Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Org Biomol Chem ; 13(43): 10734-44, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26356422

ABSTRACT

The synthesis of eleven 1-deoxynojirimycin (DNJ) derivatives presenting either a monofluoro, difluoro, thiolated or unsaturated N-alkyl chain of various length is described. Exploiting the unsaturated moiety on the nitrogen, fluorine has been introduced through a HF/SbF5 superacid catalysed hydrofluorination and thiol-ene click chemistry allowed introduction of sulfur. The synthetic derivatives have been tested for their ability to inhibit glycosidases and correct F508del-CFTR. Two of the unsaturated iminosugars exhibited potency similar to Miglustat as F508del-CFTR correctors. The thioalkyl iminosugars as well as the corresponding alkyl iminosugars demonstrated low micromolar α-glucosidases and trehalases inhibition. Introduction of fluorine abolished F508del-CFTR correction and trehalase inhibition.


Subject(s)
1-Deoxynojirimycin/analogs & derivatives , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Enzyme Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Trehalase/antagonists & inhibitors , 1-Deoxynojirimycin/pharmacology , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Enzyme Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Halogenation , Humans , Insecta , Mutation , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/pharmacology , Swine , Trehalase/metabolism , alpha-Glucosidases/metabolism
2.
Org Biomol Chem ; 12(44): 8977-96, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25277226

ABSTRACT

The glycosidase inhibitory properties of synthetic C-alkyl and N-alkyl six-membered iminosugars have been extensively studied leading to therapeutic candidates. The related seven-membered iminocyclitols have been less examined despite the report of promising structures. Using an in house ring enlargement/C-alkylation as well as cross-metathesis methodologies as the key steps, we have undertaken the synthesis and biological evaluation of a library of fourteen 2C- and eight N-alkyl tetrahydroxylated azepanes starting from an easily available glucopyranose-derived azidolactol. Four, six, nine and twelve carbon atom alkyl chains have been introduced. The study of two distinct D-gluco and L-ido stereochemistries for the tetrol pattern as well as R and S configurations for the C-2 carbon bearing the C-alkyl chain is reported. We observed that C-alkylation of the L-ido tetrahydroxylated azepane converts it from an α-L-fucosidase to a ß-glucosidase and ß-galactosidase inhibitor while N-alkylation of the D-gluco iminosugar significantly improves its inhibition profile leading to potent ß-glucosidase, ß-galactosidase, α-L-rhamnosidase and ß-glucuronidase inhibitors whatever the stereochemistry of the alkyl chain. Interestingly, the N-alkyl chain length usually parallels the azepane inhibitor potency as exemplified by the identification of a potent glucocerebrosidase inhibitor (Ki 1 µM) bearing a twelve carbon atom chain. Additionally, several C-alkyl azepanes demonstrated promising F508del-CFTR correction unlike the parent tetrahydroxyazepanes. None of the C-alkyl and N-alkyl azepanes did inhibit ER α-glucosidases I or II.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Glucosylceramidase/antagonists & inhibitors , Imino Sugars/pharmacology , Alkylation , Crystallography, X-Ray , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glucosylceramidase/metabolism , Humans , Imino Sugars/chemical synthesis , Imino Sugars/chemistry , Models, Molecular , Molecular Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL