímetro da parte ativa e da área da seção transversal a 3 mm da ponta dos instrumentos. Imagens de MEV da parte ativa foram realizados para avaliar o acabamento superficial dos instrumentos. A composição atômica, fases presentes e temperaturas de transformação foram verificadas através de EDS, DRX e DSC, respectivamente. A flexibilidade foi aferida através de ensaios de dobramento até 45º conforme a especificação ISO 3630-1, e os ensaios de resistência à torção foram realizados de acordo com a especificação Nº28 ANSI/ADA. Todos os instrumentos apresentaram uma quantidade aproximadamente equiatômica de níquel e titânio. A análise qualitativa das fases cristalinas realizada através de ensaios de DRX, demonstrou a predominância de Fase R em todos os grupos, com exceção do grupo UO que apresenta uma mistura de fase R e martensita B19'. Na avaliação da área da seção, o instrumento RB obteve valores intermediários, os instrumentos PDR e V+ possuem menores valores e os instrumentos VF e UO possuem maiores valores. Observou-se grande impacto da geometria sobre as propriedades mecânicas, sendo que aqueles sistemas que apresentavam menor área que RB (PDR, V+) mostraram-se mais flexíveis e menos resistentes à torção (p<0.05), e o instrumento VF que teve maior área apresentou, como esperado, menos flexibilidade (p<0.05) e resistência torcional semelhante (p>0.05). A única exceção se deu com o sistema UO, que embora apresentasse uma maior área de seção, mostrou-se mais flexível e menos resistente à torção, provavelmente por influência da maior quantidade de martensita presente à temperatura ambiente. Nenhum dos instrumentos réplicas avaliados apresentaram características e comportamento mecânico iguais ao sistema padrão RB. Sugere-se que mais estudos devem ser realizados para a comparação do comportamento clínico destes instrumentos.


The introduction of NiTi alloy in endodontics has allowed the manufacturing of instruments with excellent mechanical properties, and one of the main characteristics is the ability to change alloy's transformation temperature, which can enable the presence of martensite at room temperature and consequently favor a shape memory effect. However, some of the currently marketed systems have limited or no scientific information regarding their mechanical properties, design characteristics, and manufacturing methods. The aim of this study was to compare the geometric characteristics, metallurgical aspects, and mechanical properties (torsional and flexural strength) of Reciproc Blue instruments (VDW, Munich, Germany) with four replica-like reciprocating systems. A total amount of 39 instruments from each reciprocating system, namely Reciproc Blue (RB), Prodesign R (PDR), V File (VF), V+ File (V+), and Univy One (UO), were used in the study. The Image J program was used to measure the diameters at every millimeter along the instruments active portion and the cross-sectional area at 3 mm from the instrument tip. SEM images of the active portion were obtained to evaluate the surface finishing of the instruments. Atomic composition, phases present, and transformation temperatures were determined through EDS, XRD, and DSC analyses, respectively. Flexibility was assessed by bending tests up to 45° according to ISO 3630-1 specifications, and torsional strength tests were performed according with ANSI/ADA Specification No. 28. All instruments exhibited an approximately equiatomic composition of nickel and titanium. Qualitative analysis of the crystalline phases using XRD tests demonstrated the predominance of the R-phase in all groups, except for the UO group, which exhibited a mixture of Rphase and B19' martensite. In terms of diameter and cross-sectional area evaluation, the RB instrument obtained intermediate values, while the PDR and V+ instruments had smaller values, and the VF and UO instruments had larger values. A significant impact of geometry on mechanical properties was observed, with systems exhibiting a smaller area than RB (PDR, V+) being more flexible and less torsion-resistant (p<0.05), and the VF instrument with a larger area showed, as expected, less flexibility (p<0.05) and similar torsional resistance (p>0.05). The only exception was the UO system, which, despite having a larger geometric configuration, exhibited greater flexibility and less torsional resistance, likely due to the higher amount of martensite present at room temperature. None of the replica-like instruments evaluated showed identical characteristics and mechanical behavior to the standard RB system. Further studies are suggested to compare the clinical performance of these instruments.


Assuntos
Varredura Diferencial de Calorimetria , Endodontia , Torção Mecânica , Ligas de Memória da Forma , Testes Mecânicos
16.
J Endod ; 48(8): 985-1004, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35667567

RESUMO

Instruments' mechanical strength and flexibility are traditionally tested by running cyclic fatigue, torsional, bending, buckling, and microhardness tests. Several cyclic fatigue test models have been used in endodontics, all capable of providing a curved trajectory for the instrument to rotate. Cyclic fatigue testing allows the identification of conditions that may affect the fatigue strength outcomes, such as the canal radius and degree of curvature, handpiece static versus dynamic motions, test temperature, kinematics, instrument previously wear and sterilization cycles, or instrument's size and metal alloy features. Because of the international test specifications for both torsional and bending tests, the variations of their models are not as many as for cyclic fatigue. These tests have also identified conditions capable of affecting the outcomes, such as kinematics, instruments' preloading, cross-sectional diameters, or alloy heat treatments. Buckling and microhardness are less common, with the metal alloy being considered to have a major influence on the results. Instruments' mechanical testing, having all these individual conditions as independent variables, allowed the understanding of them and molded the way the technical procedures are performed clinically. Even though the artificiality and simplicity of these tests will hardly mimic real working situations, and independent of being capable of producing cornerstone knowledge, these tests are also associated with inconsistency, a lack of reproducibility, and low external validity. Several attempts have been made to increase the generalizability of the outcomes by adding test settings that intend to mimic the clinical condition. Although pertinent, these settings may also add variabilities inherent to their concepts and practical applications in the laboratory environment. Although the actual studies should be seen as laboratory mechanical tests that measure very specific parameters under very particular conditions and that by far do not mimic the clinical condition, the lower validity drawback seems to be possible to be minimized when achieving a comprehensive understanding of the instrument behavior. A finite element method and/or a multimethod research approach may lead to superior data collection, analysis, and interpretation of results, which when associated with a reliable confounding factor control and proper study designs may be helpful tools and strategies in order to increase the reliability of the outcomes.


Assuntos
Níquel , Titânio , Ligas , Ligas Dentárias , Instrumentos Odontológicos , Desenho de Equipamento , Teste de Materiais , Testes Mecânicos , Reprodutibilidade dos Testes , Preparo de Canal Radicular , Estresse Mecânico , Torção Mecânica
17.
Braz Oral Res ; 36: e085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35703710

RESUMO

The aim of this study was to evaluate the quality of curved root canal preparation, torsional fatigue, and cyclic fatigue of rotary systems manufactured with different NiTi alloys. Ninety single-rooted canals with curvatures of 15° to 30o were scanned and divided into three groups according to the rotary system used: BT-Race (BTR) - 10.06, 35.00, 35.04; SequenceRotaryFile (SRF) - 15.04, 25.06, 35.04; and ProDesignLogic (PDL) - 25.01, 25.06, 35.05. Each system was used on three specimens. The teeth were prepared, scanned, and analyzed to assess increase in volume, transportation, and centering ability of the root canal. Torsional fatigue of glide path instruments (BTR 10.06, SRF 15.04 and PDL 25.01) and cyclic fatigue of the finishing instrument (BTR 35.04, SRF 35.04 and PDL 35.05) were obtained by analyzing completely new instruments (n = 10) and instruments after they had been used three times (n = 10). After the torsional and cyclic fatigue tests, the fractured surface of the new and used instruments were examined by scanning electron microscopy. Increase in volume, canal transportation, and centering ability showed no significant differences among the groups (p > 0.05). The torsional test showed that SRF 15.04 produced the highest torque values for both new and used instruments, followed by PDL 25.01 and BTR 10.06 (p < 0.05). PDL 25.01, both new and used, exhibited higher values of angular deflection followed by SRF 15.04 and BTR 10.06 (p < 0.05). As regards cyclic fatigue, use of PDL 35.05, both new and used, required a longer time and larger number of cycles than did SRF 35.04 and BTR 35.04 (p < 0.05). Clinical use affected the torsional fatigue of BTR; however, cyclic fatigue was not significantly affected (p < 0.05). All rotary systems were able to prepare the curved canals satisfactorily and were used safely on the three specimens. Relative to torsional fatigue, SRF 15.04 exhibited a higher torque, and PDL 25.01, higher angular deflection. BTR 10.06 was the most affected by clinical use. PDL 35.05 showed greater resistance to cyclic fatigue.


Assuntos
Ligas Dentárias , Preparo de Canal Radicular , Instrumentos Odontológicos , Desenho de Equipamento , Falha de Equipamento , Teste de Materiais , Níquel , Estresse Mecânico , Titânio , Torção Mecânica
18.
Sensors (Basel) ; 22(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408280

RESUMO

The torsional fatigue test determines the fatigue limit for a certain asymmetry coefficient of the cycle. The assessment of fatigue tests is performed on specialized machines. There are two types of torsion testing machines: universal machines that have the torsion component and specialized machines only for torsion testing. Nevertheless, no matter which proposed option we choose, the purchase prices for these testing machines or the values spent for self-management are quite high. This paper presented a device used for torsion fatigue testing, adaptable to a universal pulsating testing machine, designed to determine the torsion fatigue limit for different materials. The built device is simple and reliable, and therefore inexpensive. By using this device, we can determine the limit of the torsional fatigue after any stress cycle and we can use the parameters obtained from the universal machine to which it was attached. The torque and twisting angle of the test specimen during the test can be determined by calculation. The paper also presented an experimental method for determining shear strains based on calibration experiment, using a specimen on which strain gauges were mounted. The values taken from this calibration experiment were compared with those obtained from the theoretical calculation.


Assuntos
Titânio , Desenho de Equipamento , Teste de Materiais , Estresse Mecânico , Torque , Torção Mecânica
19.
Eur Endod J ; 6(3): 284-289, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34967334

RESUMO

OBJECTIVE: The aim of this study was to evaluate the bending and torsional resistance of the following instruments: Mtwo 25/.07 (MT - VDW, Munich, Germany), Navigator W-XN 25.07 (WXN - Wizard Navigator, Medin, Nové Mesto na Morave, Czech Republic), ProTaper Universal SX 19/.04 (PSX - Dentsply Tulsa Dental Specialties, Tulsa, USA), MK Orifice Shapper 17/.08 (OS - MK Life Medical and Dental Products, Porto Alegre, Brazil) and MK Sequence 17.12 (MKS - MK Life Medical and Dental Products, Porto Alegre, Brazil). METHODS: One hundred instruments were used (n=20). Resistance to bending (n=10), torque and angular deflection (n=10) at the failure of new instruments were measured according to ISO 3630-1. Metal mass volume at 3 mm from the tip was evaluated using micro-computed tomography (micro-CT). The fractured surface of each fragment was examined by scanning electron microscopy (SEM). Data were analysed using 1-way analysis of variance and Tukey tests. RESULTS: Torsional resistance values of MK Sequence were higher than the other groups (P<0.05). No differences were observed among MT, WXN and OS (P>0.05) and PTS, which presented the lowest values (P<0.05). MT showed the highest angular deflection (P<0.05). WXN and PSX presented no significant difference (P>0.05). PSX and OS also showed no significant differences (P>0.05). MKS instruments had the lowest angular deflection values (P<0.05). There were significant differences among all the groups in bending stiffness test (P<0.05), but PSX had the lowest torque to bend (P<0.05). MKS had the larger metal mass volume at 3 mm from the tip (P<0.05). SEM analysis showed similar and typical features of torsional failure for all instruments tested. CONCLUSION: In conclusion, MK Sequence 17/.12 had the highest torsional fracture resistance. Mtwo 25/.07 showed higher angular deflection capacity, and ProTaper Universal SX the 19/.04 lower bending stiffness.


Assuntos
Níquel , Titânio , Ligas Dentárias , Preparo de Canal Radicular , Torção Mecânica , Microtomografia por Raio-X
20.
Rev. Asoc. Odontol. Argent ; 109(3): 149-157, dic. 2021. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-1370323

RESUMO

Objetivo: Describir las fallas en diferentes sistemas de implantes al ser sometidos a fuerzas de torsión creciente, de- terminar el torque en el cual aparece un daño medible en el implante o alguno de sus componentes y especificar la falla más frecuente. Materiales y métodos: Se realizó un estudio experi- mental in vitro. Se utilizaron 88 implantes agrupados según diseño y marca comercial (Federa, Rosterdent, Biomet 3i, Tree-Oss, B&W, ML) en 11 grupos de 8 implantes cada uno. Éstos fueron inmovilizados en acrílico y fijados en una pren- sa. Se aplicó una fuerza de torsión creciente con torquímetro de precisión digital hasta la aparición de alguna falla en el implante o sus componentes. Se registró el torque en el que se produjo la falla. Se realizó estadística descriptiva para el análisis de datos. Resultados: El 100% de los implantes o alguno de sus componentes mostraron una falla detectable al ser sometidos a fuerzas de torsión creciente (rango de torque: 83,5 Ncm ­im- plante con conexión cono morse 8 grados­ a 384 Ncm ­implan- te de conexión interna sin montar­). El torque promedio más bajo en el que aparecieron los daños fue 103,75 (±8,08) Ncm para implantes de conexión interna tipo cono morse, mientras que el más alto fue 279,87 (±89,73) Ncm para implantes de conexión interna sin montar. La falla más frecuente (28,4%) fue la fractura del tornillo del portaimplante y falseo del hexá- gono externo simultáneamente. Conclusión: Las fallas detectables a fuerzas de torsión creciente ocurrieron entre 83,5 Ncm y 384 Ncm. La falla rei-terada fue la fractura del tornillo del portaimplante y falseo del hexágono simultáneamente (AU)


Aim: To describe the failures in different implant sys- tems when subjected to increasing torsional forces, deter- mine the torque at which measurable damage occurs to the implant or one of its components, and determine the most frequent failure. Materials and methods: This was an experimental in vitro study. A total 88 implants were used, grouped accord- ing to design and trademark (Federa, Rosterdent, Biomet 3i, Tree-Oss, B&W, ML) into 11 groups of 8 implants each. The implants were immobilized in Duralay acrylic and fixed in a vice. Increasing torsional force was applied with a digital pre- cision torque wrench until the occurrence of any failure in the implants or their components. The torque at which the failure occurred was recorded. Descriptive statistics were performed for data analysis. Results: 100% of the implants or any of their compo- nents showed a detectable failure when subjected to increas- ing torsional forces (force range: 83.5 Ncm in an implant with 8-degree Morse taper connection to 384 Ncm in an implant with unmounted internal connection). The lowest average torque at which damage occurred was 103.75 (±8.08) Ncm for conical implants with Morse internal connection, while the highest was 279.87 (±89.73) Ncm for implant with unmounted internal connection. The most frequent failure (28.4%) was fracture of the implant retaining screw and distortion of the external hexagon simultaneously (AU)


Assuntos
Resistência à Tração , Implantes Dentários , Torção Mecânica , Técnicas In Vitro , Falha de Restauração Dentária , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...