Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
1.
Nano Lett ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984749

ABSTRACT

The synthesis of transition metal nitrides nanocrystals (TMNs NCs) has posed a significant challenge due to the limited reactivity of nitrogen sources at lower temperatures and the scarcity of available synthesis methods. In this study, we present a novel colloidal synthesis strategy for the fabrication of Cu3N nanorods (NRs). It is found that the trace oxygen (O2) plays an important role in the synthesis process. And a new mechanism for the formation of Cu3N is proposed. Subsequently, by employing secondary lateral epitaxial growth, the Cu3N-Cu2O heteronanostructures (HNs) can be prepared. The Cu3N NRs and Cu3N-Cu2O HNs were evaluated as precursor electrocatalysts for the CO2 reduction reaction (CO2RR). The Cu3N-Cu2O HNs demonstrate remarkable selectivity and stability with ethylene (C2H4) Faradaic efficiency (FE) up to 55.3%, surpassing that of Cu3N NRs. This study provides innovative insights into the reaction mechanism of colloidal synthesis of TMNs NCs and presents alternative options for designing cost-effective electrocatalysts to achieve carbon neutrality.

2.
Theor Appl Genet ; 137(7): 162, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884792

ABSTRACT

KEY MESSAGE: OsCOL5, an ortholog of Arabidopsis COL5, is involved in photoperiodic flowering and enhances rice yield through modulation of Ghd7 and Ehd2 and interactions with OsELF3-1 and OsELF3-2. Heading date, also known as flowering time, plays a crucial role in determining the adaptability and yield potential of rice (Oryza sativa L.). CONSTANS (CO)-like is one of the most critical flowering-associated gene families, members of which are evolutionarily conserved. Here, we report the molecular functional characterization of OsCOL5, an ortholog of Arabidopsis COL5, which is involved in photoperiodic flowering and influences rice yield. Structural analysis revealed that OsCOL5 is a typical member of CO-like family, containing two B-box domains and one CCT domain. Rice plants overexpressing OsCOL5 showed delayed heading and increases in plant height, main spike number, total grain number per plant, and yield per plant under both long-day (LD) and short-day (SD) conditions. Gene expression analysis indicated that OsCOL5 was primarily expressed in the leaves and stems with a diurnal rhythm expression pattern. RT-qPCR analysis of heading date genes showed that OsCOL5 suppressed flowering by up-regulating Ghd7 and down-regulating Ehd2, consequently reducing the expression of Ehd1, Hd3a, RFT1, OsMADS14, and OsMADS15. Yeast two-hybrid experiments showed direct interactions of OsCOL5 with OsELF3-1 and OsELF3-2. Further verification showed specific interactions between the zinc finger/B-box domain of OsCOL5 and the middle region of OsELF3-1 and OsELF3-2. Yeast one-hybrid assays revealed that OsCOL5 may bind to the CCACA motif. The results suggest that OsCOL5 functions as a floral repressor, playing a vital role in rice's photoperiodic flowering regulation. This gene shows potential in breeding programs aimed at improving rice yield by influencing the timing of flowering, which directly impacts crop productivity.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Oryza , Photoperiod , Plant Proteins , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/growth & development , Flowers/genetics , Plants, Genetically Modified/growth & development
3.
J Phys Condens Matter ; 36(37)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38843804

ABSTRACT

Super microgenerator (SMG) refers to a generator that can efficiently convert extremely weak external stimuli into electrical energy and has a small size, high power density and long lifespan, offer ground-breaking solutions for powering wearable devices, wireless distributed sensors and implanted medical equipment. However, the friction and wear between the interfaces of ordinary microgenerator results in an extremely low lifespan. Here, we present a prototype of SMGs based on a 2D-2D (graphite-MoS2) Schottky contact in the state of structural superlubricity (no wear and nearly zero friction between two contacted solid surfaces). What is even more interesting is when the graphite flake is slid from the bulk to the edge of MoS2, the output current will enhance from 31 to 56 A m-2. Through the I-V curve measurement, we found that the conductive channel across the junction can be activated and further enhanced at the edge of MoS2compare to bulk, which provide the explanation for the above-mentioned edge enhancement of power generation. Above results provide the design principles of high-performance SMGs based on 2D-2D Schottky junctions.

4.
Plant Biotechnol J ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943653

ABSTRACT

Grain chalkiness is an undesirable trait that negatively regulates grain yield and quality in rice. However, the regulatory mechanism underlying chalkiness is complex and remains unclear. We identified a positive regulator of white-belly rate (WBR). The WBR7 gene encodes sucrose synthase 3 (SUS3). A weak functional allele of WBR7 is beneficial in increasing grain yield and quality. During the domestication of indica rice, a functional G/A variation in the coding region of WBR7 resulted in an E541K amino acid substitution in the GT-4 glycosyltransferase domain, leading to a significant decrease in decomposition activity of WBR7A (allele in cultivar Jin23B) compared with WBR7G (allele in cultivar Beilu130). The NIL(J23B) and knockout line NIL(BL130)KO exhibited lower WBR7 decomposition activity than that of NIL(BL130) and NIL(J23B)COM, resulting in less sucrose decomposition and metabolism in the conducting organs. This caused more sucrose transportation to the endosperm, enhancing the synthesis of storage components in the endosperm and leading to decreased WBR. More sucrose was also transported to the anthers, providing sufficient substrate and energy supply for pollen maturation and germination, ultimately leading to an increase rate of seed setting and increased grain yield. Our findings elucidate a mechanism for enhancing rice yield and quality by modulating sucrose metabolism and allocation, and provides a valuable allele for improved rice quality.

5.
Bioresour Technol ; 406: 131016, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906195

ABSTRACT

The salt-tolerant microalgae are extremely few and salt-tolerance mechanism is unclear, requiring urgent exploration of salt-tolerance mechanism of known microalgae. This study was first to reveal the salt-tolerance mechanism of Golenkinia sp. SDEC-16 by investigating the growth and metabolism under different salinities and high salinity long-term cultivation. SDEC-16 can survive under high salinity and resume normal growth after NaCl removal. Under long-term stress, SDEC-16 had higher lipid content and productivity than BG11. However, the suppressed Fv/Fm (58.4%) and Fv/F0 (84.0%) along with the increased reactive oxygen species (×6.6), and superoxide dismutase (×1.7) during the treatment revealed NaCl-induced photosynthetic inhibition and oxidative stress. RNA sequencing results showed inhibition of the photosynthetic system, and the enhancement of pathways such as nitrogen metabolism, energy metabolism, and lipid synthesis contributed to the good function of chloroplast, energy supply, and metabolic activity of SDEC-16. This study provides theoretical support for large-scale microalgal cultivation in seawater.

6.
Front Cardiovasc Med ; 11: 1394453, 2024.
Article in English | MEDLINE | ID: mdl-38873270

ABSTRACT

Background: Mesenchymal stem cells (MSCs) have important research value and broad application prospects in cardiovascular diseases (CVDs). However, few bibliometric analyses on MSCs in cardiovascular diseases are available. This study aims to provide a thorough review of the cooperation and influence of countries, institutions, authors, and journals in the field of MSCs in cardiovascular diseases, with the provision of discoveries in the latest progress, evolution paths, frontier research hotspots, and future research trends in the regarding field. Methods: The articles related to MSCs in cardiovascular diseases were retrieved from the Web of Science. The bibliometric study was performed by CiteSpace and VOSviewer, and the knowledge map was generated based on data obtained from retrieved articles. Results: In our study, a total of 4,852 publications launched before August 31, 2023 were accessed through the Web of Science Core Collection (WoSCC) database via our searching strategy. Significant fluctuations in global publications were observed in the field of MSCs in CVDs. China emerged as the nation with the largest number of publications, yet a shortage of high-quality articles was noted. The interplay among countries, institutions, journals and authors is visually represented in the enclosed figures. Importantly, current research trends and hotspots are elucidated. Cluster analysis on references has highlighted the considerable interest in exosomes, extracellular vesicles, and microvesicles. Besides, keywords analysis revealed a strong emphasis on myocardial infarction, therapy, and transplantation. Treatment methods-related keywords were prominent, while keywords associated with extracellular vesicles gathered significant attention from the long-term perspective. Conclusion: MSCs in CVDs have become a topic of active research interest, showcasing its latent value and potential. By summarizing the latest progress, identifying the research hotspots, and discussing the future trends in the advancement of MSCs in CVDs, we aim to offer valuable insights for considering research prospects.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124501, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38796888

ABSTRACT

A simple benzopyran-based fluorescence probe DCA-Apa detection of volatile amine has been synthesized. DCA-Apa can recognize volatile amines by dual channel mode (changing from blue to light yellow in sunlight, and from weak pink to orange under 365 nm) in pure water system. DCA-Apa has the advantages of ultra-fast response (∼6 s), NIR emission (655 nm), and a good fluorescence response for many amines. The sensing label or gel loaded with DCA-Apa was prepared by the dipping or mixing method using filter paper or gelatin as solid carriers, which can identify volatile amine vapor and monitor the freshness of salmon by colorimetric and fluorescent dual channels. When the color of the label changes to light yellow-green or the fluorescence of the label becomes orange fluorescence (365 nm UV lamp), it indicates that the fish has rotted. The two-channel method makes up for the deficiency of the single colorimetric method, and establishes a theoretical foundation for more precise assessment of fish freshness.


Subject(s)
Amines , Fluorescent Dyes , Spectrometry, Fluorescence , Animals , Fluorescent Dyes/chemistry , Amines/chemistry , Amines/analysis , Spectrometry, Fluorescence/methods , Fishes , Volatile Organic Compounds/analysis , Gels/chemistry , Salmon , Colorimetry/methods
8.
Mar Pollut Bull ; 203: 116421, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713927

ABSTRACT

Intensive aquaculture production generates large amounts of sludge. This waste could be considered as a potential source of nutrients that can be recovered and utilized. Little attention has been paid to nutrient recovery from fish sludge. In this study, bioconversion of sludge was evaluated in lab scale under anaerobic (AN), facultative anaerobic (FA) and aerobic (AE) conditions. After 40 days of fermentation, AN recovered the highest values of dissolved total nitrogen (82.7 mg L-1), while AE showed the highest dissolved total phosphorus (11.8 mg L-1) and the highest reduction of total suspended solids (36.0 %). Microbial analysis showed that AN exhibited a distinct bacterial community than that of FA and AE. Furthermore, C. sorokiniana grown in AN effluents collected after 12 days of fermentation achieved the highest biomass production (1.96 g L-1). These results suggest that AN has the best potential to recover nutrients from sludge for production of C. sorokiniana.


Subject(s)
Chlorella , Microalgae , Nitrogen , Nutrients , Phosphorus , Sewage , Chlorella/growth & development , Animals , Fishes , Aquaculture , Waste Disposal, Fluid/methods , Biomass , Anaerobiosis , Fermentation
9.
J Exp Clin Cancer Res ; 43(1): 147, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769583

ABSTRACT

A century ago, the Warburg effect was first proposed, revealing that cancer cells predominantly rely on glycolysis during the process of tumorigenesis, even in the presence of abundant oxygen, shifting the main pathway of energy metabolism from the tricarboxylic acid cycle to aerobic glycolysis. Recent studies have unveiled the dynamic transfer of mitochondria within the tumor microenvironment, not only between tumor cells but also between tumor cells and stromal cells, immune cells, and others. In this review, we explore the pathways and mechanisms of mitochondrial transfer within the tumor microenvironment, as well as how these transfer activities promote tumor aggressiveness, chemotherapy resistance, and immune evasion. Further, we discuss the research progress and potential clinical significance targeting these phenomena. We also highlight the therapeutic potential of targeting intercellular mitochondrial transfer as a future anti-cancer strategy and enhancing cell-mediated immunotherapy.


Subject(s)
Mitochondria , Neoplasms , Humans , Neoplasms/metabolism , Neoplasms/therapy , Neoplasms/pathology , Neoplasms/drug therapy , Mitochondria/metabolism , Tumor Microenvironment , Animals , Nanotubes
10.
Opt Express ; 32(6): 8751-8762, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571125

ABSTRACT

The combination of surface coils and metamaterials remarkably enhance magnetic resonance imaging (MRI) performance for significant local staging flexibility. However, due to the coupling in between, impeded signal-to-noise ratio (SNR) and low-contrast resolution, further hamper the future growth in clinical MRI. In this paper, we propose a high-Q metasurface decoupling isolator fueled by topological LC loops for 1.5T surface coil MRI system, increasing the magnetic field up to fivefold at 63.8 MHz. We have employed a polarization conversion mechanism to effectively eliminate the coupling between the MRI metamaterial and the radio frequency (RF) surface transmitter-receiver coils. Furthermore, a high-Q metasurface isolator was achieved by taking advantage of bound states in the continuum (BIC) for extremely high-resolution MRI and spectroscopy. An equivalent physical model of the miniaturized metasurface design was put forward through LC circuit analysis. This study opens up a promising route for the easy-to-use and portable surface coil MRI scanners.

11.
J Circadian Rhythms ; 22: 2, 2024.
Article in English | MEDLINE | ID: mdl-38617710

ABSTRACT

Chronobiology investigations have revealed much about cellular and physiological clockworks but we are far from having a complete mechanistic understanding of the physiological and ecological implications. Here we present some unresolved questions in circadian biology research as posed by the editorial staff and guest contributors to the Journal of Circadian Rhythms. This collection of ideas is not meant to be comprehensive but does reveal the breadth of our observations on emerging trends in chronobiology and circadian biology. It is amazing what could be achieved with various expected innovations in technologies, techniques, and mathematical tools that are being developed. We fully expect strengthening mechanistic work will be linked to health care and environmental understandings of circadian function. Now that most clock genes are known, linking these to physiological, metabolic, and developmental traits requires investigations from the single molecule to the terrestrial ecological scales. Real answers are expected for these questions over the next decade. Where are the circadian clocks at a cellular level? How are clocks coupled cellularly to generate organism level outcomes? How do communities of circadian organisms rhythmically interact with each other? In what way does the natural genetic variation in populations sculpt community behaviors? How will methods development for circadian research be used in disparate academic and commercial endeavors? These and other questions make it a very exciting time to be working as a chronobiologist.

13.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673733

ABSTRACT

Grain size is a quantitative trait with a complex genetic mechanism, characterized by the combination of grain length (GL), grain width (GW), length to width ration (LWR), and grain thickness (GT). In this study, we conducted quantitative trait loci (QTL) analysis to investigate the genetic basis of grain size using BC1F2 and BC1F2:3 populations derived from two indica lines, Guangzhan 63-4S (GZ63-4S) and TGMS29 (core germplasm number W240). A total of twenty-four QTLs for grain size were identified, among which, three QTLs (qGW1, qGW7, and qGW12) controlling GL and two QTLs (qGW5 and qGL9) controlling GW were validated and subsequently fine mapped to regions ranging from 128 kb to 624 kb. Scanning electron microscopic (SEM) analysis and expression analysis revealed that qGW7 influences cell expansion, while qGL9 affects cell division. Conversely, qGW1, qGW5, and qGW12 promoted both cell division and expansion. Furthermore, negative correlations were observed between grain yield and quality for both qGW7 and qGW12. Nevertheless, qGW5 exhibited the potential to enhance quality without compromising yield. Importantly, we identified two promising QTLs, qGW1 and qGL9, which simultaneously improved both grain yield and quality. In summary, our results laid the foundation for cloning these five QTLs and provided valuable resources for breeding rice varieties with high yield and superior quality.


Subject(s)
Chromosome Mapping , Edible Grain , Oryza , Quantitative Trait Loci , Oryza/genetics , Oryza/growth & development , Edible Grain/genetics , Edible Grain/growth & development , Phenotype , Chromosomes, Plant/genetics , Seeds/genetics , Seeds/growth & development
14.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673973

ABSTRACT

The quality of rice, evaluated using multiple quality-related traits, is the main determinant of its market competitiveness. In this study, two japonica rice varieties with significant differences in quality-related traits were used as parents to construct two populations, BC3F2 and BC3F2:3, with Kongyu131 (KY131) as the recurrent parent. A genetic linkage map was constructed using the BC3F2 population based on 151 pairs of SSR/InDel polymorphic markers selected between the parents. Grain-shape-related traits (grain length GL, grain width GW, and length-to-width ratio LWR), chalkiness-related traits (white-core rate WCR, white-belly rate WBR, white-back rate BR, and chalkiness rate CR), and amylose content (AC) were investigated in the two populations in 2017 and 2018. Except for BR and CR, the traits showed similar characteristics with a normal distribution in both populations. Genetic linkage analysis was conducted for these quality-related traits, and a total of 37 QTLs were detected in the two populations. Further validation was performed on the newly identified QTLs with larger effects, and three grain shape QTLs and four chalkiness QTLs were successfully validated in different environments. One repeatedly validated QTL, qWCR3, was selected for fine mapping and was successfully narrowed down to a 100 kb region in which only two genes, LOC_0s03g45210 and LOC_0s03g45320, exhibited sequence variations between the parents. Furthermore, the variation of LOC_Os03g45210 leads to a frameshift mutation and premature protein termination. The results of this study provide a theoretical basis for positional cloning of the qWCR3 gene, thus offering new genetic resources for rice quality improvement.


Subject(s)
Chromosome Mapping , Genetic Linkage , Oryza , Phenotype , Quantitative Trait Loci , Oryza/genetics , Chromosome Mapping/methods , Edible Grain/genetics , Chromosomes, Plant/genetics , Genes, Plant
15.
Rice (N Y) ; 17(1): 19, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430431

ABSTRACT

Sakuranetin plays a key role as a phytoalexin in plant resistance to biotic and abiotic stresses, and possesses diverse health-promoting benefits. However, mature rice seeds do not contain detectable levels of sakuranetin. In the present study, a transgenic rice plant was developed in which the promoter of an endosperm-specific glutelin gene OsGluD-1 drives the expression of a specific enzyme naringenin 7-O-methyltransferase (NOMT) for sakuranetin biosynthesis. The presence of naringenin, which serves as the biosynthetic precursor of sakuranetin made this modification feasible in theory. Liquid chromatography tandem mass spectrometry (LC-MS/MS) validated that the seeds of transgenic rice accumulated remarkable sakuranetin at the mature stage, and higher at the filling stage. In addition, the panicle blast resistance of transgenic rice was significantly higher than that of the wild type. Specially, the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging was performed to detect the content and spatial distribution of sakuranetin and other nutritional metabolites in transgenic rice seeds. Notably, this genetic modification also did not change the nutritional and quality indicators such as soluble sugars, total amino acids, total flavonoids, amylose, total protein, and free amino acid content in rice. Meanwhile, the phenotypes of the transgenic plant during the whole growth and developmental periods and agricultural traits such as grain width, grain length, and 1000-grain weight exhibited no significant differences from the wild type. Collectively, the study provides a conceptual advance on cultivating sakuranetin-rich biofortified rice by metabolic engineering. This new breeding idea may not only enhance the disease resistance of cereal crop seeds but also improve the nutritional value of grains for human health benefits.

16.
Heliyon ; 10(6): e27899, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38500990

ABSTRACT

Aims: To synthesize the influencing factors of the stigma of nursing students towards people with mental illness (PMI). Background: The stigma of nursing students towards PMI may affect their career choices and negatively impact people seeking health services. While many studies have examined the educational aspects of mental health, they often overlook the multiple dimensions of possible factors influencing nursing students' perceptions. Design: A mixed-method systematic review using the Framework Integrating Normative Influences on Stigma (FINIS). Methods: We will search six databases, including PubMed, Web of Science, Cochrane Library, EMBASE, CINAHL and PsycINFO. The reference list of the included literature will be thoroughly examined to identify if any additional studies meet the criteria. Two authors will independently screen all titles, abstracts, full text and extract data. The Mixed-method Appraisal Tool will be used to assess quality. The extracted data will be disposed to different levels, including micro (demographic characteristics, disease characteristics), meso (social networks, treatment systems) and macro (media images, national context) to comply with the FINIS. Expected results: This systematic review aims to comprehensively analyze the influencing factors of the stigma of nursing students towards PMI, providing a reference basis for anti-stigma intervention measures.Prospero registration number: CRD42022374419.

17.
Cell Commun Signal ; 22(1): 162, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38448976

ABSTRACT

Microglia/macrophages are major contributors to neuroinflammation in the central nervous system (CNS) injury and exhibit either pro- or anti-inflammatory phenotypes in response to specific microenvironmental signals. Our latest in vivo and in vitro studies demonstrated that curcumin-treated olfactory ensheathing cells (aOECs) can effectively enhance neural survival and axonal outgrowth, and transplantation of aOECs improves the neurological outcome after spinal cord injury (SCI). The therapeutic effect is largely attributed to aOEC anti-inflammatory activity through the modulation of microglial polarization from the M1 to M2 phenotype. However, very little is known about what viable molecules from aOECs are actively responsible for the switch of M1 to M2 microglial phenotypes and the underlying mechanisms of microglial polarization. Herein, we show that Interleukin-4 (IL-4) plays a leading role in triggering the M1 to M2 microglial phenotype, appreciably decreasing the levels of M1 markers IL­1ß, IL­6, tumour necrosis factor-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) and elevating the levels of M2 markers Arg-1, TGF-ß, IL-10, and CD206. Strikingly, blockade of IL-4 signaling by siRNA and a neutralizing antibody in aOEC medium reverses the transition of M1 to M2, and the activated microglia stimulated with the aOEC medium lacking IL-4 significantly decreases neuronal survival and neurite outgrowth. In addition, transplantation of aOECs improved the neurological function deficits after SCI in rats. More importantly, the crosstalk between JAK1/STAT1/3/6-targeted downstream signals and NF-κB/SOCS1/3 signaling predominantly orchestrates IL-4-modulated microglial polarization event. These results provide new insights into the molecular mechanisms of aOECs driving the M1-to-M2 shift of microglia and shed light on new therapies for SCI through the modulation of microglial polarization.


Subject(s)
Curcumin , Spinal Cord Injuries , Animals , Rats , Microglia , Interleukin-4/pharmacology , Curcumin/pharmacology , Macrophages , Spinal Cord Injuries/therapy , Anti-Inflammatory Agents
18.
J Agric Food Chem ; 72(11): 6053-6063, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38452150

ABSTRACT

Legumes possess several bioactive nutrients, including flavonoids, and the study of the flavonoid profile of legumes is of great significance to human health. Using widely targeted metabolomics, we revealed the flavonoid profiles of five popular fresh legumes: cowpea, soybean, pea, fava bean, and kidney bean. A total of 259 flavonoids were identified, and the flavonoid accumulation patterns of the five legumes were remarkably different. In addition to analyzing common and species-specific flavonoids in the five legumes, we also generalized representative flavonoids of various subclasses. We related these to the health-promoting effects of legumes. Furthermore, legumes' total flavonoid content and antioxidant system activity were also detected. Intriguingly, sakuranetin, the sole flavonoid phytoalexin that can be induced by UV radiation, was detected only in the peas by metabolomics. Meanwhile, we found that UV treatment could significantly increase the sakuranetin content and the postharvest Botrytis cinerea resistance of pea pods. This study provides clues for the target diet, industrial development of legumes, and a new idea for the postharvest preservation of peas.


Subject(s)
Fabaceae , Phytoalexins , Pisum sativum , Humans , Flavonoids/pharmacology , Botrytis , Antioxidants/pharmacology
19.
Cell Rep ; 43(3): 113909, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38451814

ABSTRACT

The deciduous tree Idesia polycarpa can provide premium edible oil with high polyunsaturated fatty acid contents. Here, we generate its high-quality reference genome, which is ∼1.21 Gb, comprising 21 pseudochromosomes and 42,086 protein-coding genes. Phylogenetic and genomic synteny analyses show that it diverged with Populus trichocarpa about 16.28 million years ago. Notably, most fatty acid biosynthesis genes are not only increased in number in its genome but are also highly expressed in the fruits. Moreover, we identify, through genome-wide association analysis and RNA sequencing, the I. polycarpa SUGAR TRANSPORTER 5 (IpSTP5) gene as a positive regulator of high oil accumulation in the fruits. Silencing of IpSTP5 by virus-induced gene silencing causes a significant reduction of oil content in the fruits, suggesting it has the potential to be used as a molecular marker to breed the high-oil-content cultivars. Our results collectively lay the foundation for breeding the elite cultivars of I. polycarpa.


Subject(s)
Genome-Wide Association Study , Salicaceae , Phylogeny , Plant Breeding , Salicaceae/genetics , Base Sequence
20.
Pathogens ; 13(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38392843

ABSTRACT

Magnaporthe oryzae is a fungal pathogen that causes rice blast. Plant metabolites such as plant hormones and phytoalexin can promote or inhibit the rice blast infection. To study the effect of plant metabolites on M. oryzae, we selected salicylic acid (SA), abscisic acid (ABA), and a phytoalexin sakuranetin to treat M. oryzae grown on the medium. Through the analysis of transcriptome data, 185 and 38 genes, 803 and 156 genes, and 1525 and 428 genes were up- or down-regulated after SA, ABA, or sakuranetin treatment. Among these differentially expressed genes (DEGs), most of them were annotated to the cellular process and metabolic process in the biological process category and binding and catalytic activity in the molecular function category by GO analysis. According to KEGG pathway analysis, metabolism is the pathway with the highest number of DEGs, and the main enriched pathway is carbohydrate, lipid, and amino acid metabolism. In addition, we also found two ABA-induced up-regulated genes that may contribute to M. oryzae infection from the transcriptome data. We verified their expressions in M. oryzae that infected rice.

SELECTION OF CITATIONS
SEARCH DETAIL